/* Minetest Copyright (C) 2015-2017 paramat Copyright (C) 2015-2016 kwolekr, Ryan Kwolek This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "mapgen.h" #include "voxel.h" #include "noise.h" #include "mapblock.h" #include "mapnode.h" #include "map.h" #include "content_sao.h" #include "nodedef.h" #include "voxelalgorithms.h" //#include "profiler.h" // For TimeTaker #include "settings.h" // For g_settings #include "emerge.h" #include "dungeongen.h" #include "cavegen.h" #include "mg_biome.h" #include "mg_ore.h" #include "mg_decoration.h" #include "mapgen_fractal.h" FlagDesc flagdesc_mapgen_fractal[] = { {NULL, 0} }; /////////////////////////////////////////////////////////////////////////////////////// MapgenFractal::MapgenFractal(int mapgenid, MapgenFractalParams *params, EmergeManager *emerge) : MapgenBasic(mapgenid, params, emerge) { this->spflags = params->spflags; this->cave_width = params->cave_width; this->fractal = params->fractal; this->iterations = params->iterations; this->scale = params->scale; this->offset = params->offset; this->slice_w = params->slice_w; this->julia_x = params->julia_x; this->julia_y = params->julia_y; this->julia_z = params->julia_z; this->julia_w = params->julia_w; //// 2D terrain noise noise_seabed = new Noise(¶ms->np_seabed, seed, csize.X, csize.Z); noise_filler_depth = new Noise(¶ms->np_filler_depth, seed, csize.X, csize.Z); MapgenBasic::np_cave1 = params->np_cave1; MapgenBasic::np_cave2 = params->np_cave2; this->formula = fractal / 2 + fractal % 2; this->julia = fractal % 2 == 0; } MapgenFractal::~MapgenFractal() { delete noise_seabed; delete noise_filler_depth; } MapgenFractalParams::MapgenFractalParams() { spflags = 0; cave_width = 0.09; fractal = 1; iterations = 11; scale = v3f(4096.0, 1024.0, 4096.0); offset = v3f(1.79, 0.0, 0.0); slice_w = 0.0; julia_x = 0.33; julia_y = 0.33; julia_z = 0.33; julia_w = 0.33; np_seabed = NoiseParams(-14, 9, v3f(600, 600, 600), 41900, 5, 0.6, 2.0); np_filler_depth = NoiseParams(0, 1.2, v3f(150, 150, 150), 261, 3, 0.7, 2.0); np_cave1 = NoiseParams(0, 12, v3f(61, 61, 61), 52534, 3, 0.5, 2.0); np_cave2 = NoiseParams(0, 12, v3f(67, 67, 67), 10325, 3, 0.5, 2.0); } void MapgenFractalParams::readParams(const Settings *settings) { settings->getFlagStrNoEx("mgfractal_spflags", spflags, flagdesc_mapgen_fractal); settings->getFloatNoEx("mgfractal_cave_width", cave_width); settings->getU16NoEx("mgfractal_fractal", fractal); settings->getU16NoEx("mgfractal_iterations", iterations); settings->getV3FNoEx("mgfractal_scale", scale); settings->getV3FNoEx("mgfractal_offset", offset); settings->getFloatNoEx("mgfractal_slice_w", slice_w); settings->getFloatNoEx("mgfractal_julia_x", julia_x); settings->getFloatNoEx("mgfractal_julia_y", julia_y); settings->getFloatNoEx("mgfractal_julia_z", julia_z); settings->getFloatNoEx("mgfractal_julia_w", julia_w); settings->getNoiseParams("mgfractal_np_seabed", np_seabed); settings->getNoiseParams("mgfractal_np_filler_depth", np_filler_depth); settings->getNoiseParams("mgfractal_np_cave1", np_cave1); settings->getNoiseParams("mgfractal_np_cave2", np_cave2); } void MapgenFractalParams::writeParams(Settings *settings) const { settings->setFlagStr("mgfractal_spflags", spflags, flagdesc_mapgen_fractal, U32_MAX); settings->setFloat("mgfractal_cave_width", cave_width); settings->setU16("mgfractal_fractal", fractal); settings->setU16("mgfractal_iterations", iterations); settings->setV3F("mgfractal_scale", scale); settings->setV3F("mgfractal_offset", offset); settings->setFloat("mgfractal_slice_w", slice_w); settings->setFloat("mgfractal_julia_x", julia_x); settings->setFloat("mgfractal_julia_y", julia_y); settings->setFloat("mgfractal_julia_z", julia_z); settings->setFloat("mgfractal_julia_w", julia_w); settings->setNoiseParams("mgfractal_np_seabed", np_seabed); settings->setNoiseParams("mgfractal_np_filler_depth", np_filler_depth); settings->setNoiseParams("mgfractal_np_cave1", np_cave1); settings->setNoiseParams("mgfractal_np_cave2", np_cave2); } ///////////////////////////////////////////////////////////////// int MapgenFractal::getSpawnLevelAtPoint(v2s16 p) { bool solid_below = false; // Dry solid node is present below to spawn on u8 air_count = 0; // Consecutive air nodes above the dry solid node s16 seabed_level = NoisePerlin2D(&noise_seabed->np, p.X, p.Y, seed); // Seabed can rise above water_level or might be raised to create dry land s16 search_start = MYMAX(seabed_level, water_level + 1); if (seabed_level > water_level) solid_below = true; for (s16 y = search_start; y <= search_start + 128; y++) { if (getFractalAtPoint(p.X, y, p.Y)) { // Fractal node solid_below = true; air_count = 0; } else if (solid_below) { // Air above solid node air_count++; if (air_count == 2) return y - 2; } } return MAX_MAP_GENERATION_LIMIT; // Unsuitable spawn point } void MapgenFractal::makeChunk(BlockMakeData *data) { // Pre-conditions assert(data->vmanip); assert(data->nodedef); assert(data->blockpos_requested.X >= data->blockpos_min.X && data->blockpos_requested.Y >= data->blockpos_min.Y && data->blockpos_requested.Z >= data->blockpos_min.Z); assert(data->blockpos_requested.X <= data->blockpos_max.X && data->blockpos_requested.Y <= data->blockpos_max.Y && data->blockpos_requested.Z <= data->blockpos_max.Z); this->generating = true; this->vm = data->vmanip; this->ndef = data->nodedef; //TimeTaker t("makeChunk"); v3s16 blockpos_min = data->blockpos_min; v3s16 blockpos_max = data->blockpos_max; node_min = blockpos_min * MAP_BLOCKSIZE; node_max = (blockpos_max + v3s16(1, 1, 1)) * MAP_BLOCKSIZE - v3s16(1, 1, 1); full_node_min = (blockpos_min - 1) * MAP_BLOCKSIZE; full_node_max = (blockpos_max + 2) * MAP_BLOCKSIZE - v3s16(1, 1, 1); blockseed = getBlockSeed2(full_node_min, seed); // Generate base terrain, mountains, and ridges with initial heightmaps s16 stone_surface_max_y = generateTerrain(); // Create heightmap updateHeightmap(node_min, node_max); // Init biome generator, place biome-specific nodes, and build biomemap biomegen->calcBiomeNoise(node_min); MgStoneType stone_type = generateBiomes(); if (flags & MG_CAVES) generateCaves(stone_surface_max_y, MGFRACTAL_LARGE_CAVE_DEPTH); if (flags & MG_DUNGEONS) generateDungeons(stone_surface_max_y, stone_type); // Generate the registered decorations if (flags & MG_DECORATIONS) m_emerge->decomgr->placeAllDecos(this, blockseed, node_min, node_max); // Generate the registered ores m_emerge->oremgr->placeAllOres(this, blockseed, node_min, node_max); // Sprinkle some dust on top after everything else was generated dustTopNodes(); //printf("makeChunk: %dms\n", t.stop()); updateLiquid(&data->transforming_liquid, full_node_min, full_node_max); if (flags & MG_LIGHT) calcLighting(node_min - v3s16(0, 1, 0), node_max + v3s16(0, 1, 0), full_node_min, full_node_max); //setLighting(node_min - v3s16(1, 0, 1) * MAP_BLOCKSIZE, // node_max + v3s16(1, 0, 1) * MAP_BLOCKSIZE, 0xFF); this->generating = false; } bool MapgenFractal::getFractalAtPoint(s16 x, s16 y, s16 z) { float cx, cy, cz, cw, ox, oy, oz, ow; if (julia) { // Julia