summaryrefslogtreecommitdiff
path: root/src/debug.cpp
blob: 278902a081b7fa2836063ace205771cbbcd4c871 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/


#include "debug.h"
#include "exceptions.h"
#include "threads.h"
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <map>
#include "jthread/jmutex.h"
#include "jthread/jmutexautolock.h"

/*
	Debug output
*/

#define DEBUGSTREAM_COUNT 2

FILE *g_debugstreams[DEBUGSTREAM_COUNT] = {stderr, NULL};

#define DEBUGPRINT(...)\
{\
	for(int i=0; i<DEBUGSTREAM_COUNT; i++)\
	{\
		if(g_debugstreams[i] != NULL){\
			fprintf(g_debugstreams[i], __VA_ARGS__);\
			fflush(g_debugstreams[i]);\
		}\
	}\
}

void debugstreams_init(bool disable_stderr, const char *filename)
{
	if(disable_stderr)
		g_debugstreams[0] = NULL;
	else
		g_debugstreams[0] = stderr;

	if(filename)
		g_debugstreams[1] = fopen(filename, "a");
		
	if(g_debugstreams[1])
	{
		fprintf(g_debugstreams[1], "\n\n-------------\n");
		fprintf(g_debugstreams[1],     "  Separator  \n");
		fprintf(g_debugstreams[1],     "-------------\n\n");
	}
}

void debugstreams_deinit()
{
	if(g_debugstreams[1] != NULL)
		fclose(g_debugstreams[1]);
}

class Debugbuf : public std::streambuf
{
public:
	Debugbuf(bool disable_stderr)
	{
		m_disable_stderr = disable_stderr;
	}

	int overflow(int c)
	{
		for(int i=0; i<DEBUGSTREAM_COUNT; i++)
		{
			if(g_debugstreams[i] == stderr && m_disable_stderr)
				continue;
			if(g_debugstreams[i] != NULL)
				(void)fwrite(&c, 1, 1, g_debugstreams[i]);
			//TODO: Is this slow?
			fflush(g_debugstreams[i]);
		}
		
		return c;
	}
	std::streamsize xsputn(const char *s, std::streamsize n)
	{
		for(int i=0; i<DEBUGSTREAM_COUNT; i++)
		{
			if(g_debugstreams[i] == stderr && m_disable_stderr)
				continue;
			if(g_debugstreams[i] != NULL)
				(void)fwrite(s, 1, n, g_debugstreams[i]);
			//TODO: Is this slow?
			fflush(g_debugstreams[i]);
		}

		return n;
	}
	
private:
	bool m_disable_stderr;
};

Debugbuf debugbuf(false);
std::ostream dstream(&debugbuf);
Debugbuf debugbuf_no_stderr(true);
std::ostream dstream_no_stderr(&debugbuf_no_stderr);
Nullstream dummyout;

/*
	Assert
*/

void assert_fail(const char *assertion, const char *file,
		unsigned int line, const char *function)
{
	DEBUGPRINT("\nIn thread %lx:\n"
			"%s:%d: %s: Assertion '%s' failed.\n",
			(unsigned long)get_current_thread_id(),
			file, line, function, assertion);
	
	debug_stacks_print();

	if(g_debugstreams[1])
		fclose(g_debugstreams[1]);

	abort();
}

/*
	DebugStack
*/

struct DebugStack
{
	DebugStack(threadid_t id);
	void print(FILE *file, bool everything);
	void print(std::ostream &os, bool everything);
	
	threadid_t threadid;
	char stack[DEBUG_STACK_SIZE][DEBUG_STACK_TEXT_SIZE];
	int stack_i; // Points to the lowest empty position
	int stack_max_i; // Highest i that was seen
};

