| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
| |
This reverts commit e4e4324a30d6bcac5cc06c74e955e4941b14bd38.
Conflicts:
po/minetest.pot
po/*/minetest.po
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Signed-off-by: Craig Robbins <kde.psych@gmail.com>
|
|
|
|
| |
Errors found by @Sokomine.
|
|
|
|
| |
Signed-off-by: Craig Robbins <kde.psych@gmail.com>
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
This reverts commit 4432e982616cd871cf1ae5c5706da09e98077433.
Exception: "Nom / Mot de Passe" --> "Nom / Mot de passe"
|
|
|
|
|
|
|
|
|
| |
Notes (in french) :
72 msgstr "Ok" : OK est un acronyme, pas un nom, donc majuscules.
193 msgstr "Feuilles transparentes" : quel type de feuilles ? Trop vague.
213 msgstr "Filtrage anisotropique" : oxymore.
229 msgstr "Précharger les visuels d'objets" : doit être écourté (dépasse trop la bordure grisée)
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
wrong expression and wrong word order
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Kürzen, da es sonst nicht in den Button passt.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Myslím, že se jedná o IME Convert klávesu: http://msdn.microsoft.com/en-us/library/system.windows.input.key.aspx
|
| |
|
|
|
|
| |
Myslím, že se jedná o IME NonConvert klávesu: http://msdn.microsoft.com/en-us/library/system.windows.input.key.aspx
|
| |
|
| |
|
| |
|
| |
|
href='#n731'>731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*
* Minetest
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include "noise.h"
#include <iostream>
#include <string.h> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"
#define NOISE_MAGIC_X 1619
#define NOISE_MAGIC_Y 31337
#define NOISE_MAGIC_Z 52591
#define NOISE_MAGIC_SEED 1013
typedef float (*Interp2dFxn)(
float v00, float v10, float v01, float v11,
float x, float y);
typedef float (*Interp3dFxn)(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z);
float cos_lookup[16] = {
1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238,
1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238
};
FlagDesc flagdesc_noiseparams[] = {
{"defaults", NOISE_FLAG_DEFAULTS},
{"eased", NOISE_FLAG_EASED},
{"absvalue", NOISE_FLAG_ABSVALUE},
{"pointbuffer", NOISE_FLAG_POINTBUFFER},
{"simplex", NOISE_FLAG_SIMPLEX},
{NULL, 0}
};
///////////////////////////////////////////////////////////////////////////////
PcgRandom::PcgRandom(u64 state, u64 seq)
{
seed(state, seq);
}
void PcgRandom::seed(u64 state, u64 seq)
{
m_state = 0U;
m_inc = (seq << 1u) | 1u;
next();
m_state += state;
next();
}
u32 PcgRandom::next()
{
u64 oldstate = m_state;
m_state = oldstate * 6364136223846793005ULL + m_inc;
u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
u32 rot = oldstate >> 59u;
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
u32 PcgRandom::range(u32 bound)
{
// If the bound is 0, we cover the whole RNG's range
if (bound == 0)
return next();
/*
This is an optimization of the expression:
0x100000000ull % bound
since 64-bit modulo operations typically much slower than 32.
*/
u32 threshold = -bound % bound;
u32 r;
/*
If the bound is not a multiple of the RNG's range, it may cause bias,
e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
Using rand() % 3, the number 0 would be twice as likely to appear.
With a very large RNG range, the effect becomes less prevalent but
still present.
This can be solved by modifying the range of the RNG to become a
multiple of bound by dropping values above the a threshold.
In our example, threshold == 4 % 3 == 1, so reject values < 1
(that is, 0), thus making the range == 3 with no bias.
This loop may look dangerous, but will always terminate due to the
RNG's property of uniformity.
