aboutsummaryrefslogtreecommitdiff
path: root/src/minimap.cpp
blob: a6eff0680f2255a79cd0dbe80d0354019404d517 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
Minetest
Copyright (C) 2010-2015 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "minimap.h"
#include "threading/mutex_auto_lock.h"
#include "threading/semaphore.h"
#include "clientmap.h"
#include "settings.h"
#include "nodedef.h"
#include "porting.h"
#include "util/numeric.h"
#include "util/string.h"
#include <math.h>


////
//// MinimapUpdateThread
////

MinimapUpdateThread::~MinimapUpdateThread()
{
	for (std::map<v3s16, MinimapMapblock *>::iterator
			it = m_blocks_cache.begin();
			it != m_blocks_cache.end(); ++it) {
		delete it->second;
	}

	for (std::deque<QueuedMinimapUpdate>::iterator
			it = m_update_queue.begin();
			it != m_update_queue.end(); ++it) {
		QueuedMinimapUpdate &q = *it;
		delete q.data;
	}
}

bool MinimapUpdateThread::pushBlockUpdate(v3s16 pos, MinimapMapblock *data)
{
	MutexAutoLock lock(m_queue_mutex);

	// Find if block is already in queue.
	// If it is, update the data and quit.
	for (std::deque<QueuedMinimapUpdate>::iterator
			it = m_update_queue.begin();
			it != m_update_queue.end(); ++it) {
		QueuedMinimapUpdate &q = *it;
		if (q.pos == pos) {
			delete q.data;
			q.data = data;
			return false;
		}
	}

	// Add the block
	QueuedMinimapUpdate q;
	q.pos  = pos;
	q.data = data;
	m_update_queue.push_back(q);

	return true;
}

bool MinimapUpdateThread::popBlockUpdate(QueuedMinimapUpdate *update)
{
	MutexAutoLock lock(m_queue_mutex);

	if (m_update_queue.empty())
		return false;

	*update = m_update_queue.front();
	m_update_queue.pop_front();

	return true;
}

void MinimapUpdateThread::enqueueBlock(v3s16 pos, MinimapMapblock *data)
{
	pushBlockUpdate(pos, data);
	deferUpdate();
}


void MinimapUpdateThread::doUpdate()
{
	QueuedMinimapUpdate update;

	while (popBlockUpdate(&update)) {
		if (update.data) {
			// Swap two values in the map using single lookup
			std::pair<std::map<v3s16, MinimapMapblock*>::iterator, bool>
			    result = m_blocks_cache.insert(std::make_pair(update.pos, update.data));
			if (result.second == false) {
				delete result.first->second;
				result.first->second = update.data;
			}
		} else {
			std::map<v3s16, MinimapMapblock *>::iterator it;
			it = m_blocks_cache.find(update.pos);
			if (it != m_blocks_cache.end()) {
				delete it->second;
				m_blocks_cache.erase(it);
			}
		}
	}

	if (data->map_invalidated && data->mode != MINIMAP_MODE_OFF) {
		getMap(data->pos, data->map_size, data->scan_height, data->is_radar);
		data->map_invalidated = false;
	}
}

MinimapPixel *MinimapUpdateThread::getMinimapPixel(v3s16 pos,
	s16 scan_height, s16 *pixel_height)
{
	s16 height = scan_height - MAP_BLOCKSIZE;
	v3s16 blockpos_max, blockpos_min, relpos;

	getNodeBlockPosWithOffset(
		v3s16(pos.X, pos.Y - scan_height / 2, pos.Z),
		blockpos_min, relpos);
	getNodeBlockPosWithOffset(
		v3s16(pos.X, pos.Y + scan_height / 2, pos.Z),
		blockpos_max, relpos);

	for (s16 i = blockpos_max.Y; i > blockpos_min.Y - 1; i--) {
		std::map<v3s16, MinimapMapblock *>::iterator it =
			m_blocks_cache.find(v3s16(blockpos_max.X, i, blockpos_max.Z));
		if (it != m_blocks_cache.end()) {
			MinimapMapblock *mmblock = it->second;
			MinimapPixel *pixel = &mmblock->data[relpos.Z * MAP_BLOCKSIZE + relpos.X];
			if (pixel->id != CONTENT_AIR) {
				*pixel_height = height + pixel->height;
				return pixel;
			}
		}

		height -= MAP_BLOCKSIZE;
	}

	return NULL;
}

s16 MinimapUpdateThread::getAirCount(v3s16 pos, s16 height)
{
	s16 air_count = 0;
	v3s16 blockpos_max, blockpos_min, relpos;

	getNodeBlockPosWithOffset(
		v3s16(pos.X, pos.Y - height / 2, pos.Z),
		blockpos_min, relpos);
	getNodeBlockPosWithOffset(
		v3s16(pos.X, pos.Y + height / 2, pos.Z),
		blockpos_max, relpos);

	for (s16 i = blockpos_max.Y; i > blockpos_min.Y - 1; i--) {
		std::map<v3s16, MinimapMapblock *>::iterator it =
			m_blocks_cache.find(v3s16(blockpos_max.X, i, blockpos_max.Z));
		if (it != m_blocks_cache.end()) {
			MinimapMapblock *mmblock = it->second;
			MinimapPixel *pixel = &mmblock->data[relpos.Z * MAP_BLOCKSIZE + relpos.X];
			air_count += pixel->air_count;
		}
	}

	return air_count;
}

void MinimapUpdateThread::getMap(v3s16 pos, s16 size, s16 height, bool is_radar)
{
	v3s16 p = v3s16(pos.X - size / 2, pos.Y, pos.Z - size / 2);

	for (s16 x = 0; x < size; x++)
	for (s16 z = 0; z < size; z++) {
		u16 id = CONTENT_AIR;
		MinimapPixel *mmpixel = &data->minimap_scan[x + z * size];

		if (!is_radar) {
			s16 pixel_height = 0;
			MinimapPixel *cached_pixel =
				getMinimapPixel(v3s16(p.X + x, p.Y, p.Z + z), height, &pixel_height);
			if (cached_pixel) {
				id = cached_pixel->id;
				mmpixel->height = pixel_height;
			}
		} else {
			mmpixel->air_count = getAirCount(v3s16(p.X + x, p.Y, p.Z + z), height);
		}

		mmpixel->id = id;
	}
}

////
//// Mapper
////

Mapper::Mapper(IrrlichtDevice *device, Client *client)
{
	this->driver    = device->getVideoDriver();
	this->m_tsrc    = client->getTextureSource();
	this->m_shdrsrc = client->getShaderSource();
	this->m_ndef    = client->getNodeDefManager();

