aboutsummaryrefslogtreecommitdiff
path: root/advtrains/path.lua
blob: 43add95b88ae5e1af61aafe986014bfb0d01ee04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
-- path.lua
-- Functions for pathpredicting, put in a separate file. 

function advtrains.conway(midreal, prev, drives_on)--in order prev,mid,return
	local mid=advtrains.round_vector_floor_y(midreal)
	
	local midnode_ok, midconns=advtrains.get_rail_info_at(mid, drives_on)
	if not midnode_ok then
		return nil 
	end
	local pconnid
	for connid, conn in ipairs(midconns) do
		local tps = advtrains.dirCoordSet(mid, conn.c)
		if tps.x==prev.x and tps.z==prev.z then
			pconnid=connid
		end
	end
	local nconnid = advtrains.get_matching_conn(pconnid, #midconns)
	
	local next, next_connid, _, nextrailheight = advtrains.get_adjacent_rail(mid, midconns, nconnid, drives_on)
	if not next then
		return nil
	end
	return vector.add(advtrains.round_vector_floor_y(next), {x=0, y=nextrailheight, z=0}), midconns[nconnid].c
end

function advtrains.pathpredict(id, train, gen_front, gen_back)
	
	local maxn=train.path_extent_max or 0
	while maxn < gen_front do--pregenerate
		local conway
		if train.max_index_on_track == maxn then
			--atprint("maxn conway for ",maxn,train.path[maxn],maxn-1,train.path[maxn-1])
			conway=advtrains.conway(train.path[maxn], train.path[maxn-1], train.drives_on)
		end
		if conway then
			train.path[maxn+1]=conway
			train.max_index_on_track=maxn+1
		else
			--do as if nothing has happened and preceed with path
			--but do not update max_index_on_track
			atprint("over-generating path max to index ",(maxn+1)," (position ",train.path[maxn]," )")
			train.path[maxn+1]=vector.add(train.path[maxn], vector.subtract(train.path[maxn], train.path[maxn-1]))
		end
		train.path_dist[maxn]=vector.distance(train.path[maxn+1], train.path[maxn])
		maxn=maxn+1
	end
	train.path_extent_max=maxn
	
	local minn=train.path_extent_min or -1
	while minn > gen_back do
		local conway
		if train.min_index_on_track == minn then
			--atprint("minn conway for ",minn,train.path[minn],minn+1,train.path[minn+1])
			conway=advtrains.conway(train.path[minn], train.path[minn+1], train.drives_on)
		end
		if conway then
			train.path[minn-1]=conway
			train.min_index_on_track=minn-1
		else
			--do as if nothing has happened and preceed with path
			--but do not update min_index_on_track
			atprint("over-generating path min to index ",(minn-1)," (position ",train.path[minn]," )")
			train.path[minn-1]=vector.add(train.path[minn], vector.subtract(train.path[minn], train.path[minn+1]))
		end
		train.path_dist[minn-1]=vector.distance(train.path[minn], train.path[minn-1])
		minn=minn-1
	end
	train.path_extent_min=minn
	if not train.min_index_on_track then train.min_index_on_track=-1 end
	if not train.max_index_on_track then train.max_index_on_track=0 end
end

-- Naming conventions:
-- 'index' - An index of the train.path table.
-- 'offset' - A value in meters that determines how far on the path to walk relative to a certain index
-- 'n' - Referring or pointing towards the 'next' path item, the one with index+1
-- 'p' - Referring or pointing towards the 'prev' path item, the one with index-1
-- 'f' - Referring to the positive end of the path (the end with the higher index)
-- 'b' - Referring to the negative end of the path (the end with the lower index)

-- New path structure of trains:
--Tables:
-- path      - path positions. 'indices' are relative to this. At the moment, at.round_vector_floor_y(path[i])
--              is the node this item corresponds to, however, this will change in the future.
-- path_node - (reserved)
-- path_cn   - Connid of the current node that points towards path[i+1]
-- path_cp   - Connid of the current node that points towards path[i-1]
--     When the day comes on that path!=node, these will only be set if this index represents a transition between rail nodes
-- path_dist - The distance (in meters) between this (path[i]) and the next (path[i+1]) item of the path
-- path_dir  - The direction of this path item's transition to the next path item, which is the angle of conns[path_cn[i]].c
--Variables:
-- path_ext_f/b - how far path[i] is set
-- path_trk_f/b - how far the path extends along a track. beyond those values, paths are generated in a straight line.
-- path_req_f/b - how far path items were requested in the last step

-- creates the path data structure, reconstructing the train from a position and a connid
-- Important! train.drives_on must exist while calling this method
-- returns: true - successful
--           nil - node not yet available/unloaded, please wait
--         false - node definitely gone, remove train
function advtrains.path_create(train, pos, connid, rel_index)
	local posr = advtrains.round_vector_floor_y(pos)
	local node_ok, conns, rhe = advtrains.get_rail_info_at(pos, train.drives_on)
	if not node_ok then
		return node_ok
	end
	local mconnid = advtrains.get_matching_conn(connid, #conns)
	train.index = rel_index
	train.path = { [0] = { x=posr.x, y=posr.y+rhe, z=posr.z } }
	train.path_cn = { [0] = connid }
	train.path_cp = { [0] = mconnid }
	train.path_dist = {}
	
	train.path_dir = {
		[ 0] = conns[connid],
		[-1] = conns[mconnid]
	}
	
	train.path_ext_f=0
	train.path_ext_b=0
	train.path_trk_f=0
	train.path_trk_b=0
	train.path_req_f=0
	train.path_req_b=0
	
