aboutsummaryrefslogtreecommitdiff
path: root/client/shaders/nodes_shader/opengl_fragment.glsl
blob: e531d72b74688498685739a0c4043abab63737e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
uniform sampler2D baseTexture;
uniform sampler2D normalTexture;
uniform sampler2D useNormalmap;

uniform vec4 skyBgColor;
uniform float fogDistance;
uniform vec3 eyePosition;

varying vec3 vPosition;
varying vec3 worldPosition;
varying float area_enable_parallax;

varying vec3 eyeVec;
varying vec3 tsEyeVec;
varying vec3 lightVec;
varying vec3 tsLightVec;

bool normalTexturePresent = false; 

const float e = 2.718281828459;
const float BS = 10.0;
 
float intensity (vec3 color)
{
	return (color.r + color.g + color.b) / 3.0;
}

float get_rgb_height (vec2 uv)
{
	return intensity(texture2D(baseTexture,uv).rgb);
}

vec4 get_normal_map(vec2 uv)
{
	vec4 bump = texture2D(normalTexture, uv).rgba;
	bump.xyz = normalize(bump.xyz * 2.0 - 1.0);
	return bump;
}

float find_intersection(vec2 dp, vec2 ds)
{
	const int linear_steps = 10;
	const int binary_steps = 5;
	const float depth_step = 1.0 / linear_steps;
	float size = depth_step;
	float depth = 1.0;
	float best_depth = 1.0;
	for (int i = 0 ; i < linear_steps - 1 ; ++i) {
		vec4 t = texture2D(normalTexture, dp + ds * depth);
		if (best_depth > 0.05)
			if (depth >= t.a)
				best_depth = depth;
		depth -= size;
	}
	depth = best_depth - size;
	for (int i = 0 ; i < binary_steps ; ++i) {
		size *= 0.5;
		vec4 t = texture2D(normalTexture, dp + ds * depth);
		if (depth >= t.a) {
			best_depth = depth;
			depth -= 2 * size;
		}
		depth += size;
	}
	return best_depth;
}

float find_intersectionRGB(vec2 dp, vec2 ds) {
	const float iterations = 24.0;
	const float depth_step = 1.0 / iterations;
	float depth = 1.0;
	for (int i = 0 ; i < iterations ; i++) {
		float h = get_rgb_height(dp + ds * depth);
		if (h >= depth)
			break;
		depth -= depth_step;
	}
	return depth;
}

void main (void)
{
	vec3 color;
	vec4 bump;
	vec2 uv = gl_TexCoord[0].st;
	bool use_normalmap = false;

#ifdef USE_NORMALMAPS
	if (texture2D(useNormalmap,vec2(1.0, 1.0)).r > 0.0) {
		normalTexturePresent = true;
	}
#endif

#ifdef ENABLE_PARALLAX_OCCLUSION
	vec3 eyeRay = normalize(tsEyeVec);
#if PARALLAX_OCCLUSION_MODE == 0
	// Parallax occlusion with slope information
	if (normalTexturePresent && area_enable_parallax > 0.0) {
		const float scale = PARALLAX_OCCLUSION_SCALE / PARALLAX_OCCLUSION_ITERATIONS;
		const float bias = PARALLAX_OCCLUSION_BIAS / PARALLAX_OCCLUSION_ITERATIONS;
		for(int i = 0; i < PARALLAX_OCCLUSION_ITERATIONS; i++) {
			vec4 normal = texture2D(normalTexture, uv.xy);
			float h = normal.a * scale - bias;
			uv += h * normal.z * eyeRay.xy;
		}
#endif
#if PARALLAX_OCCLUSION_MODE == 1
	// Relief mapping
	if (normalTexturePresent && area_enable_parallax > 0.0) {
		vec2 ds = eyeRay.xy * PARALLAX_OCCLUSION_SCALE;
		float dist = find_intersection(uv, ds);
		uv += dist * ds;
#endif
	} else if (area_enable_parallax > 0.0) {
		vec2 ds = eyeRay.xy * PARALLAX_OCCLUSION_SCALE;
		float dist = find_intersectionRGB(uv, ds);
		uv += dist * ds;
	}
#endif

#ifdef USE_NORMALMAPS
	if (normalTexturePresent) {
		bump = get_normal_map(uv);
		use_normalmap = true;
	} 
#endif

	if (GENERATE_NORMALMAPS == 1 && use_normalmap == false) {
		float tl = get_rgb_height(vec2(uv.x - SAMPLE_STEP, uv.y + SAMPLE_STEP));
		float t  = get_rgb_height(vec2(uv.x - SAMPLE_STEP, uv.y - SAMPLE_STEP));
		float tr = get_rgb_height(vec2(uv.x + SAMPLE_STEP, uv.y + SAMPLE_STEP));
		float r  = get_rgb_height(vec2(uv.x + SAMPLE_STEP, uv.y));
		float br = get_rgb_height(vec2(uv.x + SAMPLE_STEP, uv.y - SAMPLE_STEP));
		float b  = get_rgb_height(vec2(uv.x, uv.y - SAMPLE_STEP));
		float bl = get_rgb_height(vec2(uv.x -SAMPLE_STEP, uv.y - SAMPLE_STEP));
		float l  = get_rgb_height(vec2(uv.x - SAMPLE_STEP, uv.y));
		float dX = (tr + 2.0 * r + br) - (tl + 2.0 * l + bl);
		float dY = (bl + 2.0 * b + br) - (tl + 2.0 * t + tr);
		bump = vec4(normalize(vec3 (-dX, -dY, NORMALMAPS_STRENGTH)), 1.0);
		use_normalmap = true;
	}

	vec4 base = texture2D(baseTexture, uv).rgba;

#ifdef ENABLE_BUMPMAPPING
	if (use_normalmap) {
		vec3 L = normalize(lightVec);
		vec3 E = normalize(-eyeVec);
		float specular = pow(clamp(dot(reflect(L, bump.xyz), -E), 0.0, 1.0), 1.0);
		float diffuse = dot(E,bump.xyz);
		color = (diffuse + 0.1 * specular) * base.rgb;
	} else {
		color = base.rgb;
	}
#else
	color = base.rgb;
#endif

#if MATERIAL_TYPE == TILE_MATERIAL_LIQUID_TRANSPARENT || MATERIAL_TYPE == TILE_MATERIAL_LIQUID_OPAQUE
	float alpha = gl_Color.a;
	vec4 col = vec4(color.rgb, alpha);
	col *= gl_Color;
	if (fogDistance != 0.0) {
		float d = max(0.0, min(vPosition.z / fogDistance * 1.5 - 0.6, 1.0));
		alpha = mix(alpha, 0.0, d);
	}
	gl_FragColor = vec4(col.rgb, alpha);
#else
	vec4 col = vec4(color.rgb, base.a);
	col *= gl_Color;
	if (fogDistance != 0.0) {
		float d = max(0.0, min(vPosition.z / fogDistance * 1.5 - 0.6, 1.0));
		col = mix(col, skyBgColor, d);
	}
	gl_FragColor = vec4(col.rgb, base.a);
#endif
}