aboutsummaryrefslogtreecommitdiff
path: root/src/clouds.cpp
blob: 13051f32ce16d5c03344312e69ab05c4dbabbab5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146<--== Insert track defs here! ==--
-- Default tracks for advtrains
-- (c) orwell96 and contributors

--flat
advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack",
	texture_prefix="advtrains_dtrack",
	models_prefix="advtrains_dtrack",
	models_suffix=".b3d",
	shared_texture="advtrains_dtrack_shared.png",
	description=attrans("Track"),
	formats={},
}, advtrains.ap.t_30deg_flat)
--slopes
advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack",
	texture_prefix="advtrains_dtrack",
	models_prefix="advtrains_dtrack",
	models_suffix=".obj",
	shared_texture="advtrains_dtrack_shared.png",
	second_texture="default_gravel.png",
	description=attrans("Track"),
	formats={vst1={true, false, true}, vst2={true, false, true}, vst31={true}, vst32={true}, vst33={true}},
}, advtrains.ap.t_30deg_slope)

--bumpers
advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack_bumper",
	texture_prefix="advtrains_dtrack_bumper",
	models_prefix="advtrains_dtrack_bumper",
	models_suffix=".b3d",
	shared_texture="advtrains_dtrack_rail.png",
	--bumpers still use the old texture until the models are redone.
	description=attrans("Bumper"),
	formats={},
}, advtrains.ap.t_30deg_straightonly)



-- atc track
advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack_atc",
	texture_prefix="advtrains_dtrack_atc",
	models_prefix="advtrains_dtrack",
	models_suffix=".b3d",
	shared_texture="advtrains_dtrack_shared_atc.png",
	description=attrans("ATC controller"),
	formats={},
	get_additional_definiton = advtrains.atc_function
}, advtrains.trackpresets.t_30deg_straightonly)

advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack_unload",
	texture_prefix="advtrains_dtrack_unload",
	models_prefix="advtrains_dtrack",
	models_suffix=".b3d",
	shared_texture="advtrains_dtrack_shared_unload.png",
	description=attrans("Unloading Track"),
	formats={},
	get_additional_definiton = function(def, preset, suffix, rotation)
		return {
		   after_dig_node=function(pos)
		      advtrains.invalidate_all_paths()
		      advtrains.ndb.clear(pos)
		   end,
		   advtrains = {
		      on_train_enter = function(pos, train_id)
			 train_load(pos, train_id, true)
		      end,
		   },
		}
	end
				     }, advtrains.trackpresets.t_30deg_straightonly)
advtrains.register_tracks("default", {
	nodename_prefix="advtrains:dtrack_load",
	texture_prefix="advtrains_dtrack_load",
	models_prefix="advtrains_dtrack",
	models_suffix=".b3d",
	shared_texture="advtrains_dtrack_shared_load.png",
	description=attrans("Loading Track"),
	formats={},
	get_additional_definiton = function(def, preset, suffix, rotation)
		return {
		   after_dig_node=function(pos)
		      advtrains.invalidate_all_paths()
		      advtrains.ndb.clear(pos)
		   end,

		   advtrains = {
		      on_train_enter = function(pos, train_id)
			 train_load(pos, train_id, false)
		      end,
		   },
		}
	end
				     }, advtrains.trackpresets.t_30deg_straightonly)


	advtrains.register_tracks("default", {
		nodename_prefix="advtrains:dtrack_detector_off",
		texture_prefix="advtrains_dtrack_detector",
		models_prefix="advtrains_dtrack",
		models_suffix=".b3d",
		shared_texture="advtrains_dtrack_shared_detector_off.png",
		description=attrans("Detector Rail"),
		formats={},
		get_additional_definiton = function(def, preset, suffix, rotation)
			return {
				mesecons = {
					receptor = {
						state = mesecon.state.off,
						rules = advtrains.meseconrules
					}
				},
				advtrains = {
					on_train_enter=function(pos, train_id)
						advtrains.ndb.swap_node(pos, {name="advtrains:dtrack_detector_on".."_"..suffix..rotation, param2=advtrains.ndb.get_node(pos).param2})
						mesecon.receptor_on(pos, advtrains.meseconrules)
					end
				}
			}
		end
	}, advtrains.ap.t_30deg_straightonly)
	advtrains.register_tracks("default", {
		nodename_prefix="advtrains:dtrack_detector_on",
		texture_prefix="advtrains_dtrack",
		models_prefix="advtrains_dtrack",
		models_suffix=".b3d",
		shared_texture="advtrains_dtrack_shared_detector_on.png",
		description="Detector(on)(you hacker you)",
		formats={},
		get_additional_definiton = function(def, preset, suffix, rotation)
			return {
				mesecons = {
					receptor = {
						state = mesecon.state.on,
						rules = advtrains.meseconrules
					}
				},
				advtrains = {
					on_train_leave=function(pos, train_id)
						advtrains.ndb.swap_node(pos, {name="advtrains:dtrack_detector_off".."_"..suffix..rotation, param2=advtrains.ndb.get_node(pos).param2})
						mesecon.receptor_off(pos, advtrains.meseconrules)
					end
				}
			}
		end
	}, advtrains.ap.t_30deg_straightonly_noplacer)
	
