aboutsummaryrefslogtreecommitdiff
path: root/builtin/common/vector.lua
diff options
context:
space:
mode:
Diffstat (limited to 'builtin/common/vector.lua')
-rw-r--r--builtin/common/vector.lua93
1 files changed, 93 insertions, 0 deletions
diff --git a/builtin/common/vector.lua b/builtin/common/vector.lua
index ca6541eb4..1fd784ce2 100644
--- a/builtin/common/vector.lua
+++ b/builtin/common/vector.lua
@@ -141,3 +141,96 @@ function vector.sort(a, b)
return {x = math.min(a.x, b.x), y = math.min(a.y, b.y), z = math.min(a.z, b.z)},
{x = math.max(a.x, b.x), y = math.max(a.y, b.y), z = math.max(a.z, b.z)}
end
+
+local function sin(x)
+ if x % math.pi == 0 then
+ return 0
+ else
+ return math.sin(x)
+ end
+end
+
+local function cos(x)
+ if x % math.pi == math.pi / 2 then
+ return 0
+ else
+ return math.cos(x)
+ end
+end
+
+function vector.rotate_around_axis(v, axis, angle)
+ local cosangle = cos(angle)
+ local sinangle = sin(angle)
+ axis = vector.normalize(axis)
+ -- https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
+ local dot_axis = vector.multiply(axis, vector.dot(axis, v))
+ local cross = vector.cross(v, axis)
+ return vector.new(
+ cross.x * sinangle + (v.x - dot_axis.x) * cosangle + dot_axis.x,
+ cross.y * sinangle + (v.y - dot_axis.y) * cosangle + dot_axis.y,
+ cross.z * sinangle + (v.z - dot_axis.z) * cosangle + dot_axis.z
+ )
+end
+
+function vector.rotate(v, rot)
+ local sinpitch = sin(-rot.x)
+ local sinyaw = sin(-rot.y)
+ local sinroll = sin(-rot.z)
+ local cospitch = cos(rot.x)
+ local cosyaw = cos(rot.y)
+ local cosroll = math.cos(rot.z)
+ -- Rotation matrix that applies yaw, pitch and roll
+ local matrix = {
+ {
+ sinyaw * sinpitch * sinroll + cosyaw * cosroll,
+ sinyaw * sinpitch * cosroll - cosyaw * sinroll,
+ sinyaw * cospitch,
+ },
+ {
+ cospitch * sinroll,
+ cospitch * cosroll,
+ -sinpitch,
+ },
+ {
+ cosyaw * sinpitch * sinroll - sinyaw * cosroll,
+ cosyaw * sinpitch * cosroll + sinyaw * sinroll,
+ cosyaw * cospitch,
+ },
+ }
+ -- Compute matrix multiplication: `matrix` * `v`
+ return vector.new(
+ matrix[1][1] * v.x + matrix[1][2] * v.y + matrix[1][3] * v.z,
+ matrix[2][1] * v.x + matrix[2][2] * v.y + matrix[2][3] * v.z,
+ matrix[3][1] * v.x + matrix[3][2] * v.y + matrix[3][3] * v.z
+ )
+end
+
+function vector.dir_to_rotation(forward, up)
+ forward = vector.normalize(forward)
+ local rot = {x = math.asin(forward.y), y = -math.atan2(forward.x, forward.z), z = 0}
+ if not up then
+ return rot
+ end
+ assert(vector.dot(forward, up) < 0.000001,
+ "Invalid vectors passed to vector.dir_to_rotation().")
+ up = vector.normalize(up)
+ -- Calculate vector pointing up with roll = 0, just based on forward vector.
+ local forwup = vector.rotate({x = 0, y = 1, z = 0}, rot)
+ -- 'forwup' and 'up' are now in a plane with 'forward' as normal.
+ -- The angle between them is the absolute of the roll value we're looking for.
+ rot.z = vector.angle(forwup, up)
+
+ -- Since vector.angle never returns a negative value or a value greater
+ -- than math.pi, rot.z has to be inverted sometimes.
+ -- To determine wether this is the case, we rotate the up vector back around
+ -- the forward vector and check if it worked out.
+ local back = vector.rotate_around_axis(up, forward, -rot.z)
+
+ -- We don't use vector.equals for this because of floating point imprecision.
+ if (back.x - forwup.x) * (back.x - forwup.x) +
+ (back.y - forwup.y) * (back.y - forwup.y) +
+ (back.z - forwup.z) * (back.z - forwup.z) > 0.0000001 then
+ rot.z = -rot.z
+ end
+ return rot
+end