aboutsummaryrefslogtreecommitdiff
path: root/src/client/wieldmesh.cpp
blob: 0a89e2aa2dcbb0612da0822b5dcadd3af8e04cd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
--advtrains by orwell96, see readme.txt
local print=function(t) minetest.log("action", t) minetest.chat_send_all(t) end

function advtrains.dirCoordSet(coord, dir)
	local x=0
	local z=0
	--local dir=(dirx+2)%8
	if(dir==6) then
		x=-1
	elseif (dir==7) then
		x=-1
		z=1
	elseif (dir==0) then
		z=1
	elseif (dir==1) then
		z=1
		x=1
	elseif (dir==2) then
		x=1
	elseif (dir==3) then
		x=1
		z=-1
	elseif (dir==4) then
		z=-1
	elseif (dir==5) then
		z=-1
		x=-1
	else
		error("advtrains: in helpers.lua/dirCoordSet() given dir="..(dir or "nil"))
	end


	return {x=coord.x+x, y=coord.y, z=coord.z+z}
end
function advtrains.dirToCoord(dir)
	return advtrains.dirCoordSet({x=0, y=0, z=0}, dir)
end

function advtrains.maxN(list, expectstart)
	local n=expectstart or 0
	while list[n] do
		n=n+1
	end
	return n-1
end

function advtrains.minN(list, expectstart)
	local n=expectstart or 0
	while list[n] do
		n=n-1
	end
	return n+1
end

--vertical_transmit:
--[[
rely1, rely2 tell to which height the connections are pointed to. 1 means it will go up the next node

]]

function advtrains.conway(midreal, prev, traintype)--in order prev,mid,return
	local mid=advtrains.round_vector_floor_y(midreal)
	local drives_on=advtrains.all_traintypes[traintype].drives_on
	
	if not advtrains.get_rail_info_at(advtrains.round_vector_floor_y(prev), traintype) then
		return nil
	end
	
	local midnode_ok, middir1, middir2, midrely1, midrely2=advtrains.get_rail_info_at(advtrains.round_vector_floor_y(mid), traintype)
	if not midnode_ok then
		return nil 
	end
	
	local next, chkdir, chkrely, y_offset
	y_offset=0
	--print("[advtrains] in order mid1,mid2",middir1,middir2)
	--try if it is dir1
	local cor1=advtrains.dirCoordSet(mid, middir2)--<<<<
	if math.floor(cor1.x+0.5)==math.floor(prev.x+0.5) and math.floor(cor1.z+0.5)==math.floor(prev.z+0.5) then--this was previous
		next=advtrains.dirCoordSet(mid, middir1)
		if midrely1>=1 then
			next.y=next.y+1
			--print("[advtrains]found midrely1 to be >=1: next is now "..(next and minetest.pos_to_string(next) or "nil"))
			y_offset=1
		end
		chkdir=middir1
		chkrely=midrely1
		--print("[advtrains]dir2 applied next pos:",minetest.pos_to_string(next),"(chkdir is ",chkdir,")")
	end
	--dir2???
	local cor2=advtrains.dirCoordSet(mid, middir1)--<<<<
	if math.floor(cor2.x+0.5)==math.floor(prev.x+0.5) and math.floor(cor2.z+0.5)==math.floor(prev.z+0.5) then
		next=advtrains.dirCoordSet(mid, middir2)--dir2 wird überprüft, alles gut.
		if midrely2>=1 then
			next.y=next.y+1
			--print("[advtrains]found midrely2 to be >=1: next is now "..(next and minetest.pos_to_string(next) or "nil"))
			y_offset=1
		end
		chkdir=middir2
		chkrely=midrely2
		--print("[advtrains] dir2 applied next pos:",minetest.pos_to_string(next),"(chkdir is ",chkdir,")")
	end
	--print("[advtrains]dir applied next pos: "..(next and minetest.pos_to_string(next) or "nil").."(chkdir is "..(chkdir or "nil")..", y-offset "..y_offset..")")
	--is there a next
	if not next then
		print("[advtrains]in conway: no next rail(nil), returning!")
		return nil
	end
	
	local nextnode_ok, nextdir1, nextdir2, nextrely1, nextrely2, nextrailheight=advtrains.get_rail_info_at(advtrains.round_vector_floor_y(mid), traintype)
	