	
--== END insert track defs ==--
ideo::IVideoDriver* driver = SceneManager->getVideoDriver(); if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT) //if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID) return; ScopeProfiler sp(g_profiler, "Rendering of clouds, avg", SPT_AVG); int num_faces_to_draw = m_enable_3d ? 6 : 1; m_material.setFlag(video::EMF_BACK_FACE_CULLING, m_enable_3d); driver->setTransform(video::ETS_WORLD, AbsoluteTransformation); driver->setMaterial(m_material); /* Clouds move from Z+ towards Z- */ const float cloud_full_radius = cloud_size * m_cloud_radius_i; v2f camera_pos_2d(m_camera_pos.X, m_camera_pos.Z); // Position of cloud noise origin from the camera v2f cloud_origin_from_camera_f = m_origin - camera_pos_2d; // The center point of drawing in the noise v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f; // The integer center point of drawing in the noise v2s16 center_of_drawing_in_noise_i( std::floor(center_of_drawing_in_noise_f.X / cloud_size), std::floor(center_of_drawing_in_noise_f.Y / cloud_size) ); // The world position of the integer center point of drawing in the noise v2f world_center_of_drawing_in_noise_f = v2f( center_of_drawing_in_noise_i.X * cloud_size, center_of_drawing_in_noise_i.Y * cloud_size ) + m_origin; /*video::SColor c_top(128,b*240,b*240,b*255); video::SColor c_side_1(128,b*230,b*230,b*255); video::SColor c_side_2(128,b*220,b*220,b*245); video::SColor c_bottom(128,b*205,b*205,b*230);*/ video::SColorf c_top_f(m_color); video::SColorf c_side_1_f(m_color); video::SColorf c_side_2_f(m_color); video::SColorf c_bottom_f(m_color); c_side_1_f.r *= 0.95; c_side_1_f.g *= 0.95; c_side_1_f.b *= 0.95; c_side_2_f.r *= 0.90; c_side_2_f.g *= 0.90; c_side_2_f.b *= 0.90; c_bottom_f.r *= 0.80; c_bottom_f.g *= 0.80; c_bottom_f.b *= 0.80; video::SColor c_top = c_top_f.toSColor(); video::SColor c_side_1 = c_side_1_f.toSColor(); video::SColor c_side_2 = c_side_2_f.toSColor(); video::SColor c_bottom = c_bottom_f.toSColor(); // Get fog parameters for setting them back later video::SColor fog_color(0,0,0,0); video::E_FOG_TYPE fog_type = video::EFT_FOG_LINEAR; f32 fog_start = 0; f32 fog_end = 0; f32 fog_density = 0; bool fog_pixelfog = false; bool fog_rangefog = false; driver->getFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); // Set our own fog driver->setFog(fog_color, fog_type, cloud_full_radius * 0.5, cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog); // Read noise bool *grid = new bool[m_cloud_radius_i * 2 * m_cloud_radius_i * 2]; for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) { u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i; for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) { u32 i = si + xi; grid[i] = gridFilled( xi + center_of_drawing_in_noise_i.X, zi + center_of_drawing_in_noise_i.Y ); } } #define GETINDEX(x, z, radius) (((z)+(radius))*(radius)*2 + (x)+(radius)) #define INAREA(x, z, radius) \ ((x) >= -(radius) && (x) < (radius) && (z) >= -(radius) && (z) < (radius)) for (s16 zi0= -m_cloud_radius_i; zi0 < m_cloud_radius_i; zi0++) for (s16 xi0= -m_cloud_radius_i; xi0 < m_cloud_radius_i; xi0++) { s16 zi = zi0; s16 xi = xi0; // Draw from front to back (needed for transparency) /*if(zi <= 0) zi = -m_cloud_radius_i - zi; if(xi <= 0) xi = -m_cloud_radius_i - xi;*/ // Draw from back to front if(zi >= 0) zi = m_cloud_radius_i - zi - 1; if(xi >= 0) xi = m_cloud_radius_i - xi - 1; u32 i = GETINDEX(xi, zi, m_cloud_radius_i); if (!grid[i]) continue; v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f; video::S3DVertex v[4] = { video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0), video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0) }; /*if(zi <= 0 && xi <= 0){ v[0].Color.setBlue(255); v[1].Color.setBlue(255); v[2].Color.setBlue(255); v[3].Color.setBlue(255); }*/ f32 rx = cloud_size / 2.0f; // if clouds are flat, the top layer should be at the given height f32 ry = m_enable_3d ? m_params.thickness * BS : 0.0f; f32 rz = cloud_size / 2; for(int i=0; i<num_faces_to_draw; i++) { switch(i) { case 0: // top for (video::S3DVertex &vertex : v) { vertex.Normal.set(0,1,0); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set( rx, ry, rz); v[3].Pos.set( rx, ry,-rz); break; case 1: // back if (INAREA(xi, zi - 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set( rx, ry,-rz); v[2].Pos.set( rx, 0,-rz); v[3].Pos.set(-rx, 0,-rz); break; case 2: //right if (INAREA(xi + 1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(1,0,0); } v[0].Pos.set( rx, ry,-rz); v[1].Pos.set( rx, ry, rz); v[2].Pos.set( rx, 0, rz); v[3].Pos.set( rx, 0,-rz); break; case 3: // front if (INAREA(xi, zi + 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set( rx, ry, rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set(-rx, 0, rz); v[3].Pos.set( rx, 0, rz); break; case 4: // left if (INAREA(xi-1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(-1,0,0); } v[0].Pos.set(-rx, ry, rz); v[1].Pos.set(-rx, ry,-rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set(-rx, 0, rz); break; case 5: // bottom for (video::S3DVertex &vertex : v) { vertex.Color = c_bottom; vertex.Normal.set(0,-1,0); } v[0].Pos.set( rx, 0, rz); v[1].Pos.set(-rx, 0, rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set( rx, 0,-rz); break; } v3f pos(p0.X, m_params.height * BS, p0.Y); pos -= intToFloat(m_camera_offset, BS); for (video::S3DVertex &vertex : v) vertex.Pos += pos; u16 indices[] = {0,1,2,2,3,0}; driver->drawVertexPrimitiveList(v, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT); } } delete[] grid; // Restore fog settings driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); } void Clouds::step(float dtime) { m_origin = m_origin + dtime * BS * m_params.speed; } void Clouds::update(const v3f &camera_p, const video::SColorf &color_diffuse) { m_camera_pos = camera_p; m_color.r = MYMIN(MYMAX(color_diffuse.r * m_params.color_bright.getRed(), m_params.color_ambient.getRed()), 255) / 255.0f; m_color.g = MYMIN(MYMAX(color_diffuse.g * m_params.color_bright.getGreen(), m_params.color_ambient.getGreen()), 255) / 255.0f; m_color.b = MYMIN(MYMAX(color_diffuse.b * m_params.color_bright.getBlue(), m_params.color_ambient.getBlue()), 255) / 255.0f; m_color.a = m_params.color_bright.getAlpha() / 255.0f; // is the camera inside the cloud mesh? m_camera_inside_cloud = false; // default if (m_enable_3d) { float camera_height = camera_p.Y; if (camera_height >= m_box.MinEdge.Y && camera_height <= m_box.MaxEdge.Y) { v2f camera_in_noise; camera_in_noise.X = floor((camera_p.X - m_origin.X) / cloud_size + 0.5); camera_in_noise.Y = floor((camera_p.Z - m_origin.Y) / cloud_size + 0.5); bool filled = gridFilled(camera_in_noise.X, camera_in_noise.Y); m_camera_inside_cloud = filled; } } } void Clouds::readSettings() { m_cloud_radius_i = g_settings->getU16("cloud_radius"); m_enable_3d = g_settings->getBool("enable_3d_clouds"); } bool Clouds::gridFilled(int x, int y) const { float cloud_size_noise = cloud_size / (BS * 200.f); float noise = noise2d_perlin( (float)x * cloud_size_noise, (float)y * cloud_size_noise, m_seed, 3, 0.5); // normalize to 0..1 (given 3 octaves) static constexpr const float noise_bound = 1.0f + 0.5f + 0.25f; float density = noise / noise_bound * 0.5f + 0.5f; return (density < m_params.density); }