*/
while ((r = next()) < threshold)
;
return r % bound;
}
s32 PcgRandom::range(s32 min, s32 max)
{
if (max < min)
throw PrngException("Invalid range (max < min)");
u32 bound = max - min + 1;
return range(bound) + min;
}
void PcgRandom::bytes(void *out, size_t len)
{
u8 *outb = (u8 *)out;
int bytes_left = 0;
u32 r;
while (len--) {
if (bytes_left == 0) {
bytes_left = sizeof(u32);
r = next();
}
*outb = r & 0xFF;
outb++;
bytes_left--;
r >>= CHAR_BIT;
}
}
s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
{
s32 accum = 0;
for (int i = 0; i != num_trials; i++)
accum += range(min, max);
return myround((float)accum / num_trials);
}
///////////////////////////////////////////////////////////////////////////////
float noise2d(int x, int y, s32 seed)
{
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
n = (n >> 13) ^ n;
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 1.f - (float)(int)n / 0x40000000;
}
float noise3d(int x, int y, int z, s32 seed)
{
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
n = (n >> 13) ^ n;
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 1.f - (float)(int)n / 0x40000000;
}
inline float dotProduct(float vx, float vy, float wx, float wy)
{
return vx * wx + vy * wy;
}
inline float linearInterpolation(float v0, float v1, float t)
{
return v0 + (v1 - v0) * t;
}
inline float biLinearInterpolation(
float v00, float v10,
float v01, float v11,
float x, float y)
{
float tx = easeCurve(x);
float ty = easeCurve(y);
float u = linearInterpolation(v00, v10, tx);
float v = linearInterpolation(v01, v11, tx);
return linearInterpolation(u, v, ty);
}
inline float biLinearInterpolationNoEase(
float v00, float v10,
float v01, float v11,
float x, float y)
{
float u = linearInterpolation(v00, v10, x);
float v = linearInterpolation(v01, v11, x);
return linearInterpolation(u, v, y);
}
float triLinearInterpolation(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z)
{
float tx = easeCurve(x);
float ty = easeCurve(y);
float tz = easeCurve(z);
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
return linearInterpolation(u, v, tz);
}
float triLinearInterpolationNoEase(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z)
{
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
return linearInterpolation(u, v, z);
}
float noise2d_gradient(float x, float y, s32 seed, bool eased)
{
// Calculate the integer coordinates
int x0 = myfloor(x);
int y0 = myfloor(y);
// Calculate the remaining part of the coordinates
float xl = x - (float)x0;
float yl = y - (float)y0;
// Get values for corners of square
float v00 = noise2d(x0, y0, seed);
float v10 = noise2d(x0+1, y0, seed);
float v01 = noise2d(x0, y0+1, seed);
float v11 = noise2d(x0+1, y0+1, seed);
// Interpolate
if (eased)
return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
else
return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}
float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
{
// Calculate the integer coordinates
int x0 = myfloor(x);
int y0 = myfloor(y);
int z0 = myfloor(z);
// Calculate the remaining part of the coordinates
float xl = x - (float)x0;
float yl = y - (float)y0;
float zl = z - (float)z0;
// Get values for corners of cube
float v000 = noise3d(x0, y0, z0, seed);
float v100 = noise3d(x0 + 1, y0, z0, seed);
float v010 = noise3d(x0, y0 + 1, z0, seed);
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
float v001 = noise3d(x0, y0, z0 + 1, seed);
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
// Interpolate
if (eased) {
return triLinearInterpolation(
v000, v100, v010, v110,
v001, v101, v011, v111,
xl, yl, zl);
} else {
return triLinearInterpolationNoEase(
v000, v100, v010, v110,
v001, v101, v011, v111,
xl, yl, zl);
}
}
float noise2d_perlin(float x, float y, s32 seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++)
{
a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
f *= 2.0;
g *= persistence;
}
return a;
}
float noise2d_perlin_abs(float x, float y, s32 seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
f *= 2.0;
g *= persistence;
}
return a;
}
float noise3d_perlin(float x, float y, float z, s32 seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
f *= 2.0;
g *= persistence;
}
return a;
}
float noise3d_perlin_abs(float x, float y, float z, s32 seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
f *= 2.0;
g *= persistence;
}
return a;
}
float contour(float v)
{
v = fabs(v);
if (v >= 1.0)
return 0.0;
return (1.0 - v);
}
