aboutsummaryrefslogtreecommitdiff
path: root/src/keycode.cpp
blob: 3551c385a768d4ee1cfaf7343d420eb9a4ab16e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "keycode.h"
#include "exceptions.h"
#include "settings.h"
#include "log.h"
#include "debug.h"
#include "util/hex.h"
#include "util/string.h"
#include "util/basic_macros.h"

class UnknownKeycode : public BaseException
{
public:
	UnknownKeycode(const char *s) :
		BaseException(s) {};
};

struct table_key {
	const char *Name;
	irr::EKEY_CODE Key;
	wchar_t Char; // L'\0' means no character assigned
	const char *LangName; // NULL means it doesn't have a human description
};

#define DEFINEKEY1(x, lang) /* Irrlicht key without character */ \
	{ #x, irr::x, L'\0', lang },
#define DEFINEKEY2(x, ch, lang) /* Irrlicht key with character */ \
	{ #x, irr::x, ch, lang },
#define DEFINEKEY3(ch) /* single Irrlicht key (e.g. KEY_KEY_X) */ \
	{ "KEY_KEY_" TOSTRING(ch), irr::KEY_KEY_ ## ch, (wchar_t) *TOSTRING(ch), TOSTRING(ch) },
#define DEFINEKEY4(ch) /* single Irrlicht function key (e.g. KEY_F3) */ \
	{ "KEY_F" TOSTRING(ch), irr::KEY_F ## ch, L'\0', "F" TOSTRING(ch) },
#define DEFINEKEY5(ch) /* key without Irrlicht keycode */ \
	{ ch, irr::KEY_KEY_CODES_COUNT, (wchar_t) *ch, ch },

#define N_(text) text

static const struct table_key table[] = {
	// Keys that can be reliably mapped between Char and Key
	DEFINEKEY3(0)
	DEFINEKEY3(1)
	DEFINEKEY3(2)
	DEFINEKEY3(3)
	DEFINEKEY3(4)
	DEFINEKEY3(5)
	DEFINEKEY3(6)
	DEFINEKEY3(7)
	DEFINEKEY3(8)
	DEFINEKEY3(9)
	DEFINEKEY3(A)
	DEFINEKEY3(B)
	DEFINEKEY3(C)
	DEFINEKEY3(D)
	DEFINEKEY3(E)
	DEFINEKEY3(F)
	DEFINEKEY3(G)
	DEFINEKEY3(H)
	DEFINEKEY3(I)
	DEFINEKEY3(J)
	DEFINEKEY3(K)
	DEFINEKEY3(L)
	DEFINEKEY3(M)
	DEFINEKEY3(N)
	DEFINEKEY3(O)
	DEFINEKEY3(P)
	DEFINEKEY3(Q)
	DEFINEKEY3(R)
	DEFINEKEY3(S)
	DEFINEKEY3(T)
	DEFINEKEY3(U)
	DEFINEKEY3(V)
	DEFINEKEY3(W)
	DEFINEKEY3(X)
	DEFINEKEY3(Y)
	DEFINEKEY3(Z)
	DEFINEKEY2(KEY_PLUS, L'+', "+")
	DEFINEKEY2(KEY_COMMA, L',', ",")
	DEFINEKEY2(KEY_MINUS, L'-', "-")
	DEFINEKEY2(KEY_PERIOD, L'.', ".")