DebugStack::DebugStack(threadid_t id)
{
	threadid = id;
	stack_i = 0;
	stack_max_i = 0;
	memset(stack, 0, DEBUG_STACK_SIZE*DEBUG_STACK_TEXT_SIZE);
}

void DebugStack::print(FILE *file, bool everything)
{
	fprintf(file, "DEBUG STACK FOR THREAD %lx:\n",
			(unsigned long)threadid);

	for(int i=0; i<stack_max_i; i++)
	{
		if(i == stack_i && everything == false)
			break;

		if(i < stack_i)
			fprintf(file, "#%d  %s\n", i, stack[i]);
		else
			fprintf(file, "(Leftover data: #%d  %s)\n", i, stack[i]);
	}

	if(stack_i == DEBUG_STACK_SIZE)
		fprintf(file, "Probably overflown.\n");
}

void DebugStack::print(std::ostream &os, bool everything)
{
	os<<"DEBUG STACK FOR THREAD "<<(unsigned long)threadid<<": "<<std::endl;

	for(int i=0; i<stack_max_i; i++)
	{
		if(i == stack_i && everything == false)
			break;

		if(i < stack_i)
			os<<"#"<<i<<"  "<<stack[i]<<std::endl;
		else
			os<<"(Leftover data: #"<<i<<"  "<<stack[i]<<")"<<std::endl;
	}

	if(stack_i == DEBUG_STACK_SIZE)
		os<<"Probably overflown."<<std::endl;
}

std::map<threadid_t, DebugStack*> g_debug_stacks;
JMutex g_debug_stacks_mutex;

void debug_stacks_init()
{
}

void debug_stacks_print_to(std::ostream &os)
{
	JMutexAutoLock lock(g_debug_stacks_mutex);

	os<<"Debug stacks:"<<std::endl;

	for(std::map<threadid_t, DebugStack*>::iterator
			i = g_debug_stacks.begin();
			i != g_debug_stacks.end(); ++i)
	{
		i->second->print(os, false);
	}
}

void debug_stacks_print()
{
	JMutexAutoLock lock(g_debug_stacks_mutex);

	DEBUGPRINT("Debug stacks:\n");

	for(std::map<threadid_t, DebugStack*>::iterator
			i = g_debug_stacks.begin();
			i != g_debug_stacks.end(); ++i)
	{
		DebugStack *stack = i->second;

		for(int i=0; i<DEBUGSTREAM_COUNT; i++)
		{
			if(g_debugstreams[i] != NULL)
				stack->print(g_debugstreams[i], true);
		}
	}
}

DebugStacker::DebugStacker(const char *text)
{
	threadid_t threadid = get_current_thread_id();

	JMutexAutoLock lock(g_debug_stacks_mutex);

	std::map<threadid_t, DebugStack*>::iterator n;
	n = g_debug_stacks.find(threadid);
	if(n != g_debug_stacks.end())
	{
		m_stack = n->second;
	}
	else
	{
		/*DEBUGPRINT("Creating new debug stack for thread %x\n",
				(unsigned int)threadid);*/
		m_stack = new DebugStack(threadid);
		g_debug_stacks[threadid] = m_stack;
	}

	if(m_stack->stack_i >= DEBUG_STACK_SIZE)
	{
		m_overflowed = true;
	}
	else
	{
		m_overflowed = false;

		snprintf(m_stack->stack[m_stack->stack_i],
				DEBUG_STACK_TEXT_SIZE, "%s", text);
		m_stack->stack_i++;
		if(m_stack->stack_i > m_stack->stack_max_i)
			m_stack->stack_max_i = m_stack->stack_i;
	}
}

DebugStacker::~DebugStacker()
{
	JMutexAutoLock lock(g_debug_stacks_mutex);
	
	if(m_overflowed == true)
		return;
	
	m_stack->stack_i--;

	if(m_stack->stack_i == 0)
	{
		threadid_t threadid = m_stack->threadid;
		/*DEBUGPRINT("Deleting debug stack for thread %x\n",
				(unsigned int)threadid);*/
		delete m_stack;
		g_debug_stacks.erase(threadid);
	}
}