	// Initialize static settings
	m_enable_shaders = g_settings->getBool("enable_shaders");
	m_surface_mode_scan_height =
		g_settings->getBool("minimap_double_scan_height") ? 256 : 128;

	// Initialize minimap data
	data = new MinimapData;
	data->mode              = MINIMAP_MODE_OFF;
	data->is_radar          = false;
	data->map_invalidated   = true;
	data->heightmap_image   = NULL;
	data->minimap_image     = NULL;
	data->texture           = NULL;
	data->heightmap_texture = NULL;
	data->minimap_shape_round = g_settings->getBool("minimap_shape_round");

	// Get round minimap textures
	data->minimap_mask_round = driver->createImage(
		m_tsrc->getTexture("minimap_mask_round.png"),
		core::position2d<s32>(0, 0),
		core::dimension2d<u32>(MINIMAP_MAX_SX, MINIMAP_MAX_SY));
	data->minimap_overlay_round = m_tsrc->getTexture("minimap_overlay_round.png");

	// Get square minimap textures
	data->minimap_mask_square = driver->createImage(
		m_tsrc->getTexture("minimap_mask_square.png"),
		core::position2d<s32>(0, 0),
		core::dimension2d<u32>(MINIMAP_MAX_SX, MINIMAP_MAX_SY));
	data->minimap_overlay_square = m_tsrc->getTexture("minimap_overlay_square.png");

	// Create player marker texture
	data->player_marker = m_tsrc->getTexture("player_marker.png");

	// Create mesh buffer for minimap
	m_meshbuffer = getMinimapMeshBuffer();

	// Initialize and start thread
	m_minimap_update_thread = new MinimapUpdateThread();
	m_minimap_update_thread->data = data;
	m_minimap_update_thread->start();
}

Mapper::~Mapper()
{
	m_minimap_update_thread->stop();
	m_minimap_update_thread->wait();

	m_meshbuffer->drop();

	data->minimap_mask_round->drop();
	data->minimap_mask_square->drop();

	driver->removeTexture(data->texture);
	driver->removeTexture(data->heightmap_texture);
	driver->removeTexture(data->minimap_overlay_round);
	driver->removeTexture(data->minimap_overlay_square);

	delete data;
	delete m_minimap_update_thread;
}

void Mapper::addBlock(v3s16 pos, MinimapMapblock *data)
{
	m_minimap_update_thread->enqueueBlock(pos, data);
}

MinimapMode Mapper::getMinimapMode()
{
	return data->mode;
}

void Mapper::toggleMinimapShape()
{
	MutexAutoLock lock(m_mutex);

	data->minimap_shape_round = !data->minimap_shape_round;
	g_settings->setBool("minimap_shape_round", data->minimap_shape_round);
	m_minimap_update_thread->deferUpdate();
}

void Mapper::setMinimapMode(MinimapMode mode)
{
	static const MinimapModeDef modedefs[MINIMAP_MODE_COUNT] = {
		{false, 0, 0},
		{false, m_surface_mode_scan_height, 256},
		{false, m_surface_mode_scan_height, 128},
		{false, m_surface_mode_scan_height, 64},
		{true, 32, 128},
		{true, 32, 64},
		{true, 32, 32}
	};

	if (mode >= MINIMAP_MODE_COUNT)
		return;

	MutexAutoLock lock(m_mutex);

	data->is_radar    = modedefs[mode].is_radar;
	data->scan_height = modedefs[mode].scan_height;
	data->map_size    = modedefs[mode].map_size;
	data->mode        = mode;

	m_minimap_update_thread->deferUpdate();
}

void Mapper::setPos(v3s16 pos)
{
	bool do_update = false;

	{
		MutexAutoLock lock(m_mutex);

		if (pos != data->old_pos) {
			data->old_pos = data->pos;
			data->pos = pos;
			do_update = true;
		}
	}

	if (do_update)
		m_minimap_update_thread->deferUpdate();
}

void Mapper::setAngle(f32 angle)
{
	m_angle = angle;
}

void Mapper::blitMinimapPixelsToImageRadar(video::IImage *map_image)
{
	for (s16 x = 0; x < data->map_size; x++)
	for (s16 z = 0; z < data->map_size; z++) {
		MinimapPixel *mmpixel = &data->minimap_scan[x + z * data->map_size];

		video::SColor c(240, 0, 0, 0);
		if (mmpixel->air_count > 0)
			c.setGreen(core::clamp(core::round32(32 + mmpixel->air_count * 8), 0, 255));

		map_image->setPixel(x, data->map_size - z - 1, c);
	}
}

void Mapper::blitMinimapPixelsToImageSurface(
	video::IImage *map_image, video::IImage *heightmap_image)
{
	for (s16 x = 0; x < data->map_size; x++)
	for (s16 z = 0; z < data->map_size; z++) {
		MinimapPixel *mmpixel = &data->minimap_scan[x + z * data->map_size];

		video::SColor c = m_ndef->get(mmpixel->id).minimap_color;
		c.setAlpha(240);

		map_image->setPixel(x, data->map_size - z - 1, c);

		u32 h = mmpixel->height;
		heightmap_image->setPixel(x,data->map_size - z - 1,
			video::SColor(255, h, h, h));
	}
}

video::ITexture *Mapper::getMinimapTexture()
{
	// update minimap textures when new scan is ready
	if (data->map_invalidated)
		return data->texture;

	// create minimap and heightmap images in memory
	core::dimension2d<u32> dim(data->map_size, data->map_size);
	video::IImage *map_image       = driver->createImage(video::ECF_A8R8G8B8, dim);
	video::IImage *heightmap_image = driver->createImage(video::ECF_A8R8G8B8, dim);
	video::IImage *minimap_image   = driver->createImage(video::ECF_A8R8G8B8,
		core::dimension2d<u32>(MINIMAP_MAX_SX, MINIMAP_MAX_SY));

