aboutsummaryrefslogtreecommitdiff
path: root/src/mg_schematic.cpp
blob: 92e138df4ba4a5f8eb4353f2c27c17e6c9ea446f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
generated by cgit v1.2.3 (git 2.39.1) at 2024-11-19 01:52:31 +0000
 


/span> emerge->decomgr;
	for (size_t i = 0; i != decomgr->getNumObjects(); i++) {
		Decoration *deco = (Decoration *)decomgr->getRaw(i);

		try {
			DecoSchematic *dschem = dynamic_cast<DecoSchematic *>(deco);
			if (dschem)
				dschem->schematic = NULL;
		} catch (std::bad_cast) {
		}
	}

	ObjDefManager::clear();
}


///////////////////////////////////////////////////////////////////////////////


Schematic::Schematic()
{
	schemdata   = NULL;
	slice_probs = NULL;
	flags       = 0;
	size        = v3s16(0, 0, 0);
}


Schematic::~Schematic()
{
	delete []schemdata;
	delete []slice_probs;
}


void Schematic::resolveNodeNames()
{
	getIdsFromNrBacklog(&c_nodes, true, CONTENT_AIR);

	size_t bufsize = size.X * size.Y * size.Z;
	for (size_t i = 0; i != bufsize; i++) {
		content_t c_original = schemdata[i].getContent();
		content_t c_new = c_nodes[c_original];
		schemdata[i].setContent(c_new);
	}
}


void Schematic::blitToVManip(MMVManip *vm, v3s16 p, Rotation rot, bool force_place)
{
	sanity_check(m_ndef != NULL);

	int xstride = 1;
	int ystride = size.X;
	int zstride = size.X * size.Y;

	s16 sx = size.X;
	s16 sy = size.Y;
	s16 sz = size.Z;

	int i_start, i_step_x, i_step_z;
	switch (rot) {
		case ROTATE_90:
			i_start  = sx - 1;
			i_step_x = zstride;
			i_step_z = -xstride;
			SWAP(s16, sx, sz);
			break;
		case ROTATE_180:
			i_start  = zstride * (sz - 1) + sx - 1;
			i_step_x = -xstride;
			i_step_z = -zstride;
			break;
		case ROTATE_270:
			i_start  = zstride * (sz - 1);
			i_step_x = -zstride;
			i_step_z = xstride;
			SWAP(s16, sx, sz);
			break;
		default:
			i_start  = 0;
			i_step_x = xstride;
			i_step_z = zstride;
	}

	s16 y_map = p.Y;
	for (s16 y = 0; y != sy; y++) {
		if ((slice_probs[y] != MTSCHEM_PROB_ALWAYS) &&
			(slice_probs[y] <= myrand_range(1, MTSCHEM_PROB_ALWAYS)))
			continue;

		for (s16 z = 0; z != sz; z++) {
			u32 i = z * i_step_z + y * ystride + i_start;
			for (s16 x = 0; x != sx; x++, i += i_step_x) {
				u32 vi = vm->m_area.index(p.X + x, y_map, p.Z + z);
				if (!vm->m_area.contains(vi))
					continue;

				if (schemdata[i].getContent() == CONTENT_IGNORE)
					continue;

				u8 placement_prob     = schemdata[i].param1 & MTSCHEM_PROB_MASK;
				bool force_place_node = schemdata[i].param1 & MTSCHEM_FORCE_PLACE;

				if (placement_prob == MTSCHEM_PROB_NEVER)
					continue;

				if (!force_place && !force_place_node) {
					content_t c = vm->m_data[vi].getContent();
					if (c != CONTENT_AIR && c != CONTENT_IGNORE)
						continue;
				}

				if ((placement_prob != MTSCHEM_PROB_ALWAYS) &&
					(placement_prob <= myrand_range(1, MTSCHEM_PROB_ALWAYS)))
					continue;

				vm->m_data[vi] = schemdata[i];
				vm->m_data[vi].param1 = 0;

				if (rot)
					vm->m_data[vi].rotateAlongYAxis(m_ndef, rot);
			}
		}
		y_map++;
	}
}


bool Schematic::placeOnVManip(MMVManip *vm, v3s16 p, u32 flags,
	Rotation rot, bool force_place)
{
	assert(vm != NULL);
	assert(schemdata != NULL);
	sanity_check(m_ndef != NULL);