#ifdef _MSC_VER
#if CATCH_UNHANDLED_EXCEPTIONS == 1
void se_trans_func(unsigned int u, EXCEPTION_POINTERS* pExp)
{
	dstream<<"In trans_func.\n";
	if(u == EXCEPTION_ACCESS_VIOLATION)
	{
		PEXCEPTION_RECORD r = pExp->ExceptionRecord;
		dstream<<"Access violation at "<<r->ExceptionAddress
				<<" write?="<<r->ExceptionInformation[0]
				<<" address="<<r->ExceptionInformation[1]
				<<std::endl;
		throw FatalSystemException
		("Access violation");
	}
	if(u == EXCEPTION_STACK_OVERFLOW)
	{
		throw FatalSystemException
		("Stack overflow");
	}
	if(u == EXCEPTION_ILLEGAL_INSTRUCTION)
	{
		throw FatalSystemException
		("Illegal instruction");
	}
}
#endif
#endif



opt">); video::S3DVertex vertices[24] = { // Up video::S3DVertex(-0.5,+0.5,-0.5, 0,1,0, c, 0,1), video::S3DVertex(-0.5,+0.5,+0.5, 0,1,0, c, 0,0), video::S3DVertex(+0.5,+0.5,+0.5, 0,1,0, c, 1,0), video::S3DVertex(+0.5,+0.5,-0.5, 0,1,0, c, 1,1), // Down video::S3DVertex(-0.5,-0.5,-0.5, 0,-1,0, c, 0,0), video::S3DVertex(+0.5,-0.5,-0.5, 0,-1,0, c, 1,0), video::S3DVertex(+0.5,-0.5,+0.5, 0,-1,0, c, 1,1), video::S3DVertex(-0.5,-0.5,+0.5, 0,-1,0, c, 0,1), // Right video::S3DVertex(+0.5,-0.5,-0.5, 1,0,0, c, 0,1), video::S3DVertex(+0.5,+0.5,-0.5, 1,0,0, c, 0,0), video::S3DVertex(+0.5,+0.5,+0.5, 1,0,0, c, 1,0), video::S3DVertex(+0.5,-0.5,+0.5, 1,0,0, c, 1,1), // Left video::S3DVertex(-0.5,-0.5,-0.5, -1,0,0, c, 1,1), video::S3DVertex(-0.5,-0.5,+0.5, -1,0,0, c, 0,1), video::S3DVertex(-0.5,+0.5,+0.5, -1,0,0, c, 0,0), video::S3DVertex(-0.5,+0.5,-0.5, -1,0,0, c, 1,0), // Back video::S3DVertex(-0.5,-0.5,+0.5, 0,0,1, c, 1,1), video::S3DVertex(+0.5,-0.5,+0.5, 0,0,1, c, 0,1), video::S3DVertex(+0.5,+0.5,+0.5, 0,0,1, c, 0,0), video::S3DVertex(-0.5,+0.5,+0.5, 0,0,1, c, 1,0), // Front video::S3DVertex(-0.5,-0.5,-0.5, 0,0,-1, c, 0,1), video::S3DVertex(-0.5,+0.5,-0.5, 0,0,-1, c, 0,0), video::S3DVertex(+0.5,+0.5,-0.5, 0,0,-1, c, 1,0), video::S3DVertex(+0.5,-0.5,-0.5, 0,0,-1, c, 1,1), }; u16 indices[6] = {0,1,2,2,3,0}; scene::SMesh *mesh = new scene::SMesh(); for (u32 i=0; i<6; ++i) { scene::IMeshBuffer *buf = new scene::SMeshBuffer(); buf->append(vertices + 4 * i, 4, indices, 6); // Set default material buf->getMaterial().setFlag(video::EMF_LIGHTING, false); buf->getMaterial().setFlag(video::EMF_BILINEAR_FILTER, false); buf->getMaterial().MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL_REF; // Add mesh buffer to mesh mesh->addMeshBuffer(buf); buf->drop(); } scene::SAnimatedMesh *anim_mesh = new scene::SAnimatedMesh(mesh); mesh->drop(); scaleMesh(anim_mesh, scale); // also recalculates bounding box return anim_mesh; } void scaleMesh(scene::IMesh *mesh, v3f scale) { if (mesh == NULL) return; aabb3f bbox; bbox.reset(0, 0, 0); u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos *= scale; buf->recalculateBoundingBox(); // calculate total bounding box if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } mesh->setBoundingBox(bbox); } void translateMesh(scene::IMesh *mesh, v3f vec) { if (mesh == NULL) return; aabb3f bbox; bbox.reset(0, 0, 0); u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos += vec; buf->recalculateBoundingBox(); // calculate total bounding box if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } mesh->setBoundingBox(bbox); } void