aboutsummaryrefslogtreecommitdiff
path: root/src/ban.cpp
blob: 3decc9666117274c4a7e21d490b4ce567edca655 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
Copyright (C) 2018 nerzhul, Loic BLOT <loic.blot@unix-experience.fr>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "ban.h"
#include <fstream>
#include "threading/mutex_auto_lock.h"
#include <sstream>
#include <set>
#include "util/strfnd.h"
#include "util/string.h"
#include "log.h"
#include "filesys.h"

BanManager::BanManager(const std::string &banfilepath):
		m_banfilepath(banfilepath)
{
	try {
		load();
	} catch(SerializationError &e) {
		infostream << "BanManager: creating "
				<< m_banfilepath << std::endl;
	}
}

BanManager::~BanManager()
{
	save();
}

void BanManager::load()
{
	MutexAutoLock lock(m_mutex);
	infostream<<"BanManager: loading from "<<m_banfilepath<<std::endl;
	std::ifstream is(m_banfilepath.c_str(), std::ios::binary);
	if (!is.good()) {
		infostream<<"BanManager: failed loading from "<<m_banfilepath<<std::endl;
		throw SerializationError("BanManager::load(): Couldn't open file");
	}

	while (!is.eof() && is.good()) {
		std::string line;
		std::getline(is, line, '\n');
		Strfnd f(line);
		std::string ip = trim(f.next("|"));
		std::string name = trim(f.next("|"));
		if(!ip.empty()) {
			m_ips[ip] = name;
		}
	}
	m_modified = false;
}

void BanManager::save()
{
	MutexAutoLock lock(m_mutex);
	infostream << "BanManager: saving to " << m_banfilepath << std::endl;
	std::ostringstream ss(std::ios_base::binary);

	for (const auto &ip : m_ips)
		ss << ip.first << "|" << ip.second << "\n";

	if (!fs::safeWriteToFile(m_banfilepath, ss.str())) {
		infostream << "BanManager: failed saving to " << m_banfilepath << std::endl;
		throw SerializationError("BanManager::save(): Couldn't write file");
	}

	m_modified = false;
}

bool BanManager::isIpBanned(const std::string &ip)
{
	MutexAutoLock lock(m_mutex);
	return m_ips.find(ip) != m_ips.end();
}

std::string BanManager::getBanDescription(const std::string &ip_or_name)
{
	MutexAutoLock lock(m_mutex);
	std::string s;
	for (const auto &ip : m_ips) {
		if (ip.first  == ip_or_name || ip.second == ip_or_name
				|| ip_or_name.empty()) {
			s += ip.first + "|" + ip.second + ", ";
		}
	}
	s = s.substr(0, s.size() - 2);
	return s;
}

std::string BanManager::getBanName(const std::string &ip)
{
	MutexAutoLock lock(m_mutex);
	StringMap::iterator it = m_ips.find(ip);
	if (it == m_ips.end())
		return "";
	return it->second;
}

void BanManager::add(const std::string &ip, const std::string &name)
{
	MutexAutoLock lock(m_mutex);
	m_ips[ip] = name;
	m_modified = true;
}

void BanManager::remove(const std::string &ip_or_name)
{
	MutexAutoLock lock(m_mutex);
	for (StringMap::iterator it = m_ips.begin(); it != m_ips.end();) {
		if ((it->first == ip_or_name) || (it->second == ip_or_name)) {
			m_ips.erase(it++);
			m_modified = true;
		} else {
			++it;
		}
	}
}


bool BanManager::isModified()
{
	MutexAutoLock lock(m_mutex);
	return m_modified;
}