	// Blit MinimapPixels to images
	if (data->is_radar)
		blitMinimapPixelsToImageRadar(map_image);
	else
		blitMinimapPixelsToImageSurface(map_image, heightmap_image);

	map_image->copyToScaling(minimap_image);
	map_image->drop();

	video::IImage *minimap_mask = data->minimap_shape_round ?
		data->minimap_mask_round : data->minimap_mask_square;

	if (minimap_mask) {
		for (s16 y = 0; y < MINIMAP_MAX_SY; y++)
		for (s16 x = 0; x < MINIMAP_MAX_SX; x++) {
			video::SColor mask_col = minimap_mask->getPixel(x, y);
			if (!mask_col.getAlpha())
				minimap_image->setPixel(x, y, video::SColor(0,0,0,0));
		}
	}

	if (data->texture)
		driver->removeTexture(data->texture);
	if (data->heightmap_texture)
		driver->removeTexture(data->heightmap_texture);

	data->texture = driver->addTexture("minimap__", minimap_image);
	data->heightmap_texture =
		driver->addTexture("minimap_heightmap__", heightmap_image);
	minimap_image->drop();
	heightmap_image->drop();

	data->map_invalidated = true;

	return data->texture;
}

v3f Mapper::getYawVec()
{
	if (data->minimap_shape_round) {
		return v3f(
			cos(m_angle * core::DEGTORAD),
			sin(m_angle * core::DEGTORAD),
			1.0);
	} else {
		return v3f(1.0, 0.0, 1.0);
	}
}

scene::SMeshBuffer *Mapper::getMinimapMeshBuffer()
{
	scene::SMeshBuffer *buf = new scene::SMeshBuffer();
	buf->Vertices.set_used(4);
	buf->Indices.set_used(6);
	video::SColor c(255, 255, 255, 255);

	buf->Vertices[0] = video::S3DVertex(-1, -1, 0, 0, 0, 1, c, 0, 1);
	buf->Vertices[1] = video::S3DVertex(-1,  1, 0, 0, 0, 1, c, 0, 0);
	buf->Vertices[2] = video::S3DVertex( 1,  1, 0, 0, 0, 1, c, 1, 0);
	buf->Vertices[3] = video::S3DVertex( 1, -1, 0, 0, 0, 1, c, 1, 1);

	buf->Indices[0] = 0;
	buf->Indices[1] = 1;
	buf->Indices[2] = 2;
	buf->Indices[3] = 2;
	buf->Indices[4] = 3;
	buf->Indices[5] = 0;

	return buf;
}

void Mapper::drawMinimap()
{
	video::ITexture *minimap_texture = getMinimapTexture();
	if (!minimap_texture)
		return;

	v2u32 screensize = porting::getWindowSize();
	const u32 size = 0.25 * screensize.Y;

	core::rect<s32> oldViewPort = driver->getViewPort();
	core::matrix4 oldProjMat = driver->getTransform(video::ETS_PROJECTION);
	core::matrix4 oldViewMat = driver->getTransform(video::ETS_VIEW);

	driver->setViewPort(core::rect<s32>(
		screensize.X - size - 10, 10,
		screensize.X - 10, size + 10));
	driver->setTransform(video::ETS_PROJECTION, core::matrix4());
	driver->setTransform(video::ETS_VIEW, core::matrix4());

	core::matrix4 matrix;
	matrix.makeIdentity();

	video::SMaterial &material = m_meshbuffer->getMaterial();
	material.setFlag(video::EMF_TRILINEAR_FILTER, true);
	material.Lighting = false;
	material.TextureLayer[0].Texture = minimap_texture;
	material.TextureLayer[1].Texture = data->heightmap_texture;

	if (m_enable_shaders && !data->is_radar) {
		u16 sid = m_shdrsrc->getShader("minimap_shader", 1, 1);
		material.MaterialType = m_shdrsrc->getShaderInfo(sid).material;
	} else {
		material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL;
	}

	if (data->minimap_shape_round)
		matrix.setRotationDegrees(core::vector3df(0, 0, 360 - m_angle));

	// Draw minimap
	driver->setTransform(video::ETS_WORLD, matrix);
	driver->setMaterial(material);
	driver->drawMeshBuffer(m_meshbuffer);

	// Draw overlay
	video::ITexture *minimap_overlay = data->minimap_shape_round ?
		data->minimap_overlay_round : data->minimap_overlay_square;
	material.TextureLayer[0].Texture = minimap_overlay;
	material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL;
	driver->setMaterial(material);
	driver->drawMeshBuffer(m_meshbuffer);

	// If round minimap, draw player marker
	if (!data->minimap_shape_round) {
		matrix.setRotationDegrees(core::vector3df(0, 0, m_angle));
		material.TextureLayer[0].Texture = data->player_marker;

		driver->setTransform(video::ETS_WORLD, matrix);
		driver->setMaterial(material);
		driver->drawMeshBuffer(m_meshbuffer);
	}

	// Reset transformations
	driver->setTransform(video::ETS_VIEW, oldViewMat);
	driver->setTransform(video::ETS_PROJECTION, oldProjMat);
	driver->setViewPort(oldViewPort);
}

////
//// MinimapMapblock
////

void MinimapMapblock::getMinimapNodes(VoxelManipulator *vmanip, v3s16 pos)
{

	for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
	for (s16 z = 0; z < MAP_BLOCKSIZE; z++) {
		s16 air_count = 0;
		bool surface_found = false;
		MinimapPixel *mmpixel = &data[z * MAP_BLOCKSIZE + x];

		for (s16 y = MAP_BLOCKSIZE -1; y >= 0; y--) {
			v3s16 p(x, y, z);
			MapNode n = vmanip->getNodeNoEx(pos + p);
			if (!surface_found && n.getContent() != CONTENT_AIR) {
				mmpixel->height = y;
				mmpixel->id = n.getContent();
				surface_found = true;
			} else if (n.getContent() == CONTENT_AIR) {
				air_count++;
			}
		}

		if (!surface_found)
			mmpixel->id = CONTENT_AIR;