setMeshColor(scene::IMesh *mesh, const video::SColor &color) { if (mesh == NULL) return; u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Color = color; } } void shadeMeshFaces(scene::IMesh *mesh) { if (mesh == NULL) return; u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) { video::S3DVertex *vertex = (video::S3DVertex *)(vertices + i * stride); video::SColor &vc = vertex->Color; // Many special drawtypes have normals set to 0,0,0 and this // must result in maximum brightness (no face shadng). if (vertex->Normal.Y < -0.5f) applyFacesShading (vc, 0.447213f); else if (vertex->Normal.X > 0.5f || vertex->Normal.X < -0.5f) applyFacesShading (vc, 0.670820f); else if (vertex->Normal.Z > 0.5f || vertex->Normal.Z < -0.5f) applyFacesShading (vc, 0.836660f); } } } void setMeshColorByNormalXYZ(scene::IMesh *mesh, const video::SColor &colorX, const video::SColor &colorY, const video::SColor &colorZ) { if (mesh == NULL) return; u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) { video::S3DVertex *vertex = (video::S3DVertex *)(vertices + i * stride); f32 x = fabs(vertex->Normal.X); f32 y = fabs(vertex->Normal.Y); f32 z = fabs(vertex->Normal.Z); if (x >= y && x >= z) vertex->Color = colorX; else if (y >= z) vertex->Color = colorY; else vertex->Color = colorZ; } } } void setMeshColorByNormal(scene::IMesh *mesh, const v3f &normal, const video::SColor &color) { if (!mesh) return; u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) { video::S3DVertex *vertex = (video::S3DVertex *)(vertices + i * stride); if (normal == vertex->Normal) { vertex->Color = color; } } } } void rotateMeshXYby(scene::IMesh *mesh, f64 degrees) { u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos.rotateXYBy(degrees); } } void rotateMeshXZby(scene::IMesh *mesh, f64 degrees) { u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos.rotateXZBy(degrees); } } void rotateMeshYZby(scene::IMesh *mesh, f64 degrees) { u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos.rotateYZBy(degrees); } } void rotateMeshBy6dFacedir(scene::IMesh *mesh, int facedir) { int axisdir = facedir >> 2; facedir &= 0x03; u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) { video::S3DVertex *vertex = (video::S3DVertex *)(vertices + i * stride); switch (axisdir) { case 0: if (facedir == 1) vertex->Pos.rotateXZBy(-90); else if (facedir == 2) vertex->Pos.rotateXZBy(180); else if (facedir == 3) vertex->Pos.rotateXZBy(90); break; case 1: // z+ vertex->Pos.rotateYZBy(90); if (facedir == 1) vertex->Pos.rotateXYBy(90); else if (facedir == 2) vertex->Pos.rotateXYBy(180); else if (facedir == 3) vertex->Pos.rotateXYBy(-90); break; case 2: //z- vertex->Pos.rotateYZBy(-90); if (facedir == 1) vertex->Pos.rotateXYBy(-90); else if (facedir == 2) vertex->Pos.rotateXYBy(180); else if (facedir == 3) vertex->Pos.rotateXYBy(90); break; case 3: //x+ vertex->Pos.rotateXYBy(-90); if (facedir == 1) vertex->Pos.rotateYZBy(90); else if (facedir == 2) vertex->Pos.rotateYZBy(180); else if (facedir == 3) vertex->Pos.rotateYZBy(-90); break; case 4: //x- vertex->Pos.rotateXYBy(90); if (facedir == 1) vertex->Pos.rotateYZBy(-90); else if (facedir == 2) vertex->Pos.rotateYZBy(180); else if (facedir == 3) vertex->Pos.rotateYZBy(90); break; case 5: vertex->Pos.rotateXYBy(-180); if (facedir == 1) vertex->Pos.rotateXZBy(90); else if (facedir == 2) vertex->Pos.rotateXZBy(180); else if (facedir == 3) vertex->Pos.rotateXZBy(-90); break; default: break; } } } } void recalculateBoundingBox(scene::IMesh *src_mesh) { aabb3f bbox; bbox.reset(0,0,0); for (u16 j = 0; j < src_mesh->getMeshBufferCount(); j++) { scene::IMeshBuffer *buf = src_mesh->getMeshBuffer(j); buf->recalculateBoundingBox(); if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } src_mesh->setBoundingBox(bbox); } scene::IMesh* cloneMesh(scene::IMesh *src_mesh) { scene::SMesh* dst_mesh = new scene::SMesh(); for (u16 j = 0; j < src_mesh->getMeshBufferCount(); j++) { scene::IMeshBuffer *buf = src_mesh->getMeshBuffer(j); switch (buf->getVertexType()) { case video::EVT_STANDARD: { video::S3DVertex *v = (video::S3DVertex *) buf->getVertices(); u16 *indices = (u16*)buf->getIndices(); scene::SMeshBuffer *temp_buf = new scene::SMeshBuffer(); temp_buf->append(v, buf->getVertexCount(), indices, buf->getIndexCount()); dst_mesh->addMeshBuffer(temp_buf); temp_buf->drop(); break; } case video::EVT_2TCOORDS: { video::S3DVertex2TCoords *v = (video::S3DVertex2TCoords *) buf->getVertices(); u16 *indices = (u16*)buf->getIndices(); scene::SMeshBufferTangents *temp_buf = new scene::SMeshBufferTangents(); temp_buf->append(v, buf->getVertexCount(), indices, buf->getIndexCount()); dst_mesh->addMeshBuffer(temp_buf); temp_buf->drop(); break; } case video::EVT_TANGENTS: { video::S3DVertexTangents *v = (video::S3DVertexTangents *) buf->getVertices(); u16 *indices = (u16*)buf->getIndices(); scene::SMeshBufferTangents *temp_buf = new scene::SMeshBufferTangents(); temp_buf->append(v, buf->getVertexCount(), indices, buf->getIndexCount()); dst_mesh->addMeshBuffer(temp_buf); temp_buf->drop(); break; } } } return dst_mesh; } scene::IMesh* convertNodeboxesToMesh(const std::vector<aabb3f> &boxes, const f32 *uv_coords, float expand) { scene::SMesh* dst_mesh = new scene::SMesh(); for (u16 j = 0; j < 6; j++) { scene::IMeshBuffer *buf = new scene::SMeshBuffer(); buf->getMaterial().setFlag(video::EMF_LIGHTING, false); buf->getMaterial().setFlag(video::EMF_BILINEAR_FILTER, false); dst_mesh->addMeshBuffer(buf); buf->drop(); } video::SColor c(255,255,255,255); for (std::vector<aabb3f>::const_iterator i = boxes.begin(); i != boxes.end(); ++i) { aabb3f box = *i; box.repair(); box.MinEdge.X -= expand; box.MinEdge.Y -= expand; box.MinEdge.Z -= expand; box.MaxEdge.X += expand; box.MaxEdge.Y += expand; box.MaxEdge.Z += expand; // Compute texture UV coords f32 tx1 = (box.MinEdge.X / BS) + 0.5; f32 ty1 = (box.MinEdge.Y / BS) + 0.5; f32 tz1 = (box.MinEdge.Z / BS) + 0.5; f32 tx2 = (box.MaxEdge.X / BS) + 0.5; f32 ty2 = (box.MaxEdge.Y / BS) + 0.5; f32 tz2 = (box.MaxEdge.Z / BS) + 0.5; f32 txc_default[24] = { // up tx1, 1 - tz2, tx2, 1 - tz1, // down tx1, tz1, tx2, tz2, // right tz1, 1 - ty2, tz2, 1 - ty1, // left 1 - tz2, 1 - ty2, 1 - tz1, 1 - ty1, // back 1 - tx2, 1 - ty2, 1 - tx1, 1 - ty1, // front tx1, 1 - ty2, tx2, 1 - ty1, }; // use default texture UV mapping if not provided const f32 *txc = uv_coords ? uv_coords : txc_default; v3f min = box.MinEdge; v3f max = box.MaxEdge; video::S3DVertex vertices[24] = { // up video::S3DVertex(min.X,max.Y,max.Z, 