	// Keys without a Char
	DEFINEKEY1(KEY_LBUTTON, N_("Left Button"))
	DEFINEKEY1(KEY_RBUTTON, N_("Right Button"))
	DEFINEKEY1(KEY_CANCEL, N_("Cancel"))
	DEFINEKEY1(KEY_MBUTTON, N_("Middle Button"))
	DEFINEKEY1(KEY_XBUTTON1, N_("X Button 1"))
	DEFINEKEY1(KEY_XBUTTON2, N_("X Button 2"))
	DEFINEKEY1(KEY_BACK, N_("Back"))
	DEFINEKEY1(KEY_TAB, N_("Tab"))
	DEFINEKEY1(KEY_CLEAR, N_("Clear"))
	DEFINEKEY1(KEY_RETURN, N_("Return"))
	DEFINEKEY1(KEY_SHIFT, N_("Shift"))
	DEFINEKEY1(KEY_CONTROL, N_("Control"))
	DEFINEKEY1(KEY_MENU, N_("Menu"))
	DEFINEKEY1(KEY_PAUSE, N_("Pause"))
	DEFINEKEY1(KEY_CAPITAL, N_("Caps Lock"))
	DEFINEKEY1(KEY_SPACE, N_("Space"))
	DEFINEKEY1(KEY_PRIOR, N_("Prior"))
	DEFINEKEY1(KEY_NEXT, N_("Next"))
	DEFINEKEY1(KEY_END, N_("End"))
	DEFINEKEY1(KEY_HOME, N_("Home"))
	DEFINEKEY1(KEY_LEFT, N_("Left"))
	DEFINEKEY1(KEY_UP, N_("Up"))
	DEFINEKEY1(KEY_RIGHT, N_("Right"))
	DEFINEKEY1(KEY_DOWN, N_("Down"))
	DEFINEKEY1(KEY_SELECT, N_("Select"))
	DEFINEKEY1(KEY_PRINT, N_("Print"))
	DEFINEKEY1(KEY_EXECUT, N_("Execute"))
	DEFINEKEY1(KEY_SNAPSHOT, N_("Snapshot"))
	DEFINEKEY1(KEY_INSERT, N_("Insert"))
	DEFINEKEY1(KEY_DELETE, N_("Delete"))
	DEFINEKEY1(KEY_HELP, N_("Help"))
	DEFINEKEY1(KEY_LWIN, N_("Left Windows"))
	DEFINEKEY1(KEY_RWIN, N_("Right Windows"))
	DEFINEKEY1(KEY_NUMPAD0, N_("Numpad 0")) // These are not assigned to a char
	DEFINEKEY1(KEY_NUMPAD1, N_("Numpad 1")) // to prevent interference with KEY_KEY_[0-9].
	DEFINEKEY1(KEY_NUMPAD2, N_("Numpad 2"))
	DEFINEKEY1(KEY_NUMPAD3, N_("Numpad 3"))
	DEFINEKEY1(KEY_NUMPAD4, N_("Numpad 4"))
	DEFINEKEY1(KEY_NUMPAD5, N_("Numpad 5"))
	DEFINEKEY1(KEY_NUMPAD6, N_("Numpad 6"))
	DEFINEKEY1(KEY_NUMPAD7, N_("Numpad 7"))
	DEFINEKEY1(KEY_NUMPAD8, N_("Numpad 8"))
	DEFINEKEY1(KEY_NUMPAD9, N_("Numpad 9"))
	DEFINEKEY1(KEY_MULTIPLY, N_("Numpad *"))
	DEFINEKEY1(KEY_ADD, N_("Numpad +"))
	DEFINEKEY1(KEY_SEPARATOR, N_("Numpad ."))
	DEFINEKEY1(KEY_SUBTRACT, N_("Numpad -"))
	DEFINEKEY1(KEY_DECIMAL, NULL)
	DEFINEKEY1(KEY_DIVIDE, N_("Numpad /"))
	DEFINEKEY4(1)
	DEFINEKEY4(2)
	DEFINEKEY4(3)
	DEFINEKEY4(4)
	DEFINEKEY4(5)
	DEFINEKEY4(6)
	DEFINEKEY4(7)
	DEFINEKEY4(8)
	DEFINEKEY4(9)
	DEFINEKEY4(10)
	DEFINEKEY4(11)
	DEFINEKEY4(12)
	DEFINEKEY4(13)
	DEFINEKEY4(14)
	DEFINEKEY4(15)
	DEFINEKEY4(16)
	DEFINEKEY4(17)
	DEFINEKEY4(18)
	DEFINEKEY4(19)
	DEFINEKEY4(20)
	DEFINEKEY4(21)
	DEFINEKEY4(22)
	DEFINEKEY4(23)
	DEFINEKEY4(24)
	DEFINEKEY1(KEY_NUMLOCK, N_("Num Lock"))
	DEFINEKEY1(KEY_SCROLL, N_("Scroll Lock"))
	DEFINEKEY1(KEY_LSHIFT, N_("Left Shift"))
	DEFINEKEY1(KEY_RSHIFT, N_("Right Shift"))
	DEFINEKEY1(KEY_LCONTROL, N_("Left Control"))
	DEFINEKEY1(KEY_RCONTROL, N_("Right Control"))
	DEFINEKEY1(KEY_LMENU, N_("Left Menu"))
	DEFINEKEY1(KEY_RMENU, N_("Right Menu"))

