1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <fstream>
#include "environment.h"
#include "collision.h"
#include "raycast.h"
#include "serverobject.h"
#include "scripting_server.h"
#include "server.h"
#include "daynightratio.h"
#include "emerge.h"
Environment::Environment(IGameDef *gamedef):
m_time_of_day_speed(0.0f),
m_day_count(0),
m_gamedef(gamedef)
{
m_cache_enable_shaders = g_settings->getBool("enable_shaders");
m_cache_active_block_mgmt_interval = g_settings->getFloat("active_block_mgmt_interval");
m_cache_abm_interval = g_settings->getFloat("abm_interval");
m_cache_nodetimer_interval = g_settings->getFloat("nodetimer_interval");
m_time_of_day = g_settings->getU32("world_start_time");
m_time_of_day_f = (float)m_time_of_day / 24000.0f;
}
u32 Environment::getDayNightRatio()
{
MutexAutoLock lock(this->m_time_lock);
if (m_enable_day_night_ratio_override)
return m_day_night_ratio_override;
return time_to_daynight_ratio(m_time_of_day_f * 24000, m_cache_enable_shaders);
}
void Environment::setTimeOfDaySpeed(float speed)
{
m_time_of_day_speed = speed;
}
void Environment::setDayNightRatioOverride(bool enable, u32 value)
{
MutexAutoLock lock(this->m_time_lock);
m_enable_day_night_ratio_override = enable;
m_day_night_ratio_override = value;
}
void Environment::setTimeOfDay(u32 time)
{
MutexAutoLock lock(this->m_time_lock);
if (m_time_of_day > time)
++m_day_count;
m_time_of_day = time;
m_time_of_day_f = (float)time / 24000.0;
}
u32 Environment::getTimeOfDay()
{
MutexAutoLock lock(this->m_time_lock);
return m_time_of_day;
}
float Environment::getTimeOfDayF()
{
MutexAutoLock lock(this->m_time_lock);
return m_time_of_day_f;
}
/*
Check if a node is pointable
*/
inline static bool isPointableNode(const MapNode &n,
const NodeDefManager *nodedef , bool liquids_pointable)
{
const ContentFeatures &features = nodedef->get(n);
return features.pointable ||
(liquids_pointable && features.isLiquid());
}
void Environment::continueRaycast(RaycastState *state, PointedThing *result)
{
const NodeDefManager *nodedef = getMap().getNodeDefManager();
if (state->m_initialization_needed) {
// Add objects
if (state->m_objects_pointable) {
std::vector<PointedThing> found;
getSelectedActiveObjects(state->m_shootline, found);
for (const PointedThing &pointed : found) {
state->m_found.push(pointed);
}
}
// Set search range
core::aabbox3d<s16> maximal_exceed = nodedef->getSelectionBoxIntUnion();
state->m_search_range.MinEdge = -maximal_exceed.MaxEdge;
state->m_search_range.MaxEdge = -maximal_exceed.MinEdge;
// Setting is done
state->m_initialization_needed = false;
}
// The index of the first pointed thing that was not returned
// before. The last index which needs to be tested.
s16 lastIndex = state->m_iterator.m_last_index;
if (!state->m_found.empty()) {
lastIndex = state->m_iterator.getIndex(
floatToInt(state->m_found.top().intersection_point, BS));
}
Map &map = getMap();
// If a node is found, this is the center of the
// first nodebox the shootline meets.
v3f found_boxcenter(0, 0, 0);
// The untested nodes are in this range.
core::aabbox3d<s16> new_nodes;
while (state->m_iterator.m_current_index <= lastIndex) {
// Test the nodes around the current node in search_range.
new_nodes = state->m_search_range;
new_nodes.MinEdge += state->m_iterator.m_current_node_pos;
new_nodes.MaxEdge += state->m_iterator.m_current_node_pos;
// Only check new nodes
v3s16 delta = state->m_iterator.m_current_node_pos
- state->m_previous_node;
if (delta.X > 0) {
new_nodes.MinEdge.X = new_nodes.MaxEdge.X;
} else if (delta.X < 0) {
new_nodes.MaxEdge.X = new_nodes.MinEdge.X;
} else if (delta.Y > 0) {
new_nodes.MinEdge.Y = new_nodes.MaxEdge.Y;
} else if (delta.Y < 0) {
new_nodes.MaxEdge.Y = new_nodes.MinEdge.Y;
} else if (delta.Z > 0) {
new_nodes.MinEdge.Z = new_nodes.MaxEdge.Z;
} else if (delta.Z < 0) {
new_nodes.MaxEdge.Z = new_nodes.MinEdge.Z;
}
// For each untested node
for (s16 x = new_nodes.MinEdge.X; x <= new_nodes.MaxEdge.X; x++)
for (s16 y = new_nodes.MinEdge.Y; y <= new_nodes.MaxEdge.Y; y++)
for (s16 z = new_nodes.MinEdge.Z; z <= new_nodes.MaxEdge.Z; z++) {
MapNode n;
v3s16 np(x, y, z);
bool is_valid_position;
n = map.getNode(np, &is_valid_position);
if (!(is_valid_position && isPointableNode(n, nodedef,
state->m_liquids_pointable))) {
continue;
}
PointedThing result;
std::vector<aabb3f> boxes;
n.getSelectionBoxes(nodedef, &boxes,
n.getNeighbors(np, &map));
// Is there a collision with a selection box?