end

-- Function to get path entry at a position. This function will automatically calculate more of the path when required.
-- returns: pos, on_track
function advtrains.path_get(train, index)
	if index ~= atfloor(index) then
		error("For train "..train.id..": Called path_get() but index="..index.." is not a round number")
	end
	while index > train.path_ext_f do
		local pos = train.path[train.path_ext_f]
		local connid = train.path_cn[train.path_ext_f]
		local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y
		if train.path_ext_f == train.path_trk_f then
			node_ok, this_conns = advtrains.get_rail_info_at(this_pos)
			if not node_ok then error("For train "..train.id..": Path item "..train.path_ext_f.." on-track but not a valid node!") end
			adj_pos, adj_connid, conn_idx, nextrail_y = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
		end
		train.path_ext_f = train.path_ext_f + 1
		if adj_pos then
			adj_pos.y = adj_pos.y + nextrail_y
			train.path_cp[train.path_ext_f] = adj_connid
			local mconnid = advtrains.get_matching_conn(adj_connid)
			train.path_cn[train.path_ext_f] = mconnid
			train.path_dir[train.path_ext_f] = this_conns[mconnid]
			train.path_trk_f = train.path_ext_f
		else
			-- off-track fallback behavior
			adj_pos = advtrains.pos_add_dir(pos, train.path_dir[train.path_ext_f-1])
			train.path_dir[train.path_ext_f] = train.path_dir[train.path_ext_f-1]
		end
		train.path[train.path_ext_f] = adj_pos
		train.path_dist[train.path_ext_f - 1] = vector.distance(pos, adj_pos)
	end
	while index < train.path_ext_b do
		local pos = train.path[train.path_ext_b]
		local connid = train.path_cp[train.path_ext_b]
		local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y
		if train.path_ext_b == train.path_trk_b then
			node_ok, this_conns = advtrains.get_rail_info_at(this_pos)
			if not node_ok then error("For train "..train.id..": Path item "..train.path_ext_f.." on-track but not a valid node!") end
			adj_pos, adj_connid, conn_idx, nextrail_y = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
		end
		train.path_ext_b = train.path_ext_b - 1
		if adj_pos then
			adj_pos.y = adj_pos.y + nextrail_y
			train.path_cp[train.path_ext_b] = adj_connid
			local mconnid = advtrains.get_matching_conn(adj_connid)
			train.path_cn[train.path_ext_b] = mconnid
			train.path_dir[train.path_ext_b] = advtrains.oppd(this_conns[mconnid]) --we need to rotate this here so that it points in positive path direction
			train.path_trk_b = train.path_ext_b
		else
			-- off-track fallback behavior
			adj_pos = advtrains.pos_add_dir(pos, train.path_dir[train.path_ext_b-1])
			train.path_dir[train.path_ext_b] = train.path_dir[train.path_ext_b-1]
		end
		train.path[train.path_ext_b] = adj_pos
		train.path_dist[train.path_ext_b] = vector.distance(pos, adj_pos)
	end
	
	return train.path[index], (index<=train.path_trk_f and index>=train.path_trk_b)
	
end

-- interpolated position to fractional index given, and angle based on path_dir
-- returns: pos, angle(yaw), p_floor, p_ceil
function advtrains.path_get_interpolated(train, index)
	local i_floor = atfloor(index)
	local i_ceil = i_floor + 1
	local frac = index - i_floor
	local p_floor,  = advtrains.path_get(train, i_floor)
	local p_ceil = advtrains.path_get(train, i_ceil)
	-- Note: minimal code duplication to path_get_adjacent, for performance
	
	local d_floor = train.path_dir[i_floor]
	local d_ceil = train.path_dir[i_ceil]
	local a_floor = advtrains.dir_to_angle(d_floor)
	local a_ceil = advtrains.dir_to_angle(d_ceil)
	
	local ang = advtrains.minAngleDiffRad(a_floor, a_ceil)
	
	return vector.add(p_floor, vector.multiply(vector.subtract(npos2, npos), frac), (a_floor + frac * ang)%(2*math.pi), p_floor, p_ceil -- TODO does this behave correctly?
end
-- returns the 2 path positions directly adjacent to index and the fraction on how to interpolate between them
-- returns: pos_floor, pos_ceil, fraction
function advtrains.path_get_adjacent(train, index)
	local i_floor = atfloor(index)
	local i_ceil = i_floor + 1
	local frac = index - i_floor
	local p_floor,  = advtrains.path_get(train, i_floor)
	local p_ceil = advtrains.path_get(train, i_ceil)
	return p_floor, p_ceil, frac
end

function advtrains.path_get_index_by_offset(train, index, offset)
	local pos_in_train_left=pit
	local index=train.index
	if pos_in_train_left>(index-math.floor(index))*(train.path_dist[math.floor(index)] or 1) then
		pos_in_train_left=pos_in_train_left - (index-math.floor(index))*(train.path_dist[math.floor(index)] or 1)
		index=math.floor(index)
		while pos_in_train_left>(train.path_dist[index-1] or 1) do
			pos_in_train_left=pos_in_train_left - (train.path_dist[index-1] or 1)
			index=index-1
		end
		index=index-(pos_in_train_left/(train.path_dist[index-1] or 1))
	else
		index=index-(pos_in_train_left/(train.path_dist[math.floor(index-1)] or 1))
	end
	return index
end