am is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "collision.h" #include "mapblock.h" #include "map.h" #include "nodedef.h" #include "gamedef.h" #include "log.h" #include "environment.h" #include "serverobject.h" #include <vector> #include <set> #include "util/timetaker.h" #include "profiler.h" // float error is 10 - 9.96875 = 0.03125 //#define COLL_ZERO 0.032 // broken unit tests #define COLL_ZERO 0 // Helper function: // Checks for collision of a moving aabbox with a static aabbox // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision // The time after which the collision occurs is stored in dtime. int axisAlignedCollision( const aabb3f &staticbox, const aabb3f &movingbox, const v3f &speed, f32 d, f32 &dtime) { //TimeTaker tt("axisAlignedCollision"); f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO; // reduce box size for solve collision stuck (flying sand) f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO; aabb3f relbox( movingbox.MinEdge.X - staticbox.MinEdge.X, movingbox.MinEdge.Y - staticbox.MinEdge.Y, movingbox.MinEdge.Z - staticbox.MinEdge.Z, movingbox.MaxEdge.X - staticbox.MinEdge.X, movingbox.MaxEdge.Y - staticbox.MinEdge.Y, movingbox.MaxEdge.Z - staticbox.MinEdge.Z ); if(speed.X > 0) // Check for collision with X- plane { if(relbox.MaxEdge.X <= d) { dtime = - relbox.MaxEdge.X / speed.X; if((relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO)) return 0; } else if(relbox.MinEdge.X > xsize) { return -1; } } else if(speed.X < 0) // Check for collision with X+ plane { if(relbox.MinEdge.X >= xsize - d) { dtime = (xsize - relbox.MinEdge.X) / speed.X; if((relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO)) return 0; } else if(relbox.MaxEdge.X < 0) { return -1; } } // NO else if here if(speed.Y > 0) // Check for collision with Y- plane { if(relbox.MaxEdge.Y <= d) { dtime = - relbox.MaxEdge.Y / speed.Y; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO)) return 1; } else if(relbox.MinEdge.Y > ysize) { return -1; } } else if(speed.Y < 0) // Check for collision with Y+ plane { if(relbox.MinEdge.Y >= ysize - d) { dtime = (ysize - relbox.MinEdge.Y) / speed.Y; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO)) return 1; } else if(relbox.MaxEdge.Y < 0) { return -1; } } // NO else if here if(speed.Z > 0) // Check for collision with Z- plane { if(relbox.MaxEdge.Z <= d) { dtime = - relbox.MaxEdge.Z / speed.Z; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) && (relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO)) return 2; } //else if(relbox.MinEdge.Z > zsize) //{ // return -1; //} } else if(speed.Z < 0) // Check for collision with Z+ plane { if(relbox.MinEdge.Z >= zsize - d) { dtime = (zsize - relbox.MinEdge.Z) / speed.Z; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) && (relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO)) return 2; } //else if(relbox.MaxEdge.Z < 0) //{ // return -1; //} } return -1; } // Helper function: // Checks if moving the movingbox up by the given distance would hit a ceiling. bool wouldCollideWithCeiling( const std::vector<aabb3f> &staticboxes, const aabb3f &movingbox, f32 y_increase, f32 d) { //TimeTaker tt("wouldCollideWithCeiling"); assert(y_increase >= 0); // pre-condition for(std::vector<aabb3f>::const_iterator i = staticboxes.begin(); i != staticboxes.end(); i++) { const aabb3f& staticbox = *i; if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) && (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) && (movingbox.MinEdge.X < staticbox.MaxEdge.X) && (movingbox.MaxEdge.X > staticbox.MinEdge.X) && (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) && (movingbox.MaxEdge.Z > staticbox.MinEdge.Z)) return true; } return false; } collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f,ActiveObject* self, bool collideWithObjects) { Map *map = &env->getMap(); //TimeTaker tt("collisionMoveSimple"); ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG); collisionMoveResult result; /* Calculate new velocity */ if( dtime > 0.5 ) { infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl; dtime = 0.5; } speed_f += accel_f * dtime; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return result; // Limit speed for avoiding hangs speed_f.Y=rangelim(speed_f.Y,-5000,5000); speed_f.X=rangelim(speed_f.X,-5000,5000); speed_f.Z=rangelim(speed_f.Z,-5000,5000); /* Collect node boxes in movement range */ std::vector<aabb3f> cboxes; std::vector<bool> is_unloaded; std::vector<bool> is_step_up; std::vector<bool> is_object; std::vector<int> bouncy_values; std::vector<v3s16> node_positions; { //TimeTaker tt2("collisionMoveSimple collect boxes"); ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG); v3s16 oldpos_i = floatToInt(pos_f, BS); v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS); s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1; s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1; s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1; s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1; s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1; s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1; for(s16 