	// Rare/weird keys
	DEFINEKEY1(KEY_KANA, "Kana")
	DEFINEKEY1(KEY_HANGUEL, "Hangul")
	DEFINEKEY1(KEY_HANGUL, "Hangul")
	DEFINEKEY1(KEY_JUNJA, "Junja")
	DEFINEKEY1(KEY_FINAL, "Final")
	DEFINEKEY1(KEY_KANJI, "Kanji")
	DEFINEKEY1(KEY_HANJA, "Hanja")
	DEFINEKEY1(KEY_ESCAPE, N_("IME Escape"))
	DEFINEKEY1(KEY_CONVERT, N_("IME Convert"))
	DEFINEKEY1(KEY_NONCONVERT, N_("IME Nonconvert"))
	DEFINEKEY1(KEY_ACCEPT, N_("IME Accept"))
	DEFINEKEY1(KEY_MODECHANGE, N_("IME Mode Change"))
	DEFINEKEY1(KEY_APPS, N_("Apps"))
	DEFINEKEY1(KEY_SLEEP, N_("Sleep"))
#if !(IRRLICHT_VERSION_MAJOR <= 1 && IRRLICHT_VERSION_MINOR <= 7 && IRRLICHT_VERSION_REVISION < 3)
	DEFINEKEY1(KEY_OEM_1, "OEM 1") // KEY_OEM_[0-9] and KEY_OEM_102 are assigned to multiple
	DEFINEKEY1(KEY_OEM_2, "OEM 2") // different chars (on different platforms too) and thus w/o char
	DEFINEKEY1(KEY_OEM_3, "OEM 3")
	DEFINEKEY1(KEY_OEM_4, "OEM 4")
	DEFINEKEY1(KEY_OEM_5, "OEM 5")
	DEFINEKEY1(KEY_OEM_6, "OEM 6")
	DEFINEKEY1(KEY_OEM_7, "OEM 7")
	DEFINEKEY1(KEY_OEM_8, "OEM 8")
	DEFINEKEY1(KEY_OEM_AX, "OEM AX")
	DEFINEKEY1(KEY_OEM_102, "OEM 102")
#endif
	DEFINEKEY1(KEY_ATTN, "Attn")
	DEFINEKEY1(KEY_CRSEL, "CrSel")
	DEFINEKEY1(KEY_EXSEL, "ExSel")
	DEFINEKEY1(KEY_EREOF, N_("Erase EOF"))
	DEFINEKEY1(KEY_PLAY, N_("Play"))
	DEFINEKEY1(KEY_ZOOM, N_("Zoom"))
	DEFINEKEY1(KEY_PA1, "PA1")
	DEFINEKEY1(KEY_OEM_CLEAR, N_("OEM Clear"))

	// Keys without Irrlicht keycode
	DEFINEKEY5("!")
	DEFINEKEY5("\"")
	DEFINEKEY5("#")
	DEFINEKEY5("$")
	DEFINEKEY5("%")
	DEFINEKEY5("&")
	DEFINEKEY5("'")
	DEFINEKEY5("(")
	DEFINEKEY5(")")
	DEFINEKEY5("*")
	DEFINEKEY5("/")
	DEFINEKEY5(":")
	DEFINEKEY5(";")
	DEFINEKEY5("<")
	DEFINEKEY5("=")
	DEFINEKEY5(">")
	DEFINEKEY5("?")
	DEFINEKEY5("@")
	DEFINEKEY5("[")
	DEFINEKEY5("\\")
	DEFINEKEY5("]")
	DEFINEKEY5("^")
	DEFINEKEY5("_")
};

#undef N_


struct table_key lookup_keyname(const char *name)
{
	for (u16 i = 0; i < ARRLEN(table); i++) {
		if (strcmp(table[i].Name, name) == 0)
			return table[i];
	}

	throw UnknownKeycode(name);
}

struct table_key lookup_keykey(irr::EKEY_CODE key)
{
	for (u16 i = 0; i < ARRLEN(table); i++) {
		if (table[i].Key == key)
			return table[i];
	}

	std::ostringstream os;
	os << "<Keycode " << (int) key << ">";
	throw UnknownKeycode(os.str().c_str());
}

struct table_key lookup_keychar(wchar_t Char)
{
	for (u16 i = 0; i < ARRLEN(table); i++) {
		if (table[i].Char == Char)
			return table[i];
	}

	std::ostringstream os;
	os << "<Char " << hex_encode((char*) &Char, sizeof(wchar_t)) << ">";
	throw UnknownKeycode(os.str().c_str());
}

KeyPress::KeyPress(const char *name)
{
	if (strlen(name) == 0) {
		Key = irr::KEY_KEY_CODES_COUNT;
		Char = L'\0';
		m_name = "";
		return;
	} else if (strlen(name) <= 4) {
		// Lookup by resulting character
		int chars_read = mbtowc(&Char, name, 1);
		FATAL_ERROR_IF(chars_read != 1, "Unexpected multibyte character");
		try {
			struct table_key k = lookup_keychar(Char);
			m_name = k.Name;
			Key = k.Key;
			return;
		} catch (UnknownKeycode &e) {};
	} else {
		// Lookup by name
		m_name = name;
		try {
			struct table_key k = lookup_keyname(name);
			Key = k.Key;
			Char = k.Char;
			return;
		} catch (UnknownKeycode &e) {};
	}

	// It's not a known key, complain and try to do something
	Key = irr::KEY_KEY_CODES_COUNT;
	int chars_read = mbtowc(&Char, name, 1);
	FATAL_ERROR_IF(chars_read != 1, "Unexpected multibyte character");
	m_name = "";
	warningstream << "KeyPress: Unknown key '" << name << "', falling back to first char.";
}

KeyPress::KeyPress(const irr::SEvent::SKeyInput &in, bool prefer_character)
{
	if (prefer_character)
		Key = irr::KEY_KEY_CODES_COUNT;
	else
		Key = in.Key;
	Char = in.Char;

	try {
		if (valid_kcode(Key))
			m_name = lookup_keykey(Key).Name;
		else
			m_name = lookup_keychar(Char).Name;
	} catch (UnknownKeycode &e) {
		m_name = "";
	};
}

const char *KeyPress::sym() const
{
	return m_name.c_str();
}

const char *KeyPress::name() const
{
	if (m_name == "")
		return "";
	const char *ret;
	if (valid_kcode(Key))
		ret = lookup_keykey(Key).LangName;
	else
		ret = lookup_keychar(Char).LangName;
	return ret ? ret : "<Unnamed key>";
}

const KeyPress EscapeKey("KEY_ESCAPE");
const KeyPress CancelKey("KEY_CANCEL");