	--is it a rail?
	if(not nextnode_ok) then
		print("[advtrains]in conway: next "..minetest.pos_to_string(next).." not a rail, trying one node below!")
		next.y=next.y-1
		y_offset=y_offset-1
		
		nextnode_ok, nextdir1, nextdir2, nextrely1, nextrely2, nextrailheight=advtrains.get_rail_info_at(advtrains.round_vector_floor_y(mid), traintype)
		if(not nextnode_ok) then
			print("[advtrains]in conway: one below "..minetest.pos_to_string(next).." is not a rail either, returning!")
			return nil
		end
	end
	
	--is this next rail connecting to the mid?
	if not ( (((nextdir1+4)%8)==chkdir and nextrely1==chkrely-y_offset) or (((nextdir2+4)%8)==chkdir and nextrely2==chkrely-y_offset) ) then
		print("[advtrains]in conway: next "..minetest.pos_to_string(next).." not connecting, trying one node below!")
		next.y=next.y-1
		y_offset=y_offset-1
		
		nextnode_ok, nextdir1, nextdir2, nextrely1, nextrely2, nextrailheight=advtrains.get_rail_info_at(advtrains.round_vector_floor_y(mid), traintype)
		if(not nextnode_ok) then
			print("[advtrains]in conway: (at connecting if check again) one below "..minetest.pos_to_string(next).." is not a rail either, returning!")
			return nil
		end
		if not ( (((nextdir1+4)%8)==chkdir and nextrely1==chkrely) or (((nextdir2+4)%8)==chkdir and nextrely2==chkrely) ) then
			print("[advtrains]in conway: one below "..minetest.pos_to_string(next).." rail not connecting, returning!")
			--print("[advtrains] in order mid1,2,next1,2,chkdir "..middir1.." "..middir2.." "..nextdir1.." "..nextdir2.." "..chkdir)
			return nil
		end
	end
	
	--print("[advtrains]conway found rail.")
	return vector.add(advtrains.round_vector_floor_y(next), {x=0, y=nextrailheight, z=0}), chkdir
end

function advtrains.round_vector_floor_y(vec)
	return {x=math.floor(vec.x+0.5), y=math.floor(vec.y), z=math.floor(vec.z+0.5)}
end

function advtrains.yawToDirection(yaw, conn1, conn2)
	if not conn1 or not conn2 then
		error("given nil to yawToDirection: conn1="..(conn1 or "nil").." conn2="..(conn1 or "nil"))
	end
	local yaw1=math.pi*(conn1/4)
	local yaw2=math.pi*(conn2/4)
	if advtrains.minAngleDiffRad(yaw, yaw1)<advtrains.minAngleDiffRad(yaw, yaw2) then--change to > if weird behavior
		return conn2
	else
		return conn1
	end
end

function advtrains.minAngleDiffRad(r1, r2)
	local try1=r2-r1
	local try2=(r2+2*math.pi)-r1
	local try3=r2-(r1+2*math.pi)
	if math.min(math.abs(try1), math.abs(try2), math.abs(try3))==math.abs(try1) then
		return try1
	end
	if math.min(math.abs(try1), math.abs(try2), math.abs(try3))==math.abs(try2) then
		return try2
	end
	if math.min(math.abs(try1), math.abs(try2), math.abs(try3))==math.abs(try3) then
		return try3
	end
end
function advtrains.dumppath(path)
	if not path then print("dumppath: no path(nil)") return end
	local min=advtrains.minN(path)
	local max=advtrains.maxN(path)
	for i=min, max do print("["..i.."] "..(path[i] and minetest.pos_to_string(path[i]) or "nil")) end
end