set cx = julia_x; cy = julia_y; cz = julia_z; cw = julia_w; ox = (float)x / scale.X - offset.X; oy = (float)y / scale.Y - offset.Y; oz = (float)z / scale.Z - offset.Z; ow = slice_w; } else { // Mandelbrot set cx = (float)x / scale.X - offset.X; cy = (float)y / scale.Y - offset.Y; cz = (float)z / scale.Z - offset.Z; cw = slice_w; ox = 0.0f; oy = 0.0f; oz = 0.0f; ow = 0.0f; } float nx = 0.0f; float ny = 0.0f; float nz = 0.0f; float nw = 0.0f; for (u16 iter = 0; iter < iterations; iter++) { if (formula == 1) { // 4D "Roundy" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 2) { // 4D "Squarry" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow - oy * oz) + cw; } else if (formula == 3) { // 4D "Mandy Cousin" nx = ox * ox - oy * oy - oz * oz + ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 4) { // 4D "Variation" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz - oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 5) { // 3D "Mandelbrot/Mandelbar" nx = ox * ox - oy * oy - oz * oz + cx; ny = 2.0f * ox * oy + cy; nz = -2.0f * ox * oz + cz; } else if (formula == 6) { // 3D "Christmas Tree" // Altering the formula here is necessary to avoid division by zero if (fabs(oz) < 0.000000001f) { nx = ox * ox - oy * oy - oz * oz + cx; ny = 2.0f * oy * ox + cy; nz = 4.0f * oz * ox + cz; } else { float a = (2.0f * ox) / (sqrt(oy * oy + oz * oz)); nx = ox * ox - oy * oy - oz * oz + cx; ny = a * (oy * oy - oz * oz) + cy; nz = a * 2.0f * oy * oz + cz; } } else if (formula == 7) { // 3D "Mandelbulb" if (fabs(oy) < 0.000000001f) { nx = ox * ox - oz * oz + cx; ny = cy; nz = -2.0f * oz * sqrt(ox * ox) + cz; } else { float a = 1.0f - (oz * oz) / (ox * ox + oy * oy); nx = (ox * ox - oy * oy) * a + cx; ny = 2.0f * ox * oy * a + cy; nz = -2.0f * oz * sqrt(ox * ox + oy * oy) + cz; } } else if (formula == 8) { // 3D "Cosine Mandelbulb" if (fabs(oy) < 0.000000001f) { nx = 2.0f * ox * oz + cx; ny = 4.0f * oy * oz + cy; nz = oz * oz - ox * ox - oy * oy + cz; } else { float a = (2.0f * oz) / sqrt(ox * ox + oy * oy); nx = (ox * ox - oy * oy) * a + cx; ny = 2.0f * ox * oy * a + cy; nz = oz * oz - ox * ox - oy * oy + cz; } } else if (formula == 9) { // 4D "Mandelbulb" float rxy = sqrt(ox * ox + oy * oy); float rxyz = sqrt(ox * ox + oy * oy + oz * oz); if (fabs(ow) < 0.000000001f && fabs(oz) < 0.000000001f) { nx = (ox * ox - oy * oy) + cx; ny = 2.0f * ox * oy + cy; nz = -2.0f * rxy * oz + cz; nw = 2.0f * rxyz * ow + cw; } else { float a = 1.0f - (ow * ow) / (rxyz * rxyz); float b = a * (1.0f - (oz * oz) / (rxy * rxy)); nx = (ox * ox - oy * oy) * b + cx; ny = 2.0f * ox * oy * b + cy; nz = -2.0f * rxy * oz * a + cz; nw = 2.0f * rxyz * ow + cw; } } if (nx * nx + ny * ny + nz * nz + nw * nw > 4.0f) return false; ox = nx; oy = ny; oz = nz; ow = nw; } return true; } s16 MapgenFractal::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; noise_seabed->perlinMap2D(node_min.X, node_min.Z); for (s16 z = node_min.Z; z <= node_max.Z; z++) { for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { u32 vi = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++, vi++, index2d++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { s16 seabed_height = noise_seabed->result[index2d]; if (y <= seabed_height || getFractalAtPoint(x, y, z)) { vm->m_data[vi] = n_stone; if (y > stone_surface_max_y) stone_surface_max_y = y; } else if (y <= water_level) { vm->m_data[vi] = n_water; } else { vm->m_data[vi] = n_air; } } } index2d -= ystride; } index2d += ystride; } return stone_surface_max_y; }