/*
	Key config
*/

// A simple cache for quicker lookup
std::map<std::string, KeyPress> g_key_setting_cache;

KeyPress getKeySetting(const char *settingname)
{
	std::map<std::string, KeyPress>::iterator n;
	n = g_key_setting_cache.find(settingname);
	if(n != g_key_setting_cache.end())
		return n->second;

	KeyPress k(g_settings->get(settingname).c_str());
	g_key_setting_cache[settingname] = k;
	return k;
}

void clearKeyCache()
{
	g_key_setting_cache.clear();
}

irr::EKEY_CODE keyname_to_keycode(const char *name)
{
	return lookup_keyname(name).Key;
}
kwd">clear(); disconnected_sides.clear(); } void NodeBox::serialize(std::ostream &os, u16 protocol_version) const { // Protocol >= 36 const u8 version = 6; writeU8(os, version); switch (type) { case NODEBOX_LEVELED: case NODEBOX_FIXED: writeU8(os, type); writeU16(os, fixed.size()); for (const aabb3f &nodebox : fixed) { writeV3F32(os, nodebox.MinEdge); writeV3F32(os, nodebox.MaxEdge); } break; case NODEBOX_WALLMOUNTED: writeU8(os, type); writeV3F32(os, wall_top.MinEdge); writeV3F32(os, wall_top.MaxEdge); writeV3F32(os, wall_bottom.MinEdge); writeV3F32(os, wall_bottom.MaxEdge); writeV3F32(os, wall_side.MinEdge); writeV3F32(os, wall_side.MaxEdge); break; case NODEBOX_CONNECTED: writeU8(os, type); #define WRITEBOX(box) \ writeU16(os, (box).size()); \ for (const aabb3f &i: (box)) { \ writeV3F32(os, i.MinEdge); \ writeV3F32(os, i.MaxEdge); \ }; WRITEBOX(fixed); WRITEBOX(connect_top); WRITEBOX(connect_bottom); WRITEBOX(connect_front); WRITEBOX(connect_left); WRITEBOX(connect_back); WRITEBOX(connect_right); WRITEBOX(disconnected_top); WRITEBOX(disconnected_bottom); WRITEBOX(disconnected_front); WRITEBOX(disconnected_left); WRITEBOX(disconnected_back); WRITEBOX(disconnected_right); WRITEBOX(disconnected); WRITEBOX(disconnected_sides); break; default: writeU8(os, type); break; } } void NodeBox::deSerialize(std::istream &is) { int version = readU8(is); if (version < 6) throw SerializationError("unsupported NodeBox version"); reset(); type = (enum NodeBoxType)readU8(is); if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED) { u16 fixed_count = readU16(is); while(fixed_count--) { aabb3f box; box.MinEdge = readV3F32(is); box.MaxEdge = readV3F32(is); fixed.push_back(box); } } else if(type == NODEBOX_WALLMOUNTED) { wall_top.MinEdge = readV3F32(is); wall_top.MaxEdge = readV3F32(is); wall_bottom.MinEdge = readV3F32(is); wall_bottom.MaxEdge = readV3F32(is); wall_side.MinEdge = readV3F32(is); wall_side.MaxEdge = readV3F32(is); } else if (type == NODEBOX_CONNECTED) { #define READBOXES(box) { \ count = readU16(is); \ (box).reserve(count); \ while (count--) { \ v3f min = readV3F32(is); \ v3f max = readV3F32(is); \ (box).emplace_back(min, max); }; } u16 count; READBOXES(fixed); READBOXES(connect_top); READBOXES(connect_bottom); READBOXES(connect_front); READBOXES(connect_left); READBOXES(connect_back); READBOXES(connect_right); READBOXES(disconnected_top); READBOXES(disconnected_bottom); READBOXES(disconnected_front); READBOXES(disconnected_left); READBOXES(disconnected_back); READBOXES(disconnected_right); READBOXES(disconnected); READBOXES(disconnected_sides); } } /* TileDef */ #define TILE_FLAG_BACKFACE_CULLING (1 << 0) #define TILE_FLAG_TILEABLE_HORIZONTAL (1 << 1) #define TILE_FLAG_TILEABLE_VERTICAL (1 << 2) #define TILE_FLAG_HAS_COLOR (1 << 3) #define TILE_FLAG_HAS_SCALE (1 << 4) #define TILE_FLAG_HAS_ALIGN_STYLE (1 << 5) void TileDef::serialize(std::ostream &os, u16 protocol_version) const { // protocol_version >= 36 u8 version = 6; writeU8(os, version); os << serializeString(name); animation.serialize(os, version); bool has_scale = scale > 0; u16 flags = 0; if (backface_culling) flags |= TILE_FLAG_BACKFACE_CULLING; if (tileable_horizontal) flags |= TILE_FLAG_TILEABLE_HORIZONTAL; if (tileable_vertical) flags |= TILE_FLAG_TILEABLE_VERTICAL; if (has_color) flags |= TILE_FLAG_HAS_COLOR; if (has_scale) flags |= TILE_FLAG_HAS_SCALE; if (align_style != ALIGN_STYLE_NODE) flags |= TILE_FLAG_HAS_ALIGN_STYLE; writeU16(os, flags); if (has_color) { writeU8(os, color.getRed()); writeU8(os, color.getGreen()); writeU8(os, color.getBlue()); } if (has_scale) writeU8(os, scale); if (align_style != ALIGN_STYLE_NODE) writeU8(os, align_style); } void TileDef::deSerialize(std::istream &is, u8 contentfeatures_version, NodeDrawType drawtype) { int version = readU8(is); if (version < 6) throw SerializationError("unsupported TileDef version"); name = deSerializeString(is); animation.deSerialize(is, version); u16 flags = readU16(is); backface_culling = flags & TILE_FLAG_BACKFACE_CULLING; tileable_horizontal = flags & TILE_FLAG_TILEABLE_HORIZONTAL; tileable_vertical = flags & TILE_FLAG_TILEABLE_VERTICAL; has_color = flags & TILE_FLAG_HAS_COLOR; bool has_scale = flags & TILE_FLAG_HAS_SCALE; bool has_align_style = flags & TILE_FLAG_HAS_ALIGN_STYLE; if (has_color) { color.setRed(readU8(is)); color.setGreen(readU8(is)); color.setBlue(readU8(is)); } scale = has_scale ? readU8(is) : 0; if (has_align_style) align_style = static_cast<AlignStyle>(readU8(is)); else align_style = ALIGN_STYLE_NODE; } void TextureSettings::readSettings() { connected_glass = g_settings->getBool("connected_glass"); opaque_water = g_settings->getBool("opaque_water"); bool enable_shaders = g_settings->getBool("enable_shaders"); bool enable_bumpmapping = g_settings->getBool("enable_bumpmapping"); bool enable_parallax_occlusion = g_settings->getBool("enable_parallax_occlusion"); bool smooth_lighting = g_settings->getBool("smooth_lighting"); enable_mesh_cache = g_settings->getBool("enable_mesh_cache"); enable_minimap = g_settings->getBool("enable_minimap"); node_texture_size = g_settings->getU16("texture_min_size"); std::string leaves_style_str = g_settings->get("leaves_style"); std::string world_aligned_mode_str = g_settings->get("world_aligned_mode"); std::string autoscale_mode_str = g_settings->get("autoscale_mode"); // Mesh cache is not supported in combination with smooth lighting if (smooth_lighting) enable_mesh_cache = false; use_normal_texture = enable_shaders && (enable_bumpmapping || enable_parallax_occlusion); if (leaves_style_str == "fancy") { leaves_style = LEAVES_FANCY; } else if (leaves_style_str == "simple") { leaves_style = LEAVES_SIMPLE; } else { leaves_style = LEAVES_OPAQUE; } if (world_aligned_mode_str == "enable") world_aligned_mode = WORLDALIGN_ENABLE; else if (world_aligned_mode_str == "force_solid") world_aligned_mode = WORLDALIGN_FORCE; else if (world_aligned_mode_str == "force_nodebox") world_aligned_mode = WORLDALIGN_FORCE_NODEBOX; else world_aligned_mode = WORLDALIGN_DISABLE; if (autoscale_mode_str == "enable") autoscale_mode = AUTOSCALE_ENABLE; else if (autoscale_mode_str == "force") autoscale_mode = AUTOSCALE_FORCE; else autoscale_mode = AUTOSCALE_DISABLE; } /* ContentFeatures */ ContentFeatures::ContentFeatures() { reset(); } void ContentFeatures::reset() { /* Cached stuff */ #ifndef SERVER solidness = 2; visual_solidness = 0; backface_culling = true; #endif has_on_construct = false; has_on_destruct = false; has_after_destruct = false; /* Actual data NOTE: Most of this is always overridden by the default values given in builtin.lua */ name = ""; groups.clear(); // Unknown nodes can be dug groups["dig_immediate"] = 2; drawtype = NDT_NORMAL; mesh = ""; #ifndef SERVER for (auto &i : mesh_ptr) i = NULL; minimap_color = video::SColor(0, 0, 0, 0); #endif visual_scale = 1.0; for (auto &i : tiledef) i = TileDef(); for (auto &j : tiledef_special) j = TileDef(); alpha = 255; post_effect_color = video::SColor(0, 0, 0, 0); param_type = CPT_NONE; param_type_2 = CPT2_NONE; is_ground_content = false; light_propagates = false; sunlight_propagates = false; walkable = true; pointable = true; diggable = true; climbable = false; buildable_to = false; floodable = false; rightclickable = true; leveled = 0; liquid_type = LIQUID_NONE; liquid_alternative_flowing = ""; liquid_alternative_source = ""; liquid_viscosity = 0; liquid_renewable = true; liquid_range = LIQUID_LEVEL_MAX+1; drowning = 0; light_source = 0; damage_per_second = 0; node_box = NodeBox(); selection_box = NodeBox(); collision_box = NodeBox(); waving = 0; legacy_facedir_simple = false; legacy_wallmounted = false; sound_footstep = SimpleSoundSpec(); sound_dig = SimpleSoundSpec("__group"); sound_dug = SimpleSoundSpec(); connects_to.clear(); connects_to_ids.clear(); connect_sides = 0; color = video::SColor(0xFFFFFFFF); palette_name = ""; palette = NULL; node_dig_prediction = "air"; } void ContentFeatures::serialize(std::ostream &os, u16 protocol_version) const { const u8 version = CONTENTFEATURES_VERSION; writeU8(os, version); // general os << serializeString(name); writeU16(os, groups.size()); for (const auto &group : groups) { os << serializeString(group.first); writeS16(os, group.second); } writeU8(os, param_type); writeU8(os, param_type_2); // visual writeU8(os, drawtype); os << serializeString(mesh); writeF32(os, visual_scale); writeU8(os, 6); for (const TileDef &td : tiledef) td.serialize(os, protocol_version); for (const TileDef &td : tiledef_overlay) td.serialize(os, protocol_version); writeU8(os, CF_SPECIAL_COUNT); for (const TileDef &td : tiledef_special) { td.serialize(os, protocol_version); } writeU8(os, alpha); writeU8(os, color.getRed()); writeU8(os, color.getGreen()); writeU8(os, color.getBlue()); os << serializeString(palette_name); writeU8(os, waving); writeU8(os, connect_sides); writeU16(os, connects_to_ids.size()); for (u16 connects_to_id : connects_to_ids) writeU16(os, connects_to_id); writeARGB8(os, post_effect_color); writeU8(os, leveled); // lighting writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, light_source); // map generation writeU8(os, is_ground_content); // interaction writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); writeU8(os, rightclickable); writeU32(os, damage_per_second); // liquid writeU8(os, liquid_type); os << serializeString(liquid_alternative_flowing); os << serializeString(liquid_alternative_source); writeU8(os, liquid_viscosity); writeU8(os, liquid_renewable); writeU8(os, liquid_range); writeU8(os, drowning); writeU8(os, floodable); // node boxes node_box.serialize(os, protocol_version); selection_box.serialize(os, protocol_version); collision_box.serialize(os, protocol_version); // sound sound_footstep.serialize(os, version); sound_dig.serialize(os, version); sound_dug.serialize(os, version); // legacy writeU8(os, legacy_facedir_simple); writeU8(os, legacy_wallmounted); os << serializeString(node_dig_prediction); } void ContentFeatures::correctAlpha(TileDef *tiles, int length) { // alpha == 0 means that the node is using texture alpha if (alpha == 0 || alpha == 255) return; for (int i = 0; i < length; i++) { if (tiles[i].name.empty()) continue; std::stringstream s; s << tiles[i].name << "^[noalpha^[opacity:" << ((int)alpha); tiles[i].name = s.str(); } } void ContentFeatures::deSerialize(std::istream &is) { // version detection const u8 version = readU8(is); if (version < CONTENTFEATURES_VERSION) throw SerializationError("unsupported ContentFeatures version"); // general name = deSerializeString(is); groups.clear(); u32 groups_size = readU16(is); for (u32 i = 0; i < groups_size; i++) { std::string name = deSerializeString(is); int value = readS16(is); groups[name] = value; } param_type = (enum ContentParamType) readU8(is); param_type_2 = (enum ContentParamType2) readU8(is); // visual drawtype = (enum NodeDrawType) readU8(is); mesh = deSerializeString(is); visual_scale = readF32(is); if (readU8(is) != 6) throw SerializationError("unsupported tile count"); for (TileDef &td : tiledef) td.deSerialize(is, version, drawtype); for (TileDef &td : tiledef_overlay) td.deSerialize(is, version, drawtype); if (readU8(is) != CF_SPECIAL_COUNT) throw SerializationError("unsupported CF_SPECIAL_COUNT"); for (TileDef &td : tiledef_special) td.deSerialize(is, version, drawtype); alpha = readU8(is); color.setRed(readU8(is)); color.setGreen(readU8(is)); color.setBlue(readU8(is)); palette_name = deSerializeString(is); waving = readU8(is); connect_sides = readU8(is); u16 connects_to_size = readU16(is); connects_to_ids.clear(); for (u16 i = 0; i < connects_to_size; i++) connects_to_ids.push_back(readU16(is)); post_effect_color = readARGB8(is); leveled = readU8(is); // lighting-related