aboutsummaryrefslogtreecommitdiff
path: root/src/collision.cpp
blob: 595fa80598445ebbb08aa31379f948e7895afc0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "collision.h"
#include "mapblock.h"
#include "map.h"
#include "nodedef.h"
#include "gamedef.h"
#include "clientenvironment.h"
#include "serverenvironment.h"
#include "serverobject.h"
#include "profiler.h"

// float error is 10 - 9.96875 = 0.03125
//#define COLL_ZERO 0.032 // broken unit tests
#define COLL_ZERO 0


struct NearbyCollisionInfo {
	NearbyCollisionInfo(bool is_ul, bool is_obj, int bouncy,
			const v3s16 &pos, const aabb3f &box) :
		is_unloaded(is_ul),
		is_step_up(false),
		is_object(is_obj),
		bouncy(bouncy),
		position(pos),
		box(box)
	{}

	bool is_unloaded;
	bool is_step_up;
	bool is_object;
	int bouncy;
	v3s16 position;
	aabb3f box;
};


// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
int axisAlignedCollision(
		const aabb3f &staticbox, const aabb3f &movingbox,
		const v3f &speed, f32 d, f32 *dtime)
{
	//TimeTaker tt("axisAlignedCollision");

	f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO;     // reduce box size for solve collision stuck (flying sand)
	f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
	f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;

	aabb3f relbox(
			movingbox.MinEdge.X - staticbox.MinEdge.X,
			movingbox.MinEdge.Y - staticbox.MinEdge.Y,
			movingbox.MinEdge.Z - staticbox.MinEdge.Z,
			movingbox.MaxEdge.X - staticbox.MinEdge.X,
			movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
			movingbox.MaxEdge.Z - staticbox.MinEdge.Z
	);

	if(speed.X > 0) // Check for collision with X- plane
	{
		if (relbox.MaxEdge.X <= d) {
			*dtime = -relbox.MaxEdge.X / speed.X;
			if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
					(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
					(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
				return 0;
		}
		else if(relbox.MinEdge.X > xsize)
		{
			return -1;
		}
	}
	else if(speed.X < 0) // Check for collision with X+ plane
	{
		if (relbox.MinEdge.X >= xsize - d) {
			*dtime = (xsize - relbox.MinEdge.X) / speed.X;
			if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
					(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
					(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
				return 0;
		}
		else if(relbox.MaxEdge.X < 0)
		{
			return -1;
		}
	}

	// NO else if here

	if(speed.Y > 0) // Check for collision with Y- plane
	{
		if (relbox.MaxEdge.Y <= d) {
			*dtime = -relbox.MaxEdge.Y / speed.Y;
			if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
					(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
					(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
				return 1;
		}
		else if(relbox.MinEdge.Y > ysize)
		{
			return -1;
		}
	}
	else if(speed.Y < 0) // Check for collision with Y+ plane
	{
		if (relbox.MinEdge.Y >= ysize - d) {
			*dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
			if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
					(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
					(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
				return 1;
		}
		else if(relbox.MaxEdge.Y < 0)
		{
			return -1;
		}
	}

	// NO else if here

	if(speed.Z > 0) // Check for collision with Z- plane
	{
		if (relbox.MaxEdge.Z <= d) {
			*dtime = -relbox.MaxEdge.Z / speed.Z;
			if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
					(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
					(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
				return 2;
		}
		//else if(relbox.MinEdge.Z > zsize)
		//{
		//	return -1;
		//}
	}
	else if(speed.Z < 0) // Check for collision with Z+ plane
	{
		if (relbox.MinEdge.Z >= zsize - d) {
			*dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
			if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
					(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
					(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
					(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
				return 2;
		}
		//else if(relbox.MaxEdge.Z < 0)
		//{
		//	return -1;
		//}
	}

	return -1;
}

// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
		const std::vector<NearbyCollisionInfo> &cinfo,
		const aabb3f &movingbox,
		f32 y_increase, f32 d)
{
	//TimeTaker tt("wouldCollideWithCeiling");