	//// Determine effective rotation and effective schematic dimensions
	if (rot == ROTATE_RAND)
		rot = (Rotation)myrand_range(ROTATE_0, ROTATE_270);

	v3s16 s = (rot == ROTATE_90 || rot == ROTATE_270) ?
		v3s16(size.Z, size.Y, size.X) : size;

	//// Adjust placement position if necessary
	if (flags & DECO_PLACE_CENTER_X)
		p.X -= (s.X + 1) / 2;
	if (flags & DECO_PLACE_CENTER_Y)
		p.Y -= (s.Y + 1) / 2;
	if (flags & DECO_PLACE_CENTER_Z)
		p.Z -= (s.Z + 1) / 2;

	blitToVManip(vm, p, rot, force_place);

	return vm->m_area.contains(VoxelArea(p, p + s - v3s16(1,1,1)));
}

void Schematic::placeOnMap(ServerMap *map, v3s16 p, u32 flags,
	Rotation rot, bool force_place)
{
	std::map<v3s16, MapBlock *> lighting_modified_blocks;
	std::map<v3s16, MapBlock *> modified_blocks;
	std::map<v3s16, MapBlock *>::iterator it;

	assert(map != NULL);
	assert(schemdata != NULL);
	sanity_check(m_ndef != NULL);

	//// Determine effective rotation and effective schematic dimensions
	if (rot == ROTATE_RAND)
		rot = (Rotation)myrand_range(ROTATE_0, ROTATE_270);

	v3s16 s = (rot == ROTATE_90 || rot == ROTATE_270) ?
			v3s16(size.Z, size.Y, size.X) : size;

	//// Adjust placement position if necessary
	if (flags & DECO_PLACE_CENTER_X)
		p.X -= (s.X + 1) / 2;
	if (flags & DECO_PLACE_CENTER_Y)
		p.Y -= (s.Y + 1) / 2;
	if (flags & DECO_PLACE_CENTER_Z)
		p.Z -= (s.Z + 1) / 2;

	//// Create VManip for effected area, emerge our area, modify area
	//// inside VManip, then blit back.
	v3s16 bp1 = getNodeBlockPos(p);
	v3s16 bp2 = getNodeBlockPos(p + s - v3s16(1,1,1));

	MMVManip vm(map);
	vm.initialEmerge(bp1, bp2);

	blitToVManip(&vm, p, rot, force_place);

	voxalgo::blit_back_with_light(map, &vm, &modified_blocks);

	//// Carry out post-map-modification actions

	//// Create & dispatch map modification events to observers
	MapEditEvent event;
	event.type = MEET_OTHER;
	for (it = modified_blocks.begin(); it != modified_blocks.end(); ++it)
		event.modified_blocks.insert(it->first);

	map->dispatchEvent(&event);
}


bool Schematic::deserializeFromMts(std::istream *is,
	std::vector<std::string> *names)
{
	std::istream &ss = *is;
	content_t cignore = CONTENT_IGNORE;
	bool have_cignore = false;

	//// Read signature
	u32 signature = readU32(ss);
	if (signature != MTSCHEM_FILE_SIGNATURE) {
		errorstream << __FUNCTION__ << ": invalid schematic "
			"file" << std::endl;
		return false;
	}

	//// Read version
	u16 version = readU16(ss);
	if (version > MTSCHEM_FILE_VER_HIGHEST_READ) {
		errorstream << __FUNCTION__ << ": unsupported schematic "
			"file version" << std::endl;
		return false;
	}

	//// Read size
	size = readV3S16(ss);

	//// Read Y-slice probability values
	delete []slice_probs;
	slice_probs = new u8[size.Y];
	for (int y = 0; y != size.Y; y++)
		slice_probs[y] = (version >= 3) ? readU8(ss) : MTSCHEM_PROB_ALWAYS_OLD;

	//// Read node names
	u16 nidmapcount = readU16(ss);
	for (int i = 0; i != nidmapcount; i++) {
		std::string name = deSerializeString(ss);

		// Instances of "ignore" from v1 are converted to air (and instances
		// are fixed to have MTSCHEM_PROB_NEVER later on).
		if (name == "ignore") {
			name = "air";
			cignore = i;
			have_cignore = true;
		}

		names->push_back(name);
	}

	//// Read node data
	size_t nodecount = size.X * size.Y * size.Z;

	delete []schemdata;
	schemdata = new MapNode[nodecount];