light_propagates = readU8(is); sunlight_propagates = readU8(is); light_source = readU8(is); light_source = MYMIN(light_source, LIGHT_MAX); // map generation is_ground_content = readU8(is); // interaction walkable = readU8(is); pointable = readU8(is); diggable = readU8(is); climbable = readU8(is); buildable_to = readU8(is); rightclickable = readU8(is); damage_per_second = readU32(is); // liquid liquid_type = (enum LiquidType) readU8(is); liquid_alternative_flowing = deSerializeString(is); liquid_alternative_source = deSerializeString(is); liquid_viscosity = readU8(is); liquid_renewable = readU8(is); liquid_range = readU8(is); drowning = readU8(is); floodable = readU8(is); // node boxes node_box.deSerialize(is); selection_box.deSerialize(is); collision_box.deSerialize(is); // sounds sound_footstep.deSerialize(is, version); sound_dig.deSerialize(is, version); sound_dug.deSerialize(is, version); // read legacy properties legacy_facedir_simple = readU8(is); legacy_wallmounted = readU8(is); try { node_dig_prediction = deSerializeString(is); } catch(SerializationError &e) {}; } #ifndef SERVER static void fillTileAttribs(ITextureSource *tsrc, TileLayer *layer, const TileSpec &tile, const TileDef &tiledef, video::SColor color, u8 material_type, u32 shader_id, bool backface_culling, const TextureSettings &tsettings) { layer->shader_id = shader_id; layer->texture = tsrc->getTextureForMesh(tiledef.name, &layer->texture_id); layer->material_type = material_type; bool has_scale = tiledef.scale > 0; if (((tsettings.autoscale_mode == AUTOSCALE_ENABLE) && !has_scale) || (tsettings.autoscale_mode == AUTOSCALE_FORCE)) { auto texture_size = layer->texture->getOriginalSize(); float base_size = tsettings.node_texture_size; float size = std::fmin(texture_size.Width, texture_size.Height); layer->scale = std::fmax(base_size, size) / base_size; } else if (has_scale) { layer->scale = tiledef.scale; } else { layer->scale = 1; } if (!tile.world_aligned) layer->scale = 1; // Normal texture and shader flags texture if (tsettings.use_normal_texture) { layer->normal_texture = tsrc->getNormalTexture(tiledef.name); } layer->flags_texture = tsrc->getShaderFlagsTexture(layer->normal_texture ? true : false); // Material flags layer->material_flags = 0; if (backface_culling) layer->material_flags |= MATERIAL_FLAG_BACKFACE_CULLING; if (tiledef.animation.type != TAT_NONE) layer->material_flags |= MATERIAL_FLAG_ANIMATION; if (tiledef.tileable_horizontal) layer->material_flags |= MATERIAL_FLAG_TILEABLE_HORIZONTAL; if (tiledef.tileable_vertical) layer->material_flags |= MATERIAL_FLAG_TILEABLE_VERTICAL; // Color layer->has_color = tiledef.has_color; if (tiledef.has_color) layer->color = tiledef.color; else layer->color = color; // Animation parameters int frame_count = 1; if (layer->material_flags & MATERIAL_FLAG_ANIMATION) { int frame_length_ms; tiledef.animation.determineParams(layer->texture->getOriginalSize(), &frame_count, &frame_length_ms, NULL); layer->animation_frame_count = frame_count; layer->animation_frame_length_ms = frame_length_ms; } if (frame_count == 1) { layer->material_flags &= ~MATERIAL_FLAG_ANIMATION; } else { std::ostringstream os(std::ios::binary); if (!layer->frames) { layer->frames = std::make_shared<std::vector<FrameSpec>>(); } layer->frames->resize(frame_count); for (int i = 0; i < frame_count; i++) { FrameSpec frame; os.str(""); os << tiledef.name; tiledef.animation.getTextureModifer(os, layer->texture->getOriginalSize(), i); frame.texture = tsrc->getTextureForMesh(os.str(), &frame.texture_id); if (layer->normal_texture) frame.normal_texture = tsrc->getNormalTexture(os.str()); frame.flags_texture = layer->flags_texture; (*layer->frames)[i] = frame; } } } #endif #ifndef SERVER bool isWorldAligned(AlignStyle style, WorldAlignMode mode, NodeDrawType drawtype) { if (style == ALIGN_STYLE_WORLD) return true; if (mode == WORLDALIGN_DISABLE) return false; if (style == ALIGN_STYLE_USER_DEFINED) return true; if (drawtype == NDT_NORMAL) return mode >= WORLDALIGN_FORCE; if (drawtype == NDT_NODEBOX) return mode >= WORLDALIGN_FORCE_NODEBOX; return