1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
vector = {}
function vector.new(a, b, c)
if type(a) == "table" then
assert(a.x and a.y and a.z, "Invalid vector passed to vector.new()")
return {x=a.x, y=a.y, z=a.z}
elseif a then
assert(b and c, "Invalid arguments for vector.new()")
return {x=a, y=b, z=c}
end
return {x=0, y=0, z=0}
end
function vector.equals(a, b)
return a.x == b.x and
a.y == b.y and
a.z == b.z
end
function vector.length(v)
return math.hypot(v.x, math.hypot(v.y, v.z))
end
function vector.normalize(v)
local len = vector.length(v)
if len == 0 then
return {x=0, y=0, z=0}
else
return vector.divide(v, len)
end
end
function vector.floor(v)
return {
x = math.floor(v.x),
y = math.floor(v.y),
z = math.floor(v.z)
}
end
function vector.round(v)
return {
x = math.floor(v.x + 0.5),
y = math.floor(v.y + 0.5),
z = math.floor(v.z + 0.5)
}
end
function vector.apply(v, func)
return {
x = func(v.x),
y = func(v.y),
z = func(v.z)
}
end
function vector.distance(a, b)
local x = a.x - b.x
local y = a.y - b.y
local z = a.z - b.z
return math.hypot(x, math.hypot(y, z))
end
function vector.direction(pos1, pos2)
return vector.normalize({
x = pos2.x - pos1.x,
y = pos2.y - pos1.y,
z = pos2.z - pos1.z
})
end
function vector.angle(a, b)
local dotp = vector.dot(a, b)
local cp = vector.cross(a, b)
local crossplen = vector.length(cp)
return math.atan2(crossplen, dotp)
end
function vector.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
function vector.cross(a, b)
return {
x = a.y * b.z - a.z * b.y,
y = a.z * b.x - a.x * b.z,
z = a.x * b.y - a.y * b.x
}
end
function vector.add(a, b)
if type(b) == "table" then
return {x = a.x + b.x,
y = a.y + b.y,
z = a.z + b.z}
else
return {x = a.x + b,
y = a.y + b,
z = a.z + b}
end
end
function vector.subtract(a, b)
if type(b) == "table" then
return {x = a.x - b.x,
y = a.y - b.y,
z = a.z - b.z}
else
return {x = a.x - b,
y = a.y - b,
z = a.z - b}
end
end
function vector.multiply(a, b)
if type(b) == "table" then
return {x = a.x * b.x,
y = a.y * b.y,
z = a.z * b.z}
else
return {x = a.x * b,
y = a.y * b,
z = a.z * b}
end
end
function vector.divide(a, b)
if type(b) == "table" then
return {x = a.x / b.x,
y = a.y / b.y,
z = a.z / b.z}
else
return {x = a.x / b,
y = a.y / b,
z = a.z / b}
end
end
function vector.sort(a, b)
return {x = math.min(a.x, b.x), y = math.min(a.y, b.y), z = math.min(a.z, b.z)},
{x = math.max(a.x, b.x), y = math.max(a.y, b.y), z = math.max(a.z, b.z)}
end
local function sin(x)
if x % math.pi == 0 then
return 0
else
return math.sin(x)
end
end
local function cos(x)
if x % math.pi == math.pi / 2 then
return 0
else
return math.cos(x)
end
end
function vector.rotate_around_axis(v, axis, angle)
local cosangle = cos(angle)
local sinangle = sin(angle)
axis = vector.normalize(axis)
-- https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
local dot_axis = vector.multiply(axis, vector.dot(axis, v))
local cross = vector.cross(v, axis)
return vector.new(
cross.x * sinangle + (v.x - dot_axis.x) * cosangle + dot_axis.x,
cross.y * sinangle + (v.y - dot_axis.y) * cosangle + dot_axis.y,
cross.z * sinangle + (v.z - dot_axis.z) * cosangle + dot_axis.z
)
end
function vector.rotate(v, rot)
local sinpitch = sin(-rot.x)
local sinyaw = sin(-rot.y)
local sinroll = sin(-rot.z)
local cospitch = cos(rot.x)
local cosyaw = cos(rot.y)
local cosroll = math.cos(rot.z)
-- Rotation matrix that applies yaw, pitch and roll
local matrix = {
{
sinyaw * sinpitch * sinroll + cosyaw * cosroll,
sinyaw * sinpitch * cosroll - cosyaw * sinroll,
sinyaw * cospitch,
},
{
cospitch * sinroll,
cospitch * cosroll,
-sinpitch,
},
{
cosyaw * sinpitch * sinroll - sinyaw * cosroll,
cosyaw * sinpitch * cosroll + sinyaw * sinroll,
cosyaw * cospitch,
},
}
-- Compute matrix multiplication: `matrix` * `v`
return vector.new(
matrix[1][1] * v.x + matrix[1][2] * v.y + matrix[1][3] * v.z,
matrix[2][1] * v.x + matrix[2][2] * v.y + matrix[2][3] * v.z,
matrix[3][1] * v.x + matrix[3][2] * v.y + matrix[3][3] * v.z
)
end
function vector.dir_to_rotation(forward, up)
forward = vector.normalize(forward)
local rot = {x = math.asin(forward.y), y = -math.atan2(forward.x, forward.z), z = 0}
if not up then
return rot
end
assert(vector.dot(forward, up) < 0.000001,
"Invalid vectors passed to vector.dir_to_rotation().")
up = vector.normalize(up)
-- Calculate vector pointing up with roll = 0, just based on forward vector.
local forwup = vector.rotate({x = 0, y = 1, z = 0}, rot)
-- 'forwup' and 'up' are now in a plane with 'forward' as normal.
-- The angle between them is the absolute of the roll value we're looking for.
rot.z = vector.angle(forwup, up)
-- Since vector.angle never returns a negative value or a value greater
-- than math.pi, rot.z has to be inverted sometimes.
-- To determine wether this is the case, we rotate the up vector back around
-- the forward vector and check if it worked out.
local back = vector.rotate_around_axis(up, forward, -rot.z)
-- We don't use vector.equals for this because of floating point imprecision.
if (back.x - forwup.x) * (back.x - forwup.x) +
(back.y - forwup.y) * (back.y - forwup.y) +
(back.z - forwup.z) * (back.z - forwup.z) > 0.0000001 then
rot.z = -rot.z
end
return rot
end
|