	MapNode::deSerializeBulk(ss, SER_FMT_VER_HIGHEST_READ, schemdata,
		nodecount, 2, 2, true);

	// Fix probability values for nodes that were ignore; removed in v2
	if (version < 2) {
		for (size_t i = 0; i != nodecount; i++) {
			if (schemdata[i].param1 == 0)
				schemdata[i].param1 = MTSCHEM_PROB_ALWAYS_OLD;
			if (have_cignore && schemdata[i].getContent() == cignore)
				schemdata[i].param1 = MTSCHEM_PROB_NEVER;
		}
	}

	// Fix probability values for probability range truncation introduced in v4
	if (version < 4) {
		for (s16 y = 0; y != size.Y; y++)
			slice_probs[y] >>= 1;
		for (size_t i = 0; i != nodecount; i++)
			schemdata[i].param1 >>= 1;
	}

	return true;
}


bool Schematic::serializeToMts(std::ostream *os,
	const std::vector<std::string> &names)
{
	std::ostream &ss = *os;

	writeU32(ss, MTSCHEM_FILE_SIGNATURE);         // signature
	writeU16(ss, MTSCHEM_FILE_VER_HIGHEST_WRITE); // version
	writeV3S16(ss, size);                         // schematic size

	for (int y = 0; y != size.Y; y++)             // Y slice probabilities
		writeU8(ss, slice_probs[y]);

	writeU16(ss, names.size()); // name count
	for (size_t i = 0; i != names.size(); i++)
		ss << serializeString(names[i]); // node names

	// compressed bulk node data
	MapNode::serializeBulk(ss, SER_FMT_VER_HIGHEST_WRITE,
		schemdata, size.X * size.Y * size.Z, 2, 2, true);

	return true;
}


bool Schematic::serializeToLua(std::ostream *os,
	const std::vector<std::string> &names, bool use_comments, u32 indent_spaces)
{
	std::ostream &ss = *os;

	std::string indent("\t");
	if (indent_spaces > 0)
		indent.assign(indent_spaces, ' ');

	//// Write header
	{
		ss << "schematic = {" << std::endl;
		ss << indent << "size = "
			<< "{x=" << size.X
			<< ", y=" << size.Y
			<< ", z=" << size.Z
			<< "}," << std::endl;
	}

	//// Write y-slice probabilities
	{
		ss << indent << "yslice_prob = {" << std::endl;

		for (u16 y = 0; y != size.Y; y++) {
			u8 probability = slice_probs[y] & MTSCHEM_PROB_MASK;

			ss << indent << indent << "{"
				<< "ypos=" << y
				<< ", prob=" << (u16)probability * 2
				<< "}," << std::endl;
		}

		ss << indent << "}," << std::endl;
	}

	//// Write node data
	{
		ss << indent << "data = {" << std::endl;

		u32 i = 0;
		for (u16 z = 0; z != size.Z; z++)
		for (u16 y = 0; y != size.Y; y++) {
			if (use_comments) {
				ss << std::endl
					<< indent << indent
					<< "-- z=" << z
					<< ", y=" << y << std::endl;
			}

			for (u16 x = 0; x != size.X; x++, i++) {
				u8 probability   = schemdata[i].param1 & MTSCHEM_PROB_MASK;
				bool force_place = schemdata[i].param1 & MTSCHEM_FORCE_PLACE;

				ss << indent << indent << "{"
					<< "name=\"" << names[schemdata[i].getContent()]
					<< "\", prob=" << (u16)probability * 2
					<< ", param2=" << (u16)schemdata[i].param2;

				if (force_place)
					ss << ", force_place=true";

				ss << "}," << std::endl;
			}
		}

		ss << indent << "}," << std::endl;
	}

	ss << "}" << std::endl;

	return true;
}


bool Schematic::loadSchematicFromFile(const std::string &filename,
	INodeDefManager *ndef, StringMap *replace_names)
{
	std::ifstream is(filename.c_str(), std::ios_base::binary);
	if (!is.good()) {
		errorstream << __FUNCTION__ << ": unable to open file '"
			<< filename << "'" << std::endl;
		return false;
	}