///////////////////////// [ New noise ] ////////////////////////////
float NoisePerlin2D(NoiseParams *np, float x, float y, s32 seed)
{
float a = 0;
float f = 1.0;
float g = 1.0;
x /= np->spread.X;
y /= np->spread.Y;
seed += np->seed;
for (size_t i = 0; i < np->octaves; i++) {
float noiseval = noise2d_gradient(x * f, y * f, seed + i,
np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
if (np->flags & NOISE_FLAG_ABSVALUE)
noiseval = fabs(noiseval);
a += g * noiseval;
f *= np->lacunarity;
g *= np->persist;
}
return np->offset + a * np->scale;
}
float NoisePerlin3D(NoiseParams *np, float x, float y, float z, s32 seed)
{
float a = 0;
float f = 1.0;
float g = 1.0;
x /= np->spread.X;
y /= np->spread.Y;
z /= np->spread.Z;
seed += np->seed;
for (size_t i = 0; i < np->octaves; i++) {
float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
np->flags & NOISE_FLAG_EASED);
if (np->flags & NOISE_FLAG_ABSVALUE)
noiseval = fabs(noiseval);
a += g * noiseval;
f *= np->lacunarity;
g *= np->persist;
}
return np->offset + a * np->scale;
}
Noise::Noise(NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
{
memcpy(&np, np_, sizeof(np));
this->seed = seed;
this->sx = sx;
this->sy = sy;
this->sz = sz;
this->persist_buf = NULL;
this->gradient_buf = NULL;
this->result = NULL;
allocBuffers();
}
Noise::~Noise()
{
delete[] gradient_buf;
delete[] persist_buf;
delete[] noise_buf;
delete[] result;
}
void Noise::allocBuffers()
{
if (sx < 1)
sx = 1;
if (sy < 1)
sy = 1;
if (sz < 1)
sz = 1;
this->noise_buf = NULL;
resizeNoiseBuf(sz > 1);
delete[] gradient_buf;
delete[] persist_buf;
delete[] result;
try {
size_t bufsize = sx * sy * sz;
this->persist_buf = NULL;
this->gradient_buf = new float[bufsize];
this->result = new float[bufsize];
} catch (std::bad_alloc &e) {
throw InvalidNoiseParamsException();
}
}
void Noise::setSize(u32 sx, u32 sy, u32 sz)
{
this->sx = sx;
this->sy = sy;
this->sz = sz;
allocBuffers();
}
void Noise::setSpreadFactor(v3f spread)
{
this->np.spread = spread;
resizeNoiseBuf(sz > 1);
}
void Noise::setOctaves(int octaves)
{
this->np.octaves = octaves;
resizeNoiseBuf(sz > 1);
}
void Noise::resizeNoiseBuf(bool is3d)
{
//maximum possible spread value factor
float ofactor = (np.lacunarity > 1.0) ?
pow(np.lacunarity, np.octaves - 1) :
np.lacunarity;
// noise lattice point count
// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
float num_noise_points_x = sx * ofactor / np.spread.X;
float num_noise_points_y = sy * ofactor / np.spread.Y;
float num_noise_points_z = sz * ofactor / np.spread.Z;
// protect against obviously invalid parameters
if (num_noise_points_x > 1000000000.f ||
num_noise_points_y > 1000000000.f ||
num_noise_points_z > 1000000000.f)
throw InvalidNoiseParamsException();
// + 2 for the two initial endpoints
// + 1 for potentially crossing a boundary due to offset
size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
size_t nly = (size_t)ceil(num_noise_points_y) + 3;
size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;
delete[] noise_buf;
try {
noise_buf = new float[nlx * nly * nlz];
} catch (std::bad_alloc &e) {
throw InvalidNoiseParamsException();
}
}
/*
* NB: This algorithm is not optimal in terms of space complexity. The entire
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
* 2 lines + 2 planes.
* However, this would require the noise calls to be interposed with the
* interpolation loops, which may trash the icache, leading to lower overall
* performance.
* Another optimization that could save half as many noise calls is to carry over
* values from the previous noise lattice as midpoints in the new lattice for the
* next octave.
*/
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
float x, float y,
float step_x, float step_y,
s32 seed)
{
float v00, v01, v10, v11, u, v, orig_u;
u32 index, i, j, noisex, noisey;
u32 nlx, nly;
s32 x0, y0;
bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
Interp2dFxn interpolate = eased ?
biLinearInterpolation : biLinearInterpolationNoEase;
x0 = floor(x);
y0 = floor(y);
u = x - (float)x0;
v = y - (float)y0;
orig_u = u;
//calculate noise point lattice
nlx = (u32)(u + sx * step_x) + 2;
nly = (u32)(v + sy * step_y) + 2;
index = 0;
for (j = 0; j != nly; j++)
for (i = 0; i != nlx; i++)
noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
//calculate interpolations
index = 0;
noisey = 0;
for (j = 0; j != sy; j++) {
v00 = noise_buf[idx(0, noisey)];
v10 = noise_buf[idx(1, noisey)];
v01 = noise_buf[idx(0, noisey + 1)];