	assert(y_increase >= 0);	// pre-condition

	for (std::vector<NearbyCollisionInfo>::const_iterator it = cinfo.begin();
			it != cinfo.end(); ++it) {
		const aabb3f &staticbox = it->box;
		if ((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
				(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
				(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
				(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
				(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
				(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
			return true;
	}

	return false;
}

static inline void getNeighborConnectingFace(v3s16 p, INodeDefManager *nodedef,
		Map *map, MapNode n, int v, int *neighbors)
{
	MapNode n2 = map->getNodeNoEx(p);
	if (nodedef->nodeboxConnects(n, n2, v))
		*neighbors |= v;
}

collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
		f32 pos_max_d, const aabb3f &box_0,
		f32 stepheight, f32 dtime,
		v3f *pos_f, v3f *speed_f,
		v3f accel_f, ActiveObject *self,
		bool collideWithObjects)
{
	static bool time_notification_done = false;
	Map *map = &env->getMap();
	//TimeTaker tt("collisionMoveSimple");
	ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);

	collisionMoveResult result;

	/*
		Calculate new velocity
	*/
	if (dtime > 0.5) {
		if (!time_notification_done) {
			time_notification_done = true;
			infostream << "collisionMoveSimple: maximum step interval exceeded,"
					" lost movement details!"<<std::endl;
		}
		dtime = 0.5;
	} else {
		time_notification_done = false;
	}
	*speed_f += accel_f * dtime;

	// If there is no speed, there are no collisions
	if (speed_f->getLength() == 0)
		return result;

	// Limit speed for avoiding hangs
	speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
	speed_f->X = rangelim(speed_f->X, -5000, 5000);
	speed_f->Z = rangelim(speed_f->Z, -5000, 5000);

	/*
		Collect node boxes in movement range
	*/
	std::vector<NearbyCollisionInfo> cinfo;
	{
	//TimeTaker tt2("collisionMoveSimple collect boxes");
	ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);

	v3s16 oldpos_i = floatToInt(*pos_f, BS);
	v3s16 newpos_i = floatToInt(*pos_f + *speed_f * dtime, BS);
	s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
	s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
	s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
	s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
	s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
	s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;

	bool any_position_valid = false;

	for(s16 x = min_x; x <= max_x; x++)
	for(s16 y = min_y; y <= max_y; y++)
	for(s16 z = min_z; z <= max_z; z++)
	{
		v3s16 p(x,y,z);

		bool is_position_valid;
		MapNode n = map->getNodeNoEx(p, &is_position_valid);

		if (is_position_valid) {
			// Object collides into walkable nodes

			any_position_valid = true;
			INodeDefManager *nodedef = gamedef->getNodeDefManager();
			const ContentFeatures &f = nodedef->get(n);
			if(f.walkable == false)
				continue;
			int n_bouncy_value = itemgroup_get(f.groups, "bouncy");

			int neighbors = 0;
			if (f.drawtype == NDT_NODEBOX && f.node_box.type == NODEBOX_CONNECTED) {
				v3s16 p2 = p;

				p2.Y++;
				getNeighborConnectingFace(p2, nodedef, map, n, 1, &neighbors);

				p2 = p;
				p2.Y--;
				getNeighborConnectingFace(p2, nodedef, map, n, 2, &neighbors);

				p2 = p;
				p2.Z--;
				getNeighborConnectingFace(p2, nodedef, map, n, 4, &neighbors);

				p2 = p;
				p2.X--;
				getNeighborConnectingFace(p2, nodedef, map, n, 8, &neighbors);

				p2 = p;
				p2.Z++;
				getNeighborConnectingFace(p2, nodedef, map, n, 16, &neighbors);