false; } void ContentFeatures::updateTextures(ITextureSource *tsrc, IShaderSource *shdsrc, scene::IMeshManipulator *meshmanip, Client *client, const TextureSettings &tsettings) { // minimap pixel color - the average color of a texture if (tsettings.enable_minimap && !tiledef[0].name.empty()) minimap_color = tsrc->getTextureAverageColor(tiledef[0].name); // Figure out the actual tiles to use TileDef tdef[6]; for (u32 j = 0; j < 6; j++) { tdef[j] = tiledef[j]; if (tdef[j].name.empty()) tdef[j].name = "unknown_node.png"; } // also the overlay tiles TileDef tdef_overlay[6]; for (u32 j = 0; j < 6; j++) tdef_overlay[j] = tiledef_overlay[j]; // also the special tiles TileDef tdef_spec[6]; for (u32 j = 0; j < CF_SPECIAL_COUNT; j++) tdef_spec[j] = tiledef_special[j]; bool is_liquid = false; u8 material_type = (alpha == 255) ? TILE_MATERIAL_BASIC : TILE_MATERIAL_ALPHA; switch (drawtype) { default: case NDT_NORMAL: material_type = (alpha == 255) ? TILE_MATERIAL_OPAQUE : TILE_MATERIAL_ALPHA; solidness = 2; break; case NDT_AIRLIKE: solidness = 0; break; case NDT_LIQUID: assert(liquid_type == LIQUID_SOURCE); if (tsettings.opaque_water) alpha = 255; solidness = 1; is_liquid = true; break; case NDT_FLOWINGLIQUID: assert(liquid_type == LIQUID_FLOWING); solidness = 0; if (tsettings.opaque_water) alpha = 255; is_liquid = true; break; case NDT_GLASSLIKE: solidness = 0; visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED: solidness = 0; visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED_OPTIONAL: solidness = 0; visual_solidness = 1; drawtype = tsettings.connected_glass ? NDT_GLASSLIKE_FRAMED : NDT_GLASSLIKE; break; case NDT_ALLFACES: solidness = 0; visual_solidness = 1; break; case NDT_ALLFACES_OPTIONAL: if (tsettings.leaves_style == LEAVES_FANCY) { drawtype = NDT_ALLFACES; solidness = 0; visual_solidness = 1; } else if (tsettings.leaves_style == LEAVES_SIMPLE) { for (u32 j = 0; j < 6; j++) { if (!tdef_spec[j].name.empty()) tdef[j].name = tdef_spec[j].name; } drawtype = NDT_GLASSLIKE; solidness = 0; visual_solidness = 1; } else { drawtype = NDT_NORMAL; solidness = 2; for (TileDef &td : tdef) td.name += std::string("^[noalpha"); } if (waving >= 1) material_type = TILE_MATERIAL_WAVING_LEAVES; break; case NDT_PLANTLIKE: solidness = 0; if (waving >= 1) material_type = TILE_MATERIAL_WAVING_PLANTS; break; case NDT_FIRELIKE: solidness = 0; break; case NDT_MESH: case NDT_NODEBOX: solidness = 0; if (waving == 1) material_type = TILE_MATERIAL_WAVING_PLANTS; else if (waving == 2) material_type = TILE_MATERIAL_WAVING_LEAVES; else if (waving == 3) material_type = TILE_MATERIAL_WAVING_LIQUID_BASIC; break; case NDT_TORCHLIKE: case NDT_SIGNLIKE: case NDT_FENCELIKE: case NDT_RAILLIKE: solidness = 0; break; case NDT_PLANTLIKE_ROOTED: solidness = 2; break; } if (is_liquid) { // Vertex alpha is no longer supported, correct if necessary. correctAlpha(tdef, 6); correctAlpha(tdef_overlay, 6); correctAlpha(tdef_spec, CF_SPECIAL_COUNT); if (waving == 3) { material_type = (alpha == 255) ? TILE_MATERIAL_WAVING_LIQUID_OPAQUE : TILE_MATERIAL_WAVING_LIQUID_TRANSPARENT; } else { material_type = (alpha == 255) ? TILE_MATERIAL_LIQUID_OPAQUE : TILE_MATERIAL_LIQUID_TRANSPARENT; } } u32 tile_shader = shdsrc->getShader("nodes_shader", material_type, drawtype); u8 overlay_material = material_type; if (overlay_material == TILE_MATERIAL_OPAQUE) overlay_material = TILE_MATERIAL_BASIC; else if (overlay_material == TILE_MATERIAL_LIQUID_OPAQUE) overlay_material = TILE_MATERIAL_LIQUID_TRANSPARENT; u32 overlay_shader = shdsrc->getShader("nodes_shader", overlay_material, drawtype); // Tiles (fill in f->tiles[]) for (u16 j = 0; j < 6; j++) { tiles[j].world_aligned = isWorldAligned(tdef[j].align_style, tsettings.world_aligned_mode, drawtype); fillTileAttribs(tsrc, &tiles[j].layers[0], tiles[j], tdef[j], color, material_type, tile_shader, tdef[j].backface_culling, tsettings); if (!tdef_overlay[j].name.empty()) fillTileAttribs(tsrc, &tiles[j].layers[1], tiles[j], tdef_overlay[j], color, overlay_material, overlay_shader, tdef[j].backface_culling, tsettings); } u8 special_