	size_t origsize = m_nodenames.size();
	if (!deserializeFromMts(&is, &m_nodenames))
		return false;

	m_nnlistsizes.push_back(m_nodenames.size() - origsize);

	name = filename;

	if (replace_names) {
		for (size_t i = origsize; i < m_nodenames.size(); i++) {
			std::string &node_name = m_nodenames[i];
			StringMap::iterator it = replace_names->find(node_name);
			if (it != replace_names->end())
				node_name = it->second;
		}
	}

	if (ndef)
		ndef->pendNodeResolve(this);

	return true;
}


bool Schematic::saveSchematicToFile(const std::string &filename,
	INodeDefManager *ndef)
{
	MapNode *orig_schemdata = schemdata;
	std::vector<std::string> ndef_nodenames;
	std::vector<std::string> *names;

	if (m_resolve_done && ndef == NULL)
		ndef = m_ndef;

	if (ndef) {
		names = &ndef_nodenames;

		u32 volume = size.X * size.Y * size.Z;
		schemdata = new MapNode[volume];
		for (u32 i = 0; i != volume; i++)
			schemdata[i] = orig_schemdata[i];

		generate_nodelist_and_update_ids(schemdata, volume, names, ndef);
	} else { // otherwise, use the names we have on hand in the list
		names = &m_nodenames;
	}

	std::ostringstream os(std::ios_base::binary);
	bool status = serializeToMts(&os, *names);

	if (ndef) {
		delete []schemdata;
		schemdata = orig_schemdata;
	}

	if (!status)
		return false;

	return fs::safeWriteToFile(filename, os.str());
}


bool Schematic::getSchematicFromMap(Map *map, v3s16 p1, v3s16 p2)
{
	MMVManip *vm = new MMVManip(map);

	v3s16 bp1 = getNodeBlockPos(p1);
	v3s16 bp2 = getNodeBlockPos(p2);
	vm->initialEmerge(bp1, bp2);

	size = p2 - p1 + 1;

	slice_probs = new u8[size.Y];
	for (s16 y = 0; y != size.Y; y++)
		slice_probs[y] = MTSCHEM_PROB_ALWAYS;

	schemdata = new MapNode[size.X * size.Y * size.Z];

	u32 i = 0;
	for (s16 z = p1.Z; z <= p2.Z; z++)
	for (s16 y = p1.Y; y <= p2.Y; y++) {
		u32 vi = vm->m_area.index(p1.X, y, z);
		for (s16 x = p1.X; x <= p2.X; x++, i++, vi++) {
			schemdata[i] = vm->m_data[vi];
			schemdata[i].param1 = MTSCHEM_PROB_ALWAYS;
		}
	}

	delete vm;
	return true;
}


void Schematic::applyProbabilities(v3s16 p0,
	std::vector<std::pair<v3s16, u8> > *plist,
	std::vector<std::pair<s16, u8> > *splist)
{
	for (size_t i = 0; i != plist->size(); i++) {
		v3s16 p = (*plist)[i].first - p0;
		int index = p.Z * (size.Y * size.X) + p.Y * size.X + p.X;
		if (index < size.Z * size.Y * size.X) {
			u8 prob = (*plist)[i].second;
			schemdata[index].param1 = prob;

			// trim unnecessary node names from schematic
			if (prob == MTSCHEM_PROB_NEVER)
				schemdata[index].setContent(CONTENT_AIR);
		}
	}

	for (size_t i = 0; i != splist->size(); i++) {
		s16 y = (*splist)[i].first - p0.Y;
		slice_probs[y] = (*splist)[i].second;
	}
}


void generate_nodelist_and_update_ids(MapNode *nodes, size_t nodecount,
	std::vector<std::string> *usednodes, INodeDefManager *ndef)
{
	UNORDERED_MAP<content_t, content_t> nodeidmap;
	content_t numids = 0;

	for (size_t i = 0; i != nodecount; i++) {
		content_t id;
		content_t c = nodes[i].getContent();

		UNORDERED_MAP<content_t, content_t>::const_iterator it = nodeidmap.find(c);
		if (it == nodeidmap.end()) {
			id = numids;
			numids++;

			usednodes->push_back(ndef->get(c).name);
			nodeidmap.insert(std::make_pair(c, id));
		} else {
			id = it->second;
		}
		nodes[i].setContent(id);
	}
}