				p2 = p;
				p2.X++;
				getNeighborConnectingFace(p2, nodedef, map, n, 32, &neighbors);
			}
			std::vector<aabb3f> nodeboxes;
			n.getCollisionBoxes(gamedef->ndef(), &nodeboxes, neighbors);
			for(std::vector<aabb3f>::iterator
					i = nodeboxes.begin();
					i != nodeboxes.end(); ++i)
			{
				aabb3f box = *i;
				box.MinEdge += v3f(x, y, z)*BS;
				box.MaxEdge += v3f(x, y, z)*BS;
				cinfo.push_back(NearbyCollisionInfo(false,
					false, n_bouncy_value, p, box));
			}
		} else {
			// Collide with unloaded nodes
			aabb3f box = getNodeBox(p, BS);
			cinfo.push_back(NearbyCollisionInfo(true, false, 0, p, box));
		}
	}

	// Do not move if world has not loaded yet, since custom node boxes
	// are not available for collision detection.
	if (!any_position_valid) {
		*speed_f = v3f(0, 0, 0);
		return result;
	}

	} // tt2

	if(collideWithObjects)
	{
		ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
		//TimeTaker tt3("collisionMoveSimple collect object boxes");

		/* add object boxes to cinfo */

		std::vector<ActiveObject*> objects;
#ifndef SERVER
		ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
		if (c_env != 0) {
			f32 distance = speed_f->getLength();
			std::vector<DistanceSortedActiveObject> clientobjects;
			c_env->getActiveObjects(*pos_f, distance * 1.5, clientobjects);
			for (size_t i=0; i < clientobjects.size(); i++) {
				if ((self == 0) || (self != clientobjects[i].obj)) {
					objects.push_back((ActiveObject*)clientobjects[i].obj);
				}
			}
		}
		else
#endif
		{
			ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
			if (s_env != NULL) {
				f32 distance = speed_f->getLength();
				std::vector<u16> s_objects;
				s_env->getObjectsInsideRadius(s_objects, *pos_f, distance * 1.5);
				for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
					ServerActiveObject *current = s_env->getActiveObject(*iter);
					if ((self == 0) || (self != current)) {
						objects.push_back((ActiveObject*)current);
					}
				}
			}
		}

		for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
				iter != objects.end(); ++iter) {
			ActiveObject *object = *iter;

			if (object != NULL) {
				aabb3f object_collisionbox;
				if (object->getCollisionBox(&object_collisionbox) &&
						object->collideWithObjects()) {
					cinfo.push_back(NearbyCollisionInfo(false, true, 0, v3s16(), object_collisionbox));
				}
			}
		}
	} //tt3

	/*
		Collision detection
	*/

	/*
		Collision uncertainty radius
		Make it a bit larger than the maximum distance of movement
	*/
	f32 d = pos_max_d * 1.1;
	// A fairly large value in here makes moving smoother
	//f32 d = 0.15*BS;

	// This should always apply, otherwise there are glitches
	assert(d > pos_max_d);	// invariant

	int loopcount = 0;

	while(dtime > BS * 1e-10) {
		//TimeTaker tt3("collisionMoveSimple dtime loop");
        	ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);

		// Avoid infinite loop
		loopcount++;
		if (loopcount >= 100) {
			warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
			break;
		}

		aabb3f movingbox = box_0;
		movingbox.MinEdge += *pos_f;
		movingbox.MaxEdge += *pos_f;

		int nearest_collided = -1;
		f32 nearest_dtime = dtime;
		int nearest_boxindex = -1;

		/*
			Go through every nodebox, find nearest collision
		*/
		for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
			NearbyCollisionInfo box_info = cinfo[boxindex];
			// Ignore if already stepped up this nodebox.
			if (box_info.is_step_up)
				continue;