function advtrains.merge_tables(a, ...)
	local new={}
	for _,t in ipairs({a,...}) do
		for k,v in pairs(t) do new[k]=v end
	end
	return new
end
function advtrains.yaw_from_3_positions(prev, curr, next)
	local pts=minetest.pos_to_string
	--print("p3 "..pts(prev)..pts(curr)..pts(next))
	local prev2curr=math.atan2((curr.x-prev.x), (prev.z-curr.z))
	local curr2next=math.atan2((next.x-curr.x), (curr.z-next.z))
	--print("y3 "..(prev2curr*360/(2*math.pi)).." "..(curr2next*360/(2*math.pi)))
	return prev2curr+(advtrains.minAngleDiffRad(prev2curr, curr2next)/2)
end
function advtrains.get_wagon_yaw(front, first, second, back, pct)
	local pts=minetest.pos_to_string
	--print("p "..pts(front)..pts(first)..pts(second)..pts(back))
	local y2=advtrains.yaw_from_3_positions(second, first, front)
	local y1=advtrains.yaw_from_3_positions(back, second, first)
	--print("y "..(y1*360/(2*math.pi)).." "..(y2*360/(2*math.pi)))
	return y1+advtrains.minAngleDiffRad(y1, y2)*pct
end
"hl opt">(x1,+r,+r, +1,0,0, c, tex1,0), video::S3DVertex(x1,-r,+r, +1,0,0, c, tex1,1), }; u16 indices[12] = {0,1,2,2,3,0,4,5,6,6,7,4}; buf->append(vertices, 8, indices, 12); } for (int i = 0; i < resolution_y; ++i) { f32 pixelpos_y = i * pixelsize_y - 0.5; f32 y0 = -pixelpos_y - pixelsize_y; f32 y1 = -pixelpos_y; f32 tex0 = (i + 0.1) * pixelsize_y; f32 tex1 = (i + 0.9) * pixelsize_y; video::S3DVertex vertices[8] = { // y- video::S3DVertex(-r,y0,-r, 0,-1,0, c, 0,tex0), video::S3DVertex(+r,y0,-r, 0,-1,0, c, 1,tex0), video::S3DVertex(+r,y0,+r, 0,-1,0, c, 1,tex1), video::S3DVertex(-r,y0,+r, 0,-1,0, c, 0,tex1), // y+ video::S3DVertex(-r,y1,-r, 0,+1,0, c, 0,tex0), video::S3DVertex(-r,y1,+r, 0,+1,0, c, 0,tex1), video::S3DVertex(+r,y1,+r, 0,+1,0, c, 1,tex1), video::S3DVertex(+r,y1,-r, 0,+1,0, c, 1,tex0), }; u16 indices[12] = {0,1,2,2,3,0,4,5,6,6,7,4}; buf->append(vertices, 8, indices, 12); } // Create mesh object scene::SMesh *mesh = new scene::SMesh(); mesh->addMeshBuffer(buf); buf->drop(); scaleMesh(mesh, scale); // also recalculates bounding box return mesh; } /* Caches extrusion meshes so that only one of them per resolution is needed. Also caches one cube (for convenience). E.g. there is a single extrusion mesh that is used for all 16x16 px images, another for all 256x256 px images, and so on. WARNING: Not thread safe. This should not be a problem since rendering related classes (such as WieldMeshSceneNode) will be used from the rendering thread only. */ class ExtrusionMeshCache: public IReferenceCounted { public: // Constructor ExtrusionMeshCache() { for (int resolution = MIN_EXTRUSION_MESH_RESOLUTION; resolution <= MAX_EXTRUSION_MESH_RESOLUTION; resolution *= 2) { m_extrusion_meshes[resolution] = createExtrusionMesh(resolution, resolution); } m_cube = createCubeMesh(v3f(1.0, 1.0, 1.0)); } // Destructor virtual ~ExtrusionMeshCache() { for (auto &extrusion_meshe : m_extrusion_meshes) { extrusion_meshe.second->drop(); } m_cube->drop(); } // Get closest extrusion mesh for given image dimensions // Caller must drop the returned pointer scene::IMesh* create(core::dimension2d<u32> dim) { // handle non-power of two textures inefficiently without cache if (!is_power_of_two(dim.Width) || !is_power_of_two(dim.Height)) { return createExtrusionMesh(dim.Width, dim.Height); } int maxdim = MYMAX(dim.Width, dim.Height); std::map<int, scene::IMesh*>::iterator it = m_extrusion_meshes.lower_bound(maxdim); if (it == m_extrusion_meshes.end()) { // no viable resolution found; use largest one it = m_extrusion_meshes.find(MAX_EXTRUSION_MESH_RESOLUTION); sanity_check(it != m_extrusion_meshes.end()); } scene::IMesh *mesh = it->second; mesh->grab(); return mesh; } // Returns a 1x1x1 cube mesh with one meshbuffer (material) per face // Caller must drop the returned pointer scene::IMesh* createCube() { m_cube->grab(); return m_cube; } private: std::map<int, scene::IMesh*> m_extrusion_meshes; scene::IMesh *m_cube; }; ExtrusionMeshCache *g_extrusion_mesh_cache = NULL; WieldMeshSceneNode::WieldMeshSceneNode(scene::ISceneManager *mgr, s32 id, bool lighting): scene::ISceneNode(mgr->getRootSceneNode(), mgr, id), m_material_type(video::EMT_TRANSPARENT_ALPHA_CHANNEL_REF), m_lighting(lighting) { m_enable_shaders = g_settings->getBool("enable_shaders"); m_anisotropic_filter = g_settings->getBool("anisotropic_filter"); m_bilinear_filter = g_settings->getBool("bilinear_filter"); m_trilinear_filter = g_settings->getBool("trilinear_filter"); // If this is the first wield mesh scene node, create a cache // for extrusion meshes (and a cube mesh), otherwise reuse it if (!g_extrusion_mesh_cache) g_extrusion_mesh_cache = new ExtrusionMeshCache(); else g_extrusion_mesh_cache->grab(); // Disable bounding box culling for this scene node // since we won't calculate the bounding box. setAutomaticCulling(scene::EAC_OFF); // Create the child scene node scene::IMesh *dummymesh = g_extrusion_mesh_cache->createCube(); m_meshnode = SceneManager->addMeshSceneNode(dummymesh, this, -1); m_meshnode->setReadOnlyMaterials(false); m_meshnode->setVisible(false); dummymesh->drop(); // m_meshnode grabbed it m_shadow = RenderingEngine::get_shadow_renderer(); } WieldMeshSceneNode::~WieldMeshSceneNode() { sanity_check(g_extrusion_mesh_cache); // Remove node from shadow casters. m_shadow might be an invalid pointer! if (auto shadow = RenderingEngine::get_shadow_renderer()) shadow->removeNodeFromShadowList(m_meshnode); if (g_extrusion_mesh_cache->drop()) g_extrusion_mesh_cache = nullptr; } void WieldMeshSceneNode::setCube(const ContentFeatures &f, v3f wield_scale) { scene::IMesh *cubemesh = g_extrusion_mesh_cache->createCube(); scene::SMesh *copy = cloneMesh(cubemesh); cubemesh->drop(); postProcessNodeMesh(copy, f, false, true, &m_material_type, &m_colors, true); changeToMesh(copy); copy->drop(); m_meshnode->setScale(wield_scale * WIELD_SCALE_FACTOR); } void WieldMeshSceneNode::setExtruded(const std::string &imagename, const std::string &overlay_name, v3f wield_scale, ITextureSource *tsrc, u8 num_frames) { video::ITexture *texture = tsrc->getTexture(imagename); if (!texture) { changeToMesh(nullptr); return; } video::ITexture *overlay_texture = overlay_name.empty() ? NULL : tsrc->getTexture(overlay_name); core::dimension2d<u32> dim = texture->getSize(); // Detect animation texture and pull off top frame instead of using entire thing if (num_frames > 1) { u32 frame_height = dim.Height / num_frames; dim = core::dimension2d<u32>(dim.Width, frame_height); } scene::IMesh *original = g_extrusion_mesh_cache->create(dim); scene::SMesh *mesh = cloneMesh(original); original->drop(); //set texture mesh->getMeshBuffer(0)->getMaterial().setTexture(0, tsrc->getTexture(imagename)); if (overlay_texture) { scene::IMeshBuffer *copy = cloneMeshBuffer(mesh->getMeshBuffer(0)); copy->getMaterial().setTexture(0, overlay_texture); mesh->addMeshBuffer(copy); copy->drop(); } changeToMesh(mesh); mesh->drop(); m_meshnode->setScale(wield_scale * WIELD_SCALE_FACTOR_EXTRUDED); // Customize materials for (u32 layer = 0; layer < m_meshnode->getMaterialCount(); layer++) { video::SMaterial &material = m_meshnode->getMaterial(layer); material.TextureLayer[0].TextureWrapU = video::ETC_CLAMP_TO_EDGE; material.TextureLayer[0].TextureWrapV = video::ETC_CLAMP_TO_EDGE; material.MaterialType = m_material_type; material.MaterialTypeParam = 0.5f; material.setFlag(video::EMF_BACK_FACE_CULLING, true); // Enable bi/trilinear filtering only for high resolution textures if (dim.Width > 32) { material.setFlag(video::EMF_BILINEAR_FILTER, m_bilinear_filter); material.setFlag(video::EMF_TRILINEAR_FILTER, m_trilinear_filter); } else { material.setFlag(video::EMF_BILINEAR_FILTER, false); material.setFlag(video::EMF_TRILINEAR_FILTER, false); } material.setFlag(video::EMF_ANISOTROPIC_FILTER, m_anisotropic_filter); // mipmaps cause "thin black line" artifacts material.setFlag(video::EMF_USE_MIP_MAPS, false); if (m_enable_shaders) { material.setTexture(2, tsrc->getShaderFlagsTexture(false)); } } } static scene::SMesh *createSpecialNodeMesh(Client *client, MapNode n, std::vector<ItemPartColor> *colors, const ContentFeatures &f) { MeshMakeData mesh_make_data(client, false); MeshCollector collector; mesh_make_data.setSmoothLighting(false); MapblockMeshGenerator gen(&mesh_make_data, &collector, client->getSceneManager()->getMeshManipulator()); if (n.getParam2()) { // keep it } else if (f.param_type_2 == CPT2_WALLMOUNTED || f.param_type_2 == CPT2_COLORED_WALLMOUNTED) { if (f.drawtype == NDT_TORCHLIKE || f.drawtype == NDT_SIGNLIKE || f.drawtype == NDT_NODEBOX || f.drawtype == NDT_MESH) { n.setParam2(4); } } else if (f.drawtype == NDT_SIGNLIKE || f.drawtype == NDT_TORCHLIKE) { n.setParam2(1); } gen.renderSingle(n.getContent(), n.getParam2()); colors->clear(); scene::SMesh *mesh = new scene::SMesh(); for (auto &prebuffers : collector.prebuffers) for (PreMeshBuffer &p : prebuffers) { if (p.layer.material_flags & MATERIAL_FLAG_ANIMATION) { const FrameSpec &frame = (*p.layer.frames)[0]; p.layer.texture = frame.texture; p.layer.normal_texture = frame.normal_texture; } for (video::S3DVertex &v : p.vertices) { v.Color.setAlpha(255); } scene::SMeshBuffer *buf = new scene::SMeshBuffer(); buf->Material.setTexture(0, p.layer.texture); p.layer.applyMaterialOptions(buf->Material); mesh->addMeshBuffer(buf); buf->append(&p.vertices[0], p.vertices.size(), &p.indices[0], p.indices.size()); buf->drop(); colors->push_back( ItemPartColor(p.layer.has_color, p.layer.color)); } return mesh; } void WieldMeshSceneNode::setItem(const ItemStack &item, Client *client, bool check_wield_image) { ITextureSource *tsrc = client->getTextureSource(); IItemDefManager *idef = client->getItemDefManager(); IShaderSource *shdrsrc = client->getShaderSource(); const NodeDefManager *ndef = client->getNodeDefManager(); const ItemDefinition &def = item.getDefinition(idef); const ContentFeatures &f = ndef->get(def.name); content_t id = ndef->getId(def.name); scene::SMesh *mesh = nullptr; if (m_enable_shaders) { u32 shader_id = shdrsrc->getShader("object_shader", TILE_MATERIAL_BASIC, NDT_NORMAL); m_material_type = shdrsrc->getShaderInfo(shader_id).material; } // Color-related m_colors.clear(); m_base_color = idef->getItemstackColor(item, client); // If wield_image needs to be checked and is defined, it overrides everything else if (!def.wield_image.empty() && check_wield_image) { setExtruded(def.wield_image, def.wield_overlay, def.wield_scale, tsrc, 1); m_colors.emplace_back(); // overlay is white, if present m_colors.emplace_back(true, video::SColor(0xFFFFFFFF)); // initialize the color if (!m_lighting) setColor(video::SColor(0xFFFFFFFF)); return; } // Handle nodes // See also CItemDefManager::createClientCached() if (def.type == ITEM_NODE) { bool cull_backface = f.needsBackfaceCulling(); // Select rendering method switch (f.drawtype) { case NDT_AIRLIKE: setExtruded("no_texture_airlike.png", "", v3f(1.0, 1.0, 1.0), tsrc, 1); break; case NDT_SIGNLIKE: case NDT_TORCHLIKE: case NDT_RAILLIKE: case NDT_PLANTLIKE: case NDT_FLOWINGLIQUID: { v3f wscale = def.wield_scale; if (f.drawtype == NDT_FLOWINGLIQUID) wscale.Z *= 0.1f; setExtruded(tsrc->getTextureName(f.tiles[0].layers[0].texture_id), tsrc->getTextureName(f.tiles[0].layers[1].texture_id), wscale, tsrc, f.tiles[0].layers[0].animation_frame_count); // Add color const TileLayer &l0 = f.tiles[0].layers[0]; m_colors.emplace_back(l0.has_color, l0.color); const TileLayer &l1 = f.tiles[0].layers[1]; m_colors.emplace_back(l1.has_color, l1.color); break; } case NDT_PLANTLIKE_ROOTED: { setExtruded(tsrc->getTextureName(f.special_tiles[0].layers[0].texture_id), "", def.wield_scale, tsrc, f.special_tiles[0].layers[0].animation_frame_count); // Add color const TileLayer &l0 = f.special_tiles[0].layers[0]; m_colors.emplace_back(l0.has_color, l0.color); break; } case NDT_NORMAL: case NDT_ALLFACES: case NDT_LIQUID: setCube(f, def.wield_scale); break; default: { // Render non-trivial drawtypes like the actual node MapNode n(id); n.setParam2(def.place_param2); mesh = createSpecialNodeMesh(client, n, &m_colors, f); changeToMesh(mesh); mesh->drop(); m_meshnode->setScale( def.wield_scale * WIELD_SCALE_FACTOR / (BS * f.visual_scale)); break; } } u32 material_count = m_meshnode->getMaterialCount(); for (u32 i = 0; i < material_count; ++i) { video::SMaterial &material = m_meshnode->getMaterial(i); material.MaterialType = m_material_type; material.MaterialTypeParam = 0.5f; material.setFlag(video::EMF_BACK_FACE_CULLING, cull_backface); material.setFlag(video::EMF_BILINEAR_FILTER, m_bilinear_filter); material.setFlag(video::EMF_TRILINEAR_FILTER, m_trilinear_filter); } // initialize the color if (!m_lighting) setColor(video::SColor(0xFFFFFFFF)); return; } else { if (!def.inventory_image.empty()) { setExtruded(def.inventory_image, def.inventory_overlay, def.wield_scale, tsrc, 1); } else { setExtruded("no_texture.png", "", def.wield_scale, tsrc, 1); } m_colors.emplace_back(); // overlay is white, if present m_colors.emplace_back(true, video::SColor(0xFFFFFFFF)); // initialize the color if (!m_lighting) setColor(video::SColor(0xFFFFFFFF)); return; } // no wield mesh found changeToMesh(nullptr); } void WieldMeshSceneNode::setColor(video::SColor c) { assert(!m_lighting); scene::IMesh *mesh = m_meshnode->getMesh(); if (!mesh) return; u8 red = c.getRed(); u8 green = c.getGreen(); u8 blue = c.getBlue(); u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { video::SColor bc(m_base_color); if ((m_colors.size() > j) && (m_colors[j].override_base)) bc = m_colors[j].color; video::SColor buffercolor(255, bc.getRed() * red / 255, bc.getGreen() * green / 255, bc.getBlue() * blue / 255); scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); if (m_enable_shaders) setMeshBufferColor(buf, buffercolor); else colorizeMeshBuffer(buf, &buffercolor); } } void WieldMeshSceneNode::setNodeLightColor(video::SColor color) { if (!m_meshnode) return; if (m_enable_shaders) { for (u32 i = 0; i < m_meshnode->getMaterialCount(); ++i) { video::SMaterial &material = m_meshnode->getMaterial(i); material.EmissiveColor = color; } } else { setColor(color); } } void WieldMeshSceneNode::render() { // note: if this method is changed to actually do something, // you