bool is_colliding = false;
// Minimal distance of all collisions
float min_distance_sq = 10000000;
// ID of the current box (loop counter)
u16 id = 0;
v3f npf = intToFloat(np, BS);
// This loop translates the boxes to their in-world place.
for (aabb3f &box : boxes) {
box.MinEdge += npf;
box.MaxEdge += npf;
v3f intersection_point;
v3s16 intersection_normal;
if (!boxLineCollision(box, state->m_shootline.start,
state->m_shootline.getVector(), &intersection_point,
&intersection_normal)) {
++id;
continue;
}
f32 distanceSq = (intersection_point
- state->m_shootline.start).getLengthSQ();
// If this is the nearest collision, save it
if (min_distance_sq > distanceSq) {
min_distance_sq = distanceSq;
result.intersection_point = intersection_point;
result.intersection_normal = intersection_normal;
result.box_id = id;
found_boxcenter = box.getCenter();
is_colliding = true;
}
++id;
}
// If there wasn't a collision, stop
if (!is_colliding) {
continue;
}
result.type = POINTEDTHING_NODE;
result.node_undersurface = np;
result.distanceSq = min_distance_sq;
// Set undersurface and abovesurface nodes
f32 d = 0.002 * BS;
v3f fake_intersection = result.intersection_point;
// Move intersection towards its source block.
if (fake_intersection.X < found_boxcenter.X) {
fake_intersection.X += d;
} else {
fake_intersection.X -= d;
}
if (fake_intersection.Y < found_boxcenter.Y) {
fake_intersection.Y += d;
} else {
fake_intersection.Y -= d;
}
if (fake_intersection.Z < found_boxcenter.Z) {
fake_intersection.Z += d;
} else {
fake_intersection.Z -= d;
}
result.node_real_undersurface = floatToInt(
fake_intersection, BS);
result.node_abovesurface = result.node_real_undersurface
+ result.intersection_normal;
// Push found PointedThing
state->m_found.push(result);
// If this is nearer than the old nearest object,
// the search can be shorter
s16 newIndex = state->m_iterator.getIndex(
result.node_real_undersurface);
if (newIndex < lastIndex) {
lastIndex = newIndex;
}
}
// Next node
state->m_previous_node = state->m_iterator.m_current_node_pos;
state->m_iterator.next();
}
// Return empty PointedThing if nothing left on the ray
if (state->m_found.empty()) {
result->type = POINTEDTHING_NOTHING;
} else {
*result = state->m_found.top();
state->m_found.pop();
}
}
void Environment::stepTimeOfDay(float dtime)
{
MutexAutoLock lock(this->m_time_lock);
// Cached in order to prevent the two reads we do to give
// different results (can be written by code not under the lock)
f32 cached_time_of_day_speed = m_time_of_day_speed;
f32 speed = cached_time_of_day_speed * 24000. / (24. * 3600);
m_time_conversion_skew += dtime;
u32 units = (u32)(m_time_conversion_skew * speed);
bool sync_f = false;
if (units > 0) {
// Sync at overflow
if (m_time_of_day + units >= 24000) {
sync_f = true;
++m_day_count;
}
m_time_of_day = (m_time_of_day + units) % 24000;
if (sync_f)
m_time_of_day_f = (float)m_time_of_day / 24000.0;
}
if (speed > 0) {
m_time_conversion_skew -= (f32)units / speed;
}
if (!sync_f) {
m_time_of_day_f += cached_time_of_day_speed / 24 / 3600 * dtime;
if (m_time_of_day_f > 1.0)
m_time_of_day_f -= 1.0;
if (m_time_of_day_f < 0.0)
m_time_of_day_f += 1.0;
}
}
u32 Environment::getDayCount()
{
// Atomic<u32> counter
return m_day_count;
}
|