x = min_x; x <= max_x; x++) for(s16 y = min_y; y <= max_y; y++) for(s16 z = min_z; z <= max_z; z++) { v3s16 p(x,y,z); bool is_position_valid; MapNode n = map->getNodeNoEx(p, &is_position_valid); if (is_position_valid) { // Object collides into walkable nodes const ContentFeatures &f = gamedef->getNodeDefManager()->get(n); if(f.walkable == false) continue; int n_bouncy_value = itemgroup_get(f.groups, "bouncy"); std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef()); for(std::vector<aabb3f>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); i++) { aabb3f box = *i; box.MinEdge += v3f(x, y, z)*BS; box.MaxEdge += v3f(x, y, z)*BS; cboxes.push_back(box); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(n_bouncy_value); node_positions.push_back(p); is_object.push_back(false); } } else { // Collide with unloaded nodes aabb3f box = getNodeBox(p, BS); cboxes.push_back(box); is_unloaded.push_back(true); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(p); is_object.push_back(false); } } } // tt2 if(collideWithObjects) { ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG); //TimeTaker tt3("collisionMoveSimple collect object boxes"); /* add object boxes to cboxes */ std::vector<ActiveObject*> objects; #ifndef SERVER ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env); if (c_env != 0) { f32 distance = speed_f.getLength(); std::vector<DistanceSortedActiveObject> clientobjects; c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects); for (size_t i=0; i < clientobjects.size(); i++) { if ((self == 0) || (self != clientobjects[i].obj)) { objects.push_back((ActiveObject*)clientobjects[i].obj); } } } else #endif { ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env); if (s_env != 0) { f32 distance = speed_f.getLength(); std::vector<u16> s_objects; s_env->getObjectsInsideRadius(s_objects, pos_f, distance * 1.5); for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); iter++) { ServerActiveObject *current = s_env->getActiveObject(*iter); if ((self == 0) || (self != current)) { objects.push_back((ActiveObject*)current); } } } } for (std::vector<ActiveObject*>::const_iterator iter = objects.begin(); iter != objects.end(); ++iter) { ActiveObject *object = *iter; if (object != NULL) { aabb3f object_collisionbox; if (object->getCollisionBox(&object_collisionbox) && object->collideWithObjects()) { cboxes.push_back(object_collisionbox); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(v3s16(0,0,0)); is_object.push_back(true); } } } } //tt3 assert(cboxes.size() == is_unloaded.size()); // post-condition assert(cboxes.size() == is_step_up.size()); // post-condition assert(cboxes.size() == bouncy_values.size()); // post-condition assert(cboxes.size() == node_positions.size()); // post-condition assert(cboxes.size() == is_object.size()); // post-condition /* Collision detection */ /* Collision uncertainty radius Make it a bit larger than the maximum distance of movement */ f32 d = pos_max_d * 1.1; // A fairly large value in here makes moving smoother //f32 d = 0.15*BS; // This should always apply, otherwise there are glitches assert(d > pos_max_d); // invariant int loopcount = 0; while(dtime > BS*1e-10) { //TimeTaker tt3("collisionMoveSimple dtime loop"); ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG); // Avoid infinite loop loopcount++; if(loopcount >= 100) { infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl; dtime = 0; break; } aabb3f movingbox = box_0; movingbox.MinEdge += pos_f; movingbox.MaxEdge += pos_f; int nearest_collided = -1; f32 nearest_dtime = dtime; u32 nearest_boxindex = -1; /* Go through every nodebox, find nearest collision */ for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { // Ignore if already stepped up this nodebox. if(is_step_up[boxindex]) continue; // Find nearest collision of the two boxes (raytracing-like) f32 dtime_tmp; int collided = axisAlignedCollision( cboxes[boxindex], movingbox, speed_f, d, dtime_tmp); if(collided == -1 || dtime_tmp >= nearest_dtime) continue; nearest_dtime = dtime_tmp; nearest_collided = collided; nearest_boxindex = boxindex; } if(nearest_collided == -1) { // No collision with any collision box. pos_f += speed_f * dtime; dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers } else { // Otherwise, a collision occurred. const aabb3f& cbox = cboxes[nearest_boxindex]; // Check for stairs. bool step_up = (nearest_collided != 1) && // must not be Y direction (movingbox.MinEdge.Y < cbox.MaxEdge.Y) && (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) && (!wouldCollideWithCeiling(cboxes, movingbox, cbox.MaxEdge.Y - movingbox.MinEdge.Y, d)); // Get bounce multiplier bool bouncy = (bouncy_values[nearest_boxindex] >= 1); float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0; // Move to the point of collision and reduce dtime by nearest_dtime if(nearest_dtime < 0) { // Handle negative nearest_dtime (can be caused by the d allowance) if(!step_up) { if(nearest_collided == 0) pos_f.X += speed_f.X * nearest_dtime; if(nearest_collided == 1) pos_f.Y += speed_f.Y * nearest_dtime; if(nearest_collided == 2) pos_f.Z += speed_f.Z * nearest_dtime; } }