		mmpixel->air_count = air_count;
	}
}
pan>os, waving); // Stuff below should be moved to correct place in a version that otherwise changes // the protocol version os<<serializeString(mesh); collision_box.serialize(os, protocol_version); } void ContentFeatures::deSerialize(std::istream &is) { int version = readU8(is); if(version != 7){ deSerializeOld(is, version); return; } name = deSerializeString(is); groups.clear(); u32 groups_size = readU16(is); for(u32 i = 0; i < groups_size; i++){ std::string name = deSerializeString(is); int value = readS16(is); groups[name] = value; } drawtype = (enum NodeDrawType)readU8(is); visual_scale = readF1000(is); if(readU8(is) != 6) throw SerializationError("unsupported tile count"); for(u32 i = 0; i < 6; i++) tiledef[i].deSerialize(is); if(readU8(is) != CF_SPECIAL_COUNT) throw SerializationError("unsupported CF_SPECIAL_COUNT"); for(u32 i = 0; i < CF_SPECIAL_COUNT; i++) tiledef_special[i].deSerialize(is); alpha = readU8(is); post_effect_color.setAlpha(readU8(is)); post_effect_color.setRed(readU8(is)); post_effect_color.setGreen(readU8(is)); post_effect_color.setBlue(readU8(is)); param_type = (enum ContentParamType)readU8(is); param_type_2 = (enum ContentParamType2)readU8(is); is_ground_content = readU8(is); light_propagates = readU8(is); sunlight_propagates = readU8(is); walkable = readU8(is); pointable = readU8(is); diggable = readU8(is); climbable = readU8(is); buildable_to = readU8(is); deSerializeString(is); // legacy: used to be metadata_name liquid_type = (enum LiquidType)readU8(is); liquid_alternative_flowing = deSerializeString(is); liquid_alternative_source = deSerializeString(is); liquid_viscosity = readU8(is); liquid_renewable = readU8(is); light_source = readU8(is); damage_per_second = readU32(is); node_box.deSerialize(is); selection_box.deSerialize(is); legacy_facedir_simple = readU8(is); legacy_wallmounted = readU8(is); deSerializeSimpleSoundSpec(sound_footstep, is); deSerializeSimpleSoundSpec(sound_dig, is); deSerializeSimpleSoundSpec(sound_dug, is); rightclickable = readU8(is); drowning = readU8(is); leveled = readU8(is); liquid_range = readU8(is); waving = readU8(is); // If you add anything here, insert it primarily inside the try-catch // block to not need to increase the version. try{ // Stuff below should be moved to correct place in a version that // otherwise changes the protocol version mesh = deSerializeString(is); collision_box.deSerialize(is); }catch(SerializationError &e) {}; } /* CNodeDefManager */ class CNodeDefManager: public IWritableNodeDefManager { public: CNodeDefManager(); virtual ~CNodeDefManager(); void clear(); virtual IWritableNodeDefManager *clone(); inline virtual const ContentFeatures& get(content_t c) const; inline virtual const ContentFeatures& get(const MapNode &n) const; virtual bool getId(const std::string &name, content_t &result) const; virtual content_t getId(const std::string &name) const; virtual void getIds(const std::string &name, std::set<content_t> &result) const; virtual const ContentFeatures& get(const std::string &name) const; content_t allocateId(); virtual content_t set(const std::string &name, const ContentFeatures &def); virtual content_t allocateDummy(const std::string &name); virtual void updateAliases(IItemDefManager *idef); virtual void applyTextureOverrides(const std::string &override_filepath); virtual void updateTextures(IGameDef *gamedef, void (*progress_cbk)(void *progress_args, u32 progress, u32 max_progress), void *progress_cbk_args); void serialize(std::ostream &os, u16 protocol_version) const; void deSerialize(std::istream &is); inline virtual bool getNodeRegistrationStatus() const; inline virtual void setNodeRegistrationStatus(bool completed); virtual void pendNodeResolve(NodeResolver *nr); virtual bool cancelNodeResolveCallback(NodeResolver *nr); virtual void runNodeResolveCallbacks(); virtual void resetNodeResolveState(); private: void addNameIdMapping(content_t i, std::string name); #ifndef SERVER void fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type); #endif // Features indexed by id std::vector<ContentFeatures> m_content_features; // A mapping for fast converting back and forth between names and ids NameIdMapping m_name_id_mapping; // Like m_name_id_mapping, but only from names to ids, and includes // item aliases too. Updated by updateAliases() // Note: Not serialized. std::map<std::string, content_t> m_name_id_mapping_with_aliases; // A mapping from groups to a list of content_ts (and their levels) // that belong to it. Necessary for a direct lookup in getIds(). // Note: Not serialized. std::map<std::string, GroupItems> m_group_to_items; // Next possibly free id content_t m_next_id; // NodeResolvers to callback once node registration has ended std::vector<NodeResolver *> m_pending_resolve_callbacks; // True when all nodes have been registered bool m_node_registration_complete; }; CNodeDefManager::CNodeDefManager() { clear(); } CNodeDefManager::~CNodeDefManager() { #ifndef SERVER for (u32 i = 0; i < m_content_features.size(); i++) { ContentFeatures *f = &m_content_features[i]; for (u32 j = 0; j < 24; j++) { if (f->mesh_ptr[j]) f->mesh_ptr[j]->drop(); } } #endif } void CNodeDefManager::clear() { m_content_features.clear(); m_name_id_mapping.clear(); m_name_id_mapping_with_aliases.clear(); m_group_to_items.clear(); m_next_id = 0; resetNodeResolveState(); u32 initial_length = 0; initial_length = MYMAX(initial_length, CONTENT_UNKNOWN + 1); initial_length = MYMAX(initial_length, CONTENT_AIR + 1); initial_length = MYMAX(initial_length, CONTENT_IGNORE + 1); m_content_features.resize(initial_length); // Set CONTENT_UNKNOWN { ContentFeatures f; f.name = "unknown"; // Insert directly into containers content_t c = CONTENT_UNKNOWN; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_AIR { ContentFeatures f; f.name = "air"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_LIGHT; f.light_propagates = true; f.sunlight_propagates = true; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_AIR; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_IGNORE { ContentFeatures f; f.name = "ignore"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_NONE; f.light_propagates = false; f.sunlight_propagates = false; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; // A way to remove accidental CONTENT_IGNOREs f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_IGNORE; m_content_features[c] = f; addNameIdMapping(c, f.name); } } IWritableNodeDefManager *CNodeDefManager::clone() { CNodeDefManager *mgr = new CNodeDefManager(); *mgr = *this; return mgr; } inline const ContentFeatures& CNodeDefManager::get(content_t c) const { return c < m_content_features.size() ? m_content_features[c] : m_content_features[CONTENT_UNKNOWN]; } inline const ContentFeatures& CNodeDefManager::get(const MapNode &n) const { return get(n.getContent()); } bool CNodeDefManager::getId(const std::string &name, content_t &result) const { std::map<std::string, content_t>::const_iterator i = m_name_id_mapping_with_aliases.find(name); if(i == m_name_id_mapping_with_aliases.end()) return false; result = i->second; return true; } content_t CNodeDefManager::getId(const std::string &name) const { content_t id = CONTENT_IGNORE; getId(name, id); return id; } void CNodeDefManager::getIds(const std::string &name, std::set<content_t> &result) const { //TimeTaker t("getIds", NULL, PRECISION_MICRO); if (name.substr(0,6) != "group:") { content_t id = CONTENT_IGNORE; if(getId(name, id)) result.insert(id); return; } std::string group = name.substr(6); std::map<std::string, GroupItems>::const_iterator i = m_group_to_items.find(group); if (i == m_group_to_items.end()) return; const GroupItems &items = i->second; for (GroupItems::const_iterator j = items.begin(); j != items.end(); ++j) { if ((*j).second != 0) result.insert((*j).first); } //printf("getIds: %dus\n", t.stop()); } const ContentFeatures& CNodeDefManager::get(const std::string &name) const { content_t id = CONTENT_UNKNOWN; getId(name, id); return get(id); } // returns CONTENT_IGNORE if no free ID found content_t CNodeDefManager::allocateId() { for (content_t id = m_next_id; id >= m_next_id; // overflow? ++id) { while (id >= m_content_features.size()) { m_content_features.push_back(ContentFeatures()); } const ContentFeatures &f = m_content_features[id]; if (f.name == "") { m_next_id = id + 1; return id; } } // If we arrive here, an overflow occurred in id. // That means no ID was found return CONTENT_IGNORE; } // IWritableNodeDefManager content_t CNodeDefManager::set(const std::string &name, const ContentFeatures &def) { // Pre-conditions assert(name != ""); assert(name == def.name); // Don't allow redefining ignore (but allow air and unknown) if (name == "ignore") { warningstream << "NodeDefManager: Ignoring " "CONTENT_IGNORE redefinition"<<std::endl; return CONTENT_IGNORE; } content_t id = CONTENT_IGNORE; if (!m_name_id_mapping.getId(name, id)) { // ignore aliases // Get new id id = allocateId(); if (id == CONTENT_IGNORE) { warningstream << "NodeDefManager: Absolute " "limit reached" << std::endl; return CONTENT_IGNORE; } assert(id != CONTENT_IGNORE); addNameIdMapping(id, name); } m_content_features[id] = def; verbosestream << "NodeDefManager: registering content id \"" << id << "\": name=\"" << def.name << "\""<<std::endl; // Add this content to the list of all groups it belongs to // FIXME: This should remove a node from groups it no longer // belongs to when a node is re-registered for (ItemGroupList::const_iterator i = def.groups.begin(); i != def.groups.end(); ++i) { std::string group_name = i->first; std::map<std::string, GroupItems>::iterator j = m_group_to_items.find(group_name); if (j == m_group_to_items.end()) { m_group_to_items[group_name].push_back( std::make_pair(id, i->second)); } else { GroupItems &items = j->second; items.push_back(std::make_pair(id, i->second)); } } return id; } content_t CNodeDefManager::allocateDummy(const std::string &name) { assert(name != ""); // Pre-condition ContentFeatures f; f.name = name; return set(name, f); } void CNodeDefManager::updateAliases(IItemDefManager *idef) { std::set<std::string> all = idef->getAll(); m_name_id_mapping_with_aliases.clear(); for (std::set<std::string>::iterator i = all.begin(); i != all.end(); ++i) { std::string name = *i; std::string convert_to = idef->getAlias(name); content_t id; if (m_name_id_mapping.getId(convert_to, id)) { m_name_id_mapping_with_aliases.insert( std::make_pair(name, id)); } } } void CNodeDefManager::applyTextureOverrides(const std::string &override_filepath) { infostream << "CNodeDefManager::applyTextureOverrides(): Applying " "overrides to textures from " << override_filepath << std::endl; std::ifstream infile(override_filepath.c_str()); std::string line; int line_c = 0; while (std::getline(infile, line)) { line_c++; if (trim(line) == "") continue; std::vector<std::string> splitted = str_split(line, ' '); if (splitted.size() != 3) { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Syntax error" << std::endl; continue; } content_t id; if (!getId(splitted[0], id)) { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Unknown node \"" << splitted[0] << "\"" << std::endl; continue; } ContentFeatures &nodedef = m_content_features[id]; if (splitted[1] == "top") nodedef.tiledef[0].name = splitted[2]; else if (splitted[1] == "bottom") nodedef.tiledef[1].name = splitted[2]; else if (splitted[1] == "right") nodedef.tiledef[2].name = splitted[2]; else if (splitted[1] == "left") nodedef.tiledef[3].name = splitted[2]; else if (splitted[1] == "back") nodedef.tiledef[4].name = splitted[2]; else if (splitted[1] == "front") nodedef.tiledef[5].name = splitted[2]; else if (splitted[1] == "all" || splitted[1] == "*") for (int i = 0; i < 6; i++) nodedef.tiledef[i].name = splitted[2]; else if (splitted[1] == "sides") for (int i = 2; i < 6; i++) nodedef.tiledef[i].name = splitted[2]; else { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Unknown node side \"" << splitted[1] << "\"" << std::endl; continue; } } } void CNodeDefManager::updateTextures(IGameDef *gamedef, void (*progress_callback)(void *progress_args, u32 progress, u32 max_progress), void *progress_callback_args) { #ifndef SERVER infostream << "CNodeDefManager::updateTextures(): Updating " "textures in node definitions" << std::endl; ITextureSource *tsrc = gamedef->tsrc(); IShaderSource *shdsrc = gamedef->getShaderSource(); scene::ISceneManager* smgr = gamedef->getSceneManager(); scene::IMeshManipulator* meshmanip = smgr->getMeshManipulator(); bool new_style_water = g_settings->getBool("new_style_water"); bool connected_glass = g_settings->getBool("connected_glass"); bool opaque_water = g_settings->getBool("opaque_water"); bool enable_shaders = g_settings->getBool("enable_shaders"); bool enable_bumpmapping = g_settings->getBool("enable_bumpmapping"); bool enable_parallax_occlusion = g_settings->getBool("enable_parallax_occlusion"); bool enable_mesh_cache = g_settings->getBool("enable_mesh_cache"); bool enable_minimap = g_settings->getBool("enable_minimap"); std::string leaves_style = g_settings->get("leaves_style"); bool use_normal_texture = enable_shaders && (enable_bumpmapping || enable_parallax_occlusion); u32 size = m_content_features.size(); for (u32 i = 0; i < size; i++) { ContentFeatures *f = &m_content_features[i]; // minimap pixel color - the average color of a texture if (enable_minimap && f->tiledef[0].name != "") f->minimap_color = tsrc->getTextureAverageColor(f->tiledef[0].name); // Figure out the actual tiles to use TileDef tiledef[6]; for (u32 j = 0; j < 6; j++) { tiledef[j] = f->tiledef[j]; if (tiledef[j].name == "") tiledef[j].name = "unknown_node.png"; } bool is_liquid = false; bool is_water_surface = false; u8 material_type = (f->alpha == 255) ? TILE_MATERIAL_BASIC : TILE_MATERIAL_ALPHA; switch (f->drawtype) { default: case NDT_NORMAL: f->solidness = 2; break; case NDT_AIRLIKE: f->solidness = 0; break; case NDT_LIQUID: assert(f->liquid_type == LIQUID_SOURCE); if (opaque_water) f->alpha = 255; if (new_style_water){ f->solidness = 0; } else { f->solidness = 1; f->backface_culling = false; } is_liquid = true; break; case NDT_FLOWINGLIQUID: assert(f->liquid_type == LIQUID_FLOWING); f->solidness = 0; if (opaque_water) f->alpha = 255; is_liquid = true; break; case NDT_GLASSLIKE: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED_OPTIONAL: f->solidness = 0; f->visual_solidness = 1; f->drawtype = connected_glass ? NDT_GLASSLIKE_FRAMED : NDT_GLASSLIKE; break; case NDT_ALLFACES: f->solidness = 0; f->visual_solidness = 1; break; case NDT_ALLFACES_OPTIONAL: if (leaves_style == "fancy") { f->drawtype = NDT_ALLFACES; f->solidness = 0; f->visual_solidness = 1; } else if (leaves_style == "simple") { for (u32 j = 0; j < 6; j++) { if (f->tiledef_special[j].name != "") tiledef[j].name = f->tiledef_special[j].name; } f->drawtype = NDT_GLASSLIKE; f->solidness = 0; f->visual_solidness = 1; } else { f->drawtype = NDT_NORMAL; f->solidness = 2; for (u32 i = 0; i < 6; i++) tiledef[i].name += std::string("^[noalpha"); } if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_LEAVES; break; case NDT_PLANTLIKE: f->solidness = 0; f->backface_culling = false; if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_PLANTS; break; case NDT_FIRELIKE: f->backface_culling = false; f->solidness = 0; break; case NDT_MESH: f->solidness = 0; f->backface_culling = false; break; case NDT_TORCHLIKE: case NDT_SIGNLIKE: case NDT_FENCELIKE: case NDT_RAILLIKE: case NDT_NODEBOX: f->solidness = 0; break; } if (is_liquid) { material_type = (f->alpha == 255) ? TILE_MATERIAL_LIQUID_OPAQUE : TILE_MATERIAL_LIQUID_TRANSPARENT; if (f->name == "default:water_source") is_water_surface = true; } u32 tile_shader[6]; for (u16 j = 0; j < 6; j++) { tile_shader[j] = shdsrc->getShader("nodes_shader", material_type, f->drawtype); } if (is_water_surface) { tile_shader[0] = shdsrc->getShader("water_surface_shader", material_type, f->drawtype); } // Tiles (fill in f->tiles[]) for (u16 j = 0; j < 6; j++) { fillTileAttribs(tsrc, &f->tiles[j], &tiledef[j], tile_shader[j], use_normal_texture, f->backface_culling, f->alpha, material_type); } // Special tiles (fill in f->special_tiles[]) for (u16 j = 0; j < CF_SPECIAL_COUNT; j++) { fillTileAttribs(tsrc, &f->special_tiles[j], &f->tiledef_special[j], tile_shader[j], use_normal_texture, f->tiledef_special[j].backface_culling, f->alpha, material_type); } if ((f->drawtype == NDT_MESH) && (f->mesh != "")) { // Meshnode drawtype // Read the mesh and apply scale f->mesh_ptr[0] = gamedef->getMesh(f->mesh); if (f->mesh_ptr[0]){ v3f scale = v3f(1.0, 1.0, 1.0) * BS * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } } else if ((f->drawtype == NDT_NODEBOX) && ((f->node_box.type == NODEBOX_REGULAR) || (f->node_box.type == NODEBOX_FIXED)) && (!f->node_box.fixed.empty())) { //Convert regular nodebox nodes to meshnodes //Change the drawtype and apply scale f->drawtype = NDT_MESH; f->mesh_ptr[0] = convertNodeboxNodeToMesh(f); v3f scale = v3f(1.0, 1.0, 1.0) * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } //Cache 6dfacedir and wallmounted rotated clones of meshes if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_FACEDIR)) { for (u16 j = 1; j < 24; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], j); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } } else if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_WALLMOUNTED)) { static const u8 wm_to_6d[6] = {20, 0, 16+1, 12+3, 8, 4+2}; for (u16 j = 1; j < 6; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], wm_to_6d[j]); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } rotateMeshBy6dFacedir(f->mesh_ptr[0], wm_to_6d[0]); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } progress_callback(progress_callback_args, i, size); } #endif } #ifndef SERVER void CNodeDefManager::fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type) { tile->shader_id = shader_id; tile->texture = tsrc->getTextureForMesh(tiledef->name, &tile->texture_id); tile->alpha = alpha; tile->material_type = material_type; // Normal texture and shader flags texture if (use_normal_texture) { tile->normal_texture = tsrc->getNormalTexture(tiledef->name); } tile->flags_texture = tsrc->getShaderFlagsTexture(tile->normal_texture ? true : false); // Material flags tile->material_flags = 0; if (backface_culling) tile->material_flags |= MATERIAL_FLAG_BACKFACE_CULLING; if (tiledef->animation.type == TAT_VERTICAL_FRAMES) tile->material_flags |= MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; if (tiledef->tileable_horizontal) tile->material_flags |= MATERIAL_FLAG_TILEABLE_HORIZONTAL; if (tiledef->tileable_vertical) tile->material_flags |= MATERIAL_FLAG_TILEABLE_VERTICAL; // Animation parameters int frame_count = 1; if (tile->material_flags & MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES) { // Get texture size to determine frame count by aspect ratio v2u32 size = tile->texture->getOriginalSize(); int frame_height = (float)size.X / (float)tiledef->animation.aspect_w * (float)tiledef->animation.aspect_h; frame_count = size.Y / frame_height; int frame_length_ms = 1000.0 * tiledef->animation.length / frame_count; tile->animation_frame_count = frame_count; tile->animation_frame_length_ms = frame_length_ms; } if (frame_count == 1) { tile->material_flags &= ~MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; } else { std::ostringstream os(std::ios::binary); tile->frames.resize(frame_count); for (int i = 0; i < frame_count; i++) { FrameSpec frame; os.str(""); os << tiledef->name << "^[verticalframe:" << frame_count << ":" << i; frame.texture = tsrc->getTextureForMesh(os.str(), &frame.texture_id); if (tile->normal_texture) frame.normal_texture = tsrc->getNormalTexture(os.str()); frame.flags_texture = tile->flags_texture; tile->frames[i] = frame; } } } #endif void CNodeDefManager::serialize(std::ostream &os, u16 protocol_version) const { writeU8(os, 1); // version u16 count = 0; std::ostringstream os2(std::ios::binary); for (u32 i = 0; i < m_content_features.size(); i++) { if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) continue; const ContentFeatures *f = &m_content_features[i]; if (f->name == "") continue; writeU16(os2, i); // Wrap it in a string to allow different lengths without // strict version incompatibilities std::ostringstream wrapper_os(std::ios::binary); f->serialize(wrapper_os, protocol_version); os2<<serializeString(wrapper_os.str()); // must not overflow u16 next = count + 1; FATAL_ERROR_IF(next < count, "Overflow"); count++; } writeU16(os, count); os << serializeLongString(os2.str()); } void CNodeDefManager::deSerialize(std::istream &is) { clear(); int version = readU8(is); if (version != 1) throw SerializationError("unsupported NodeDefinitionManager version"); u16 count = readU16(is); std::istringstream is2(deSerializeLongString(is), std::ios::binary); ContentFeatures f; for (u16 n = 0; n < count; n++) { u16 i = readU16(is2); // Read it from the string wrapper std::string wrapper = deSerializeString(is2); std::istringstream wrapper_is(wrapper, std::ios::binary); f.deSerialize(wrapper_is); // Check error conditions if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) { warningstream << "NodeDefManager::deSerialize(): " "not changing builtin node " << i << std::endl; continue; } if (f.name == "") { warningstream << "NodeDefManager::deSerialize(): " "received empty name" << std::endl; continue; } // Ignore aliases u16 existing_id; if (m_name_id_mapping.getId(f.name, existing_id) && i != existing_id) { warningstream << "NodeDefManager::deSerialize(): " "already defined with different ID: " << f.name << std::endl; continue; } // All is ok, add node definition with the requested ID if (i >= m_content_features.size()) m_content_features.resize((u32)(i) + 1); m_content_features[i] = f; addNameIdMapping(i, f.name); verbosestream << "deserialized " << f.name << std::endl; } } void CNodeDefManager::addNameIdMapping(content_t i, std::string name) { m_name_id_mapping.set(i, name); m_name_id_mapping_with_aliases.insert(std::make_pair(name, i)); } IWritableNodeDefManager *createNodeDefManager() { return new CNodeDefManager(); } //// Serialization of old ContentFeatures formats void ContentFeatures::serializeOld(std::ostream &os, u16 protocol_version) const { if (protocol_version == 13) { writeU8(os, 5); // version os<<serializeString(name); writeU16(os, groups.size()); for (ItemGroupList::const_iterator i = groups.begin(); i != groups.end(); ++i) { os<<serializeString(i->first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os<<serializeString(""); // legacy: used to be metadata_name writeU8(os, liquid_type); os<<serializeString(liquid_alternative_flowing); os<<serializeString(liquid_alternative_source); writeU8(os, liquid_viscosity); writeU8(os, light_source); writeU32(os, damage_per_second); node_box.serialize(os, protocol_version); selection_box.serialize(os, protocol_version); writeU8(os, legacy_facedir_simple); writeU8(os, legacy_wallmounted); serializeSimpleSoundSpec(sound_footstep, os); serializeSimpleSoundSpec(sound_dig, os); serializeSimpleSoundSpec(sound_dug, os); } else if (protocol_version > 13 && protocol_version < 24) { writeU8(os, 6); // version os<<serializeString(name); writeU16(os, groups.size()); for (ItemGroupList::const_iterator i = groups.begin(); i != groups.end(); ++i) { os<<serializeString(i->first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os<<serializeString(""); // legacy: used to be metadata_name writeU8(os, liquid_type); os<<serializeString(liquid_alternative_flowing); os<<serializeString(liquid_alternative_source); writeU8(os, liquid_viscosity); writeU8(os, liquid_renewable); writeU8(os, light_source); writeU32(os, damage_per_second); node_box.serialize(os, protocol_version); selection_box.serialize(os, protocol_version); writeU8(os, legacy_facedir_simple); writeU8(os, legacy_wallmounted); serializeSimpleSoundSpec(sound_footstep, os); serializeSimpleSoundSpec(sound_dig, os); serializeSimpleSoundSpec(sound_dug, os); writeU8(os, rightclickable); writeU8(os, drowning); writeU8(os, leveled); writeU8(os, liquid_range); } else throw SerializationError("ContentFeatures::serialize(): " "Unsupported version requested"); } void ContentFeatures::deSerializeOld(std::istream &is, int version) { if (version == 5) // In PROTOCOL_VERSION 13 { name = deSerializeString(is); groups.clear(); u32 groups_size = readU16(is); for(u32 i=0; i<groups_size; i++){ std::string name = deSerializeString(is); int value = readS16(is); groups[name] = value; } drawtype = (enum NodeDrawType)readU8(is); visual_scale = readF1000(is); if (readU8(is) != 6) throw SerializationError("unsupported tile count"); for (u32 i = 0; i < 