			// Find nearest collision of the two boxes (raytracing-like)
			f32 dtime_tmp;
			int collided = axisAlignedCollision(box_info.box,
					movingbox, *speed_f, d, &dtime_tmp);

			if (collided == -1 || dtime_tmp >= nearest_dtime)
				continue;

			nearest_dtime = dtime_tmp;
			nearest_collided = collided;
			nearest_boxindex = boxindex;
		}

		if (nearest_collided == -1) {
			// No collision with any collision box.
			*pos_f += *speed_f * dtime;
			dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
		} else {
			// Otherwise, a collision occurred.
			NearbyCollisionInfo &nearest_info = cinfo[nearest_boxindex];
			const aabb3f& cbox = nearest_info.box;
			// Check for stairs.
			bool step_up = (nearest_collided != 1) && // must not be Y direction
					(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
					(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
					(!wouldCollideWithCeiling(cinfo, movingbox,
							cbox.MaxEdge.Y - movingbox.MinEdge.Y,
							d));

			// Get bounce multiplier
			bool bouncy = (nearest_info.bouncy >= 1);
			float bounce = -(float)nearest_info.bouncy / 100.0;

			// Move to the point of collision and reduce dtime by nearest_dtime
			if (nearest_dtime < 0) {
				// Handle negative nearest_dtime (can be caused by the d allowance)
				if (!step_up) {
					if (nearest_collided == 0)
						pos_f->X += speed_f->X * nearest_dtime;
					if (nearest_collided == 1)
						pos_f->Y += speed_f->Y * nearest_dtime;
					if (nearest_collided == 2)
						pos_f->Z += speed_f->Z * nearest_dtime;
				}
			} else {
				*pos_f += *speed_f * nearest_dtime;
				dtime -= nearest_dtime;
			}

			bool is_collision = true;
			if (nearest_info.is_unloaded)
				is_collision = false;

			CollisionInfo info;
			if (nearest_info.is_object)
				info.type = COLLISION_OBJECT;
			else
				info.type = COLLISION_NODE;

			info.node_p = nearest_info.position;
			info.bouncy = bouncy;
			info.old_speed = *speed_f;

			// Set the speed component that caused the collision to zero
			if (step_up) {
				// Special case: Handle stairs
				nearest_info.is_step_up = true;
				is_collision = false;
			} else if (nearest_collided == 0) { // X
				if (fabs(speed_f->X) > BS * 3)
					speed_f->X *= bounce;
				else
					speed_f->X = 0;
				result.collides = true;
				result.collides_xz = true;
			} else if (nearest_collided == 1) { // Y
				if(fabs(speed_f->Y) > BS * 3)
					speed_f->Y *= bounce;
				else
					speed_f->Y = 0;
				result.collides = true;
			} else if (nearest_collided == 2) { // Z
				if (fabs(speed_f->Z) > BS * 3)
					speed_f->Z *= bounce;
				else
					speed_f->Z = 0;
				result.collides = true;
				result.collides_xz = true;
			}

			info.new_speed = *speed_f;
			if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
				is_collision = false;

			if (is_collision) {
				result.collisions.push_back(info);
			}
		}
	}

	/*
		Final touches: Check if standing on ground, step up stairs.
	*/
	aabb3f box = box_0;
	box.MinEdge += *pos_f;
	box.MaxEdge += *pos_f;
	for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
		NearbyCollisionInfo &box_info = cinfo[boxindex];
		const aabb3f &cbox = box_info.box;

		/*
			See if the object is touching ground.

			Object touches ground if object's minimum Y is near node's
			maximum Y and object's X-Z-area overlaps with the node's
			X-Z-area.

			Use 0.15*BS so that it is easier to get on a node.
		*/
		if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
				cbox.MaxEdge.Z - d > box.MinEdge.Z &&
				cbox.MinEdge.Z + d < box.MaxEdge.Z) {
			if (box_info.is_step_up) {
				pos_f->Y += cbox.MaxEdge.Y - box.MinEdge.Y;
				box = box_0;
				box.MinEdge += *pos_f;
				box.MaxEdge += *pos_f;
			}
			if (fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.15 * BS) {
				result.touching_ground = true;

				if (box_info.is_object)
					result.standing_on_object = true;
				if (box_info.is_unloaded)
					result.standing_on_unloaded = true;
			}
		}
	}

	return result;
}