v11 = noise_buf[idx(1, noisey + 1)];
u = orig_u;
noisex = 0;
for (i = 0; i != sx; i++) {
gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);
u += step_x;
if (u >= 1.0) {
u -= 1.0;
noisex++;
v00 = v10;
v01 = v11;
v10 = noise_buf[idx(noisex + 1, noisey)];
v11 = noise_buf[idx(noisex + 1, noisey + 1)];
}
}
v += step_y;
if (v >= 1.0) {
v -= 1.0;
noisey++;
}
}
}
#undef idx
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
float x, float y, float z,
float step_x, float step_y, float step_z,
s32 seed)
{
float v000, v010, v100, v110;
float v001, v011, v101, v111;
float u, v, w, orig_u, orig_v;
u32 index, i, j, k, noisex, noisey, noisez;
u32 nlx, nly, nlz;
s32 x0, y0, z0;
Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
triLinearInterpolation : triLinearInterpolationNoEase;
x0 = floor(x);
y0 = floor(y);
z0 = floor(z);
u = x - (float)x0;
v = y - (float)y0;
w = z - (float)z0;
orig_u = u;
orig_v = v;
//calculate noise point lattice
nlx = (u32)(u + sx * step_x) + 2;
nly = (u32)(v + sy * step_y) + 2;
nlz = (u32)(w + sz * step_z) + 2;
index = 0;
for (k = 0; k != nlz; k++)
for (j = 0; j != nly; j++)
for (i = 0; i != nlx; i++)
noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
//calculate interpolations
index = 0;
noisey = 0;
noisez = 0;
for (k = 0; k != sz; k++) {
v = orig_v;
noisey = 0;
for (j = 0; j != sy; j++) {
v000 = noise_buf[idx(0, noisey, noisez)];
v100 = noise_buf[idx(1, noisey, noisez)];
v010 = noise_buf[idx(0, noisey + 1, noisez)];
v110 = noise_buf[idx(1, noisey + 1, noisez)];
v001 = noise_buf[idx(0, noisey, noisez + 1)];
v101 = noise_buf[idx(1, noisey, noisez + 1)];
v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
u = orig_u;
noisex = 0;
for (i = 0; i != sx; i++) {
gradient_buf[index++] = interpolate(
v000, v100, v010, v110,
v001, v101, v011, v111,
u, v, w);
u += step_x;
if (u >= 1.0) {
u -= 1.0;
noisex++;
v000 = v100;
v010 = v110;
v100 = noise_buf[idx(noisex + 1, noisey, noisez)];
v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
v001 = v101;
v011 = v111;
v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)];
v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
}
}
v += step_y;
if (v >= 1.0) {
v -= 1.0;
noisey++;
}
}
w += step_z;
if (w >= 1.0) {
w -= 1.0;
noisez++;
}
}
}
#undef idx
float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
float f = 1.0, g = 1.0;
size_t bufsize = sx * sy;
x /= np.spread.X;
y /= np.spread.Y;
memset(result, 0, sizeof(float) * bufsize);
if (persistence_map) {
if (!persist_buf)
persist_buf = new float[bufsize];
for (size_t i = 0; i != bufsize; i++)
persist_buf[i] = 1.0;
}
for (size_t oct = 0; oct < np.octaves; oct++) {
gradientMap2D(x * f, y * f,
f / np.spread.X, f / np.spread.Y,
seed + np.seed + oct);
updateResults(g, persist_buf, persistence_map, bufsize);
f *= np.lacunarity;
g *= np.persist;
}
if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
for (size_t i = 0; i != bufsize; i++)
result[i] = result[i] * np.scale + np.offset;
}
return result;
}
float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
float f = 1.0, g = 1.0;
size_t bufsize = sx * sy * sz;
x /= np.spread.X;
y /= np.spread.Y;
z /= np.spread.Z;
memset(result, 0, sizeof(float) * bufsize);
if (persistence_map) {
if (!persist_buf)
persist_buf = new float[bufsize];
for (size_t i = 0; i != bufsize; i++)
persist_buf[i] = 1.0;
}
for (size_t oct = 0; oct < np.octaves; oct++) {
gradientMap3D(x * f, y * f, z * f,
f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
seed + np.seed + oct);
updateResults(g, persist_buf, persistence_map, bufsize);
f *= np.lacunarity;
g *= np.persist;
}
if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
for (size_t i = 0; i != bufsize; i++)
result[i] = result[i] * np.scale + np.offset;
}
return result;
}
void Noise::updateResults(float g, float *gmap,
float *persistence_map, size_t bufsize)
{
// This looks very ugly, but it is 50-70% faster than having
// conditional statements inside the loop
if (np.flags & NOISE_FLAG_ABSVALUE) {
if (persistence_map) {
for (size_t i = 0; i != bufsize; i++) {
result[i] += gmap[i] * fabs(gradient_buf[i]);
gmap[i] *= persistence_map[i];
}
} else {
for (size_t i = 0; i != bufsize; i++)
result[i] += g * fabs(gradient_buf[i]);
}
} else {
if (persistence_map) {
for (size_t i = 0; i != bufsize; i++) {
result[i] += gmap[i] * gradient_buf[i];
gmap[i] *= persistence_map[i];
}
} else {
for (size_t i = 0; i != bufsize; i++)
result[i] += g * gradient_buf[i];
}
}
}