6; i++) tiledef[i].deSerialize(is); if (readU8(is) != CF_SPECIAL_COUNT) throw SerializationError("unsupported CF_SPECIAL_COUNT"); for (u32 i = 0; i < CF_SPECIAL_COUNT; i++) tiledef_special[i].deSerialize(is); alpha = readU8(is); post_effect_color.setAlpha(readU8(is)); post_effect_color.setRed(readU8(is)); post_effect_color.setGreen(readU8(is)); post_effect_color.setBlue(readU8(is)); param_type = (enum ContentParamType)readU8(is); param_type_2 = (enum ContentParamType2)readU8(is); is_ground_content = readU8(is); light_propagates = readU8(is); sunlight_propagates = readU8(is); walkable = readU8(is); pointable = readU8(is); diggable = readU8(is); climbable = readU8(is); buildable_to = readU8(is); deSerializeString(is); // legacy: used to be metadata_name liquid_type = (enum LiquidType)readU8(is); liquid_alternative_flowing = deSerializeString(is); liquid_alternative_source = deSerializeString(is); liquid_viscosity = readU8(is); light_source = readU8(is); damage_per_second = readU32(is); node_box.deSerialize(is); selection_box.deSerialize(is); legacy_facedir_simple = readU8(is); legacy_wallmounted = readU8(is); deSerializeSimpleSoundSpec(sound_footstep, is); deSerializeSimpleSoundSpec(sound_dig, is); deSerializeSimpleSoundSpec(sound_dug, is); } else if (version == 6) { name = deSerializeString(is); groups.clear(); u32 groups_size = readU16(is); for (u32 i = 0; i < groups_size; i++) { std::string name = deSerializeString(is); int value = readS16(is); groups[name] = value; } drawtype = (enum NodeDrawType)readU8(is); visual_scale = readF1000(is); if (readU8(is) != 6) throw SerializationError("unsupported tile count"); for (u32 i = 0; i < 6; i++) tiledef[i].deSerialize(is); // CF_SPECIAL_COUNT in version 6 = 2 if (readU8(is) != 2) throw SerializationError("unsupported CF_SPECIAL_COUNT"); for (u32 i = 0; i < 2; i++) tiledef_special[i].deSerialize(is); alpha = readU8(is); post_effect_color.setAlpha(readU8(is)); post_effect_color.setRed(readU8(is)); post_effect_color.setGreen(readU8(is)); post_effect_color.setBlue(readU8(is)); param_type = (enum ContentParamType)readU8(is); param_type_2 = (enum ContentParamType2)readU8(is); is_ground_content = readU8(is); light_propagates = readU8(is); sunlight_propagates = readU8(is); walkable = readU8(is); pointable = readU8(is); diggable = readU8(is); climbable = readU8(is); buildable_to = readU8(is); deSerializeString(is); // legacy: used to be metadata_name liquid_type = (enum LiquidType)readU8(is); liquid_alternative_flowing = deSerializeString(is); liquid_alternative_source = deSerializeString(is); liquid_viscosity = readU8(is); liquid_renewable = readU8(is); light_source = readU8(is); damage_per_second = readU32(is); node_box.deSerialize(is); selection_box.deSerialize(is); legacy_facedir_simple = readU8(is); legacy_wallmounted = readU8(is); deSerializeSimpleSoundSpec(sound_footstep, is); deSerializeSimpleSoundSpec(sound_dig, is); deSerializeSimpleSoundSpec(sound_dug, is); rightclickable = readU8(is); drowning = readU8(is); leveled = readU8(is); liquid_range = readU8(is); } else { throw SerializationError("unsupported ContentFeatures version"); } } inline bool CNodeDefManager::getNodeRegistrationStatus() const { return m_node_registration_complete; } inline void CNodeDefManager::setNodeRegistrationStatus(bool completed) { m_node_registration_complete = completed; } void CNodeDefManager::pendNodeResolve(NodeResolver *nr) { nr->m_ndef = this; if (m_node_registration_complete) nr->nodeResolveInternal(); else m_pending_resolve_callbacks.push_back(nr); } bool CNodeDefManager::cancelNodeResolveCallback(NodeResolver *nr) { size_t len = m_pending_resolve_callbacks.size(); for (size_t i = 0; i != len; i++) { if (nr != m_pending_resolve_callbacks[i]) continue; len--; m_pending_resolve_callbacks[i] = m_pending_resolve_callbacks[len]; m_pending_resolve_callbacks.resize(len); return true; } return false; } void CNodeDefManager::runNodeResolveCallbacks() { for (size_t i = 0; i != m_pending_resolve_callbacks.size(); i++) { NodeResolver *nr = m_pending_resolve_callbacks[i]; nr->nodeResolveInternal(); } m_pending_resolve_callbacks.clear(); } void CNodeDefManager::resetNodeResolveState() { m_node_registration_complete = false; m_pending_resolve_callbacks.clear(); } //// //// NodeResolver //// NodeResolver::NodeResolver() { m_ndef = NULL; m_nodenames_idx = 0; m_nnlistsizes_idx = 0; m_resolve_done = false; m_nodenames.reserve(16); m_nnlistsizes.reserve(4); } NodeResolver::~NodeResolver() { if (!m_resolve_done && m_ndef) m_ndef->cancelNodeResolveCallback(this); } void NodeResolver::nodeResolveInternal() { m_nodenames_idx = 0; m_nnlistsizes_idx = 0; resolveNodeNames(); m_resolve_done = true; m_nodenames.clear(); m_nnlistsizes.clear(); } bool NodeResolver::getIdFromNrBacklog(content_t *result_out, const std::string &node_alt, content_t c_fallback) { if (m_nodenames_idx == m_nodenames.size()) { *result_out = c_fallback; errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string name = m_nodenames[m_nodenames_idx++]; bool success = m_ndef->getId(name, c); if (!success && node_alt != "") { name = node_alt; success = m_ndef->getId(name, c); } if (!success) { errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; c = c_fallback; } *result_out = c; return success; } bool NodeResolver::getIdsFromNrBacklog(std::vector<content_t> *result_out, bool all_required, content_t c_fallback) { bool success = true; if (m_nnlistsizes_idx == m_nnlistsizes.size()) { errorstream << "NodeResolver: no more node lists" << std::endl; return false; } size_t length = m_nnlistsizes[m_nnlistsizes_idx++]; while (length--) { if (m_nodenames_idx == m_nodenames.size()) { errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string &name = m_nodenames[m_nodenames_idx++]; if (name.substr(0,6) != "group:") { if (m_ndef->getId(name, c)) { result_out->push_back(c); } else if (all_required) { errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; result_out->push_back(c_fallback); success = false; } } else { std::set<content_t> cids; std::set<content_t>::iterator it; m_ndef->getIds(name, cids); for (it = cids.begin(); it != cids.end(); ++it) result_out->push_back(*it); } } return success; }