probably should implement OnRegisterSceneNode as well } void WieldMeshSceneNode::changeToMesh(scene::IMesh *mesh) { if (!mesh) { scene::IMesh *dummymesh = g_extrusion_mesh_cache->createCube(); m_meshnode->setVisible(false); m_meshnode->setMesh(dummymesh); dummymesh->drop(); // m_meshnode grabbed it } else { m_meshnode->setMesh(mesh); } m_meshnode->setMaterialFlag(video::EMF_LIGHTING, m_lighting); // need to normalize normals when lighting is enabled (because of setScale()) m_meshnode->setMaterialFlag(video::EMF_NORMALIZE_NORMALS, m_lighting); m_meshnode->setVisible(true); if (m_shadow) { // Add mesh to shadow caster m_shadow->addNodeToShadowList(m_meshnode); } } void getItemMesh(Client *client, const ItemStack &item, ItemMesh *result) { ITextureSource *tsrc = client->getTextureSource(); IItemDefManager *idef = client->getItemDefManager(); const NodeDefManager *ndef = client->getNodeDefManager(); const ItemDefinition &def = item.getDefinition(idef); const ContentFeatures &f = ndef->get(def.name); content_t id = ndef->getId(def.name); FATAL_ERROR_IF(!g_extrusion_mesh_cache, "Extrusion mesh cache is not yet initialized"); scene::SMesh *mesh = nullptr; // Shading is on by default result->needs_shading = true; bool cull_backface = f.needsBackfaceCulling(); // If inventory_image is defined, it overrides everything else if (!def.inventory_image.empty()) { mesh = getExtrudedMesh(tsrc, def.inventory_image, def.inventory_overlay); result->buffer_colors.emplace_back(); // overlay is white, if present result->buffer_colors.emplace_back(true, video::SColor(0xFFFFFFFF)); // Items with inventory images do not need shading result->needs_shading = false; } else if (def.type == ITEM_NODE && f.drawtype == NDT_AIRLIKE) { // Fallback image for airlike node mesh = getExtrudedMesh(tsrc, "no_texture_airlike.png", def.inventory_overlay); result->needs_shading = false; } else if (def.type == ITEM_NODE) { switch (f.drawtype) { case NDT_NORMAL: case NDT_ALLFACES: case NDT_LIQUID: case NDT_FLOWINGLIQUID: { scene::IMesh *cube = g_extrusion_mesh_cache->createCube(); mesh = cloneMesh(cube); cube->drop(); if (f.drawtype == NDT_FLOWINGLIQUID) { scaleMesh(mesh, v3f(1.2, 0.03, 1.2)); translateMesh(mesh, v3f(0, -0.57, 0)); } else scaleMesh(mesh, v3f(1.2, 1.2, 1.2)); // add overlays postProcessNodeMesh(mesh, f, false, false, nullptr, &result->buffer_colors, true); if (f.drawtype == NDT_ALLFACES) scaleMesh(mesh, v3f(f.visual_scale)); break; } case NDT_PLANTLIKE: { mesh = getExtrudedMesh(tsrc, tsrc->getTextureName(f.tiles[0].layers[0].texture_id), tsrc->getTextureName(f.tiles[0].layers[1].texture_id)); // Add color const TileLayer &l0 = f.tiles[0].layers[0]; result->buffer_colors.emplace_back(l0.has_color, l0.color); const TileLayer &l1 = f.tiles[0].layers[1]; result->buffer_colors.emplace_back(l1.has_color, l1.color); break; } case NDT_PLANTLIKE_ROOTED: { mesh = getExtrudedMesh(tsrc, tsrc->getTextureName(f.special_tiles[0].layers[0].texture_id), ""); // Add color const TileLayer &l0 = f.special_tiles[0].layers[0]; result->buffer_colors.emplace_back(l0.has_color, l0.color); break; } default: { // Render non-trivial drawtypes like the actual node MapNode n(id); n.setParam2(def.place_param2); mesh = createSpecialNodeMesh(client, n, &result->buffer_colors, f); scaleMesh(mesh, v3f(0.12, 0.12, 0.12)); break; } } u32 mc = mesh->getMeshBufferCount(); for (u32 i = 0; i < mc; ++i) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(i); video::SMaterial &material = buf->getMaterial(); material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL; material.MaterialTypeParam = 0.5f; material.setFlag(video::EMF_BILINEAR_FILTER, false); material.setFlag(video::EMF_TRILINEAR_FILTER, false); material.setFlag(video::EMF_BACK_FACE_CULLING, cull_backface); material.setFlag(video::EMF_LIGHTING, false); } rotateMeshXZby(mesh, -45); rotateMeshYZby(mesh, -30); } result->mesh = mesh; } scene::SMesh *getExtrudedMesh(ITextureSource *tsrc, const std::string &imagename, const std::string &overlay_name) { // check textures video::ITexture *texture = tsrc->getTextureForMesh(imagename); if (!texture) { return NULL; } video::ITexture *overlay_texture = (overlay_name.empty()) ? NULL : tsrc->getTexture(overlay_name); // get mesh core::dimension2d<u32> dim = texture->getSize(); scene::IMesh *original = g_extrusion_mesh_cache->create(dim); scene::SMesh *mesh = cloneMesh(original); original->drop(); //set texture mesh->getMeshBuffer(0)->getMaterial().setTexture(0, tsrc->getTexture(imagename)); if (overlay_texture) { scene::IMeshBuffer *copy = cloneMeshBuffer(mesh->getMeshBuffer(0)); copy->getMaterial().setTexture(0, overlay_texture); mesh->addMeshBuffer(copy); copy->drop(); } // Customize materials for (u32 layer = 0; layer < mesh->getMeshBufferCount(); layer++) { video::SMaterial &material = mesh->getMeshBuffer(layer)->getMaterial(); material.TextureLayer[0].TextureWrapU = video::ETC_CLAMP_TO_EDGE; material.TextureLayer[0].TextureWrapV = video::ETC_CLAMP_TO_EDGE; material.setFlag(video::EMF_BILINEAR_FILTER, false); material.setFlag(video::EMF_TRILINEAR_FILTER, false); material.setFlag(video::EMF_BACK_FACE_CULLING, true); material.setFlag(video::EMF_LIGHTING, false); material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL; material.MaterialTypeParam = 0.5f; } scaleMesh(mesh, v3f(2.0, 2.0, 2.0)); return mesh; } void postProcessNodeMesh(scene::SMesh *mesh, const ContentFeatures &f, bool use_shaders, bool set_material, const video::E_MATERIAL_TYPE *mattype, std::vector<ItemPartColor> *colors, bool apply_scale) { u32 mc = mesh->getMeshBufferCount(); // Allocate colors for existing buffers colors->clear(); for (u32 i = 0; i < mc; ++i) colors->push_back(ItemPartColor()); for (u32 i = 0; i < mc; ++i) { const TileSpec *tile = &(f.tiles[i]); scene::IMeshBuffer *buf = mesh->getMeshBuffer(i); for (int layernum = 0; layernum < MAX_TILE_LAYERS; layernum++) { const TileLayer *layer = &tile->layers[layernum]; if (layer->texture_id == 0) continue; if (layernum != 0) { scene::IMeshBuffer *copy = cloneMeshBuffer(buf); copy->getMaterial() = buf->getMaterial(); mesh->addMeshBuffer(copy); copy->drop(); buf = copy; colors->push_back( ItemPartColor(layer->has_color, layer->color)); } else { (*colors)[i] = ItemPartColor(layer->has_color, layer->color); } video::SMaterial &material = buf->getMaterial(); if (set_material) layer->applyMaterialOptions(material); if (mattype) { material.MaterialType = *mattype; } if (layer->animation_frame_count > 1) { const FrameSpec &animation_frame = (*layer->frames)[0]; material.setTexture(0, animation_frame.texture); } else { material.setTexture(0, layer->texture); } if (use_shaders) { if (layer->normal_texture) { if (layer->animation_frame_count > 1) { const FrameSpec &animation_frame = (*layer->frames)[0]; material.setTexture(1, animation_frame.normal_texture); } else material.setTexture(1, layer->normal_texture); } material.setTexture(2, layer->flags_texture); } if (apply_scale && tile->world_aligned) { u32 n = buf->getVertexCount(); for (u32 k = 0; k != n; ++k) buf->getTCoords(k) /= layer->scale; } } } }