0,1,0, c, txc[0],txc[1]), video::S3DVertex(max.X,max.Y,max.Z, 0,1,0, c, txc[2],txc[1]), video::S3DVertex(max.X,max.Y,min.Z, 0,1,0, c, txc[2],txc[3]), video::S3DVertex(min.X,max.Y,min.Z, 0,1,0, c, txc[0],txc[3]), // down video::S3DVertex(min.X,min.Y,min.Z, 0,-1,0, c, txc[4],txc[5]), video::S3DVertex(max.X,min.Y,min.Z, 0,-1,0, c, txc[6],txc[5]), video::S3DVertex(max.X,min.Y,max.Z, 0,-1,0, c, txc[6],txc[7]), video::S3DVertex(min.X,min.Y,max.Z, 0,-1,0, c, txc[4],txc[7]), // right video::S3DVertex(max.X,max.Y,min.Z, 1,0,0, c, txc[ 8],txc[9]), video::S3DVertex(max.X,max.Y,max.Z, 1,0,0, c, txc[10],txc[9]), video::S3DVertex(max.X,min.Y,max.Z, 1,0,0, c, txc[10],txc[11]), video::S3DVertex(max.X,min.Y,min.Z, 1,0,0, c, txc[ 8],txc[11]), // left video::S3DVertex(min.X,max.Y,max.Z, -1,0,0, c, txc[12],txc[13]), video::S3DVertex(min.X,max.Y,min.Z, -1,0,0, c, txc[14],txc[13]), video::S3DVertex(min.X,min.Y,min.Z, -1,0,0, c, txc[14],txc[15]), video::S3DVertex(min.X,min.Y,max.Z, -1,0,0, c, txc[12],txc[15]), // back video::S3DVertex(max.X,max.Y,max.Z, 0,0,1, c, txc[16],txc[17]), video::S3DVertex(min.X,max.Y,max.Z, 0,0,1, c, txc[18],txc[17]), video::S3DVertex(min.X,min.Y,max.Z, 0,0,1, c, txc[18],txc[19]), video::S3DVertex(max.X,min.Y,max.Z, 0,0,1, c, txc[16],txc[19]), // front video::S3DVertex(min.X,max.Y,min.Z, 0,0,-1, c, txc[20],txc[21]), video::S3DVertex(max.X,max.Y,min.Z, 0,0,-1, c, txc[22],txc[21]), video::S3DVertex(max.X,min.Y,min.Z, 0,0,-1, c, txc[22],txc[23]), video::S3DVertex(min.X,min.Y,min.Z, 0,0,-1, c, txc[20],txc[23]), }; u16 indices[] = {0,1,2,2,3,0}; for(u16 j = 0; j < 24; j += 4) { scene::IMeshBuffer *buf = dst_mesh->getMeshBuffer(j / 4); buf->append(vertices + j, 4, indices, 6); } } return dst_mesh; } struct vcache { core::array<u32> tris; float score; s16 cachepos; u16 NumActiveTris; }; struct tcache { u16 ind[3]; float score; bool drawn; }; const u16 cachesize = 32; float FindVertexScore(vcache *v) { const float CacheDecayPower = 1.5f; const float LastTriScore = 0.75f; const float ValenceBoostScale = 2.0f; const float ValenceBoostPower = 0.5f; const float MaxSizeVertexCache = 32.0f; if (v->NumActiveTris == 0) { // No tri needs this vertex! return -1.0f; } float Score = 0.0f; int CachePosition = v->cachepos; if (CachePosition < 0) { // Vertex is not in FIFO cache - no score. } else { if (CachePosition < 3) { // This vertex was used in the last triangle, // so it has a fixed score. Score = LastTriScore; } else { // Points for being high in the cache. const float Scaler = 1.0f / (MaxSizeVertexCache - 3); Score = 1.0f - (CachePosition - 3) * Scaler; Score = powf(Score, CacheDecayPower); } } // Bonus points for having a low number of tris still to // use the vert, so we get rid of lone verts quickly. float ValenceBoost = powf(v->NumActiveTris, -ValenceBoostPower); Score += ValenceBoostScale * ValenceBoost; return Score; } /* A specialized LRU cache for the Forsyth algorithm. */ class f_lru { public: f_lru(vcache *v, tcache *t): vc(v), tc(t) { for (u16 i = 0; i < cachesize; i++) { cache[i] = -1; } } // Adds this vertex index and returns the highest-scoring triangle index u32 add(u16 vert, bool updatetris = false) { bool found = false; // Mark existing pos as empty for (u16 i = 0; i < cachesize; i++) { if (cache[i] == vert) { // Move everything down for (u16 j = i; j; j--) { cache[j] = cache[j - 1]; } found = true; break; } } if (!found) { if (cache[cachesize-1] != -1) vc[cache[cachesize-1]].cachepos = -1; // Move everything down for (u16 i = cachesize - 1; i; i--) { cache[i] = cache[i - 1]; } } cache[0] = vert; u32 highest = 0; float hiscore = 0; if (updatetris) { // Update cache positions for (u16 i = 0; i < cachesize; i++) { if (cache[i] == -1) break; vc[cache[i]].cachepos = i; vc[cache[i]].score = FindVertexScore(&vc[cache[i]]); } // Update triangle scores for (u16 i = 0; i < cachesize; i++) { if (cache[i] == -1) break; const u16 trisize = vc[cache[i]].tris.size(); for (u16 t = 0; t < trisize; t++) { tcache *tri = &tc[vc[cache[i]].tris[t]]; tri->score = vc[tri->ind[0]].score + vc[tri->ind[1]].score + vc[tri->ind[2]].score; if (tri->score > hiscore) { hiscore = tri->score; highest = vc[cache[i]].tris[t]; } } } } return highest; } private: s32 cache[cachesize]; vcache *vc; tcache *tc; }; /** Vertex cache optimization according to the Forsyth paper: http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html The function is thread-safe (read: you can optimize several meshes in different threads) \param mesh Source mesh for the operation. */ scene::IMesh* createForsythOptimizedMesh(const scene::IMesh *mesh) { if (!mesh) return 0; scene::SMesh *newmesh = new scene::SMesh(); newmesh->BoundingBox = mesh->getBoundingBox(); const u32 mbcount = mesh->getMeshBufferCount(); for (u32 b = 0; b < mbcount; ++b) { const scene::IMeshBuffer *mb = mesh->getMeshBuffer(b); if (mb->getIndexType() != video::EIT_16BIT) { //os::Printer::log("Cannot optimize a mesh with 32bit indices", ELL_ERROR); newmesh->drop(); return 0; } const u32 icount = mb->getIndexCount(); const u32 tcount = icount / 3; const u32 vcount = mb->getVertexCount(); const u16 *ind = mb->getIndices(); vcache *vc = new vcache[vcount]; tcache *tc = new tcache[tcount]; f_lru lru(vc, tc); // init for (u16 i = 0; i < vcount; i++) { vc[i].score = 0; vc[i].cachepos = -1; vc[i].NumActiveTris = 0; } // First pass: count how many times a vert is used for (u32 i = 0; i < icount; i += 3) { vc[ind[i]].NumActiveTris++; vc[ind[i + 1]].NumActiveTris++; vc[ind[i + 2]].NumActiveTris++; const u32 tri_ind = i/3; tc[tri_ind].ind[0] = ind[i]; tc[tri_ind].ind[1] = ind[i + 1]; tc[tri_ind].ind[2] = ind[i + 2]; } // Second pass: list of each triangle for (u32 i = 0; i < tcount; i++) { vc[tc[i].ind[0]].tris.push_back(i); vc[tc[i].ind[1]].tris.push_back(i); vc[tc[i].ind[2]].tris.push_back(i); tc[i].drawn = false; } // Give initial scores for (u16 i = 0; i < vcount; i++) { vc[i].score = FindVertexScore(&vc[i]); } for (u32 i = 0; i < tcount; i++) { tc[i].score = vc[tc[i].ind[0]].score + vc[tc[i].ind[1]].score + vc[tc[i].ind[2]].score; } switch(mb->getVertexType()) { case video::EVT_STANDARD: { video::S3DVertex *v = (video::S3DVertex *) mb->getVertices(); scene::SMeshBuffer *buf = new scene::SMeshBuffer(); buf->Material = mb->getMaterial(); buf->Vertices.reallocate(vcount); buf->Indices.reallocate(icount); core::map<const video::S3DVertex, const u16> sind; // search index for fast operation typedef core::map<const video::S3DVertex, const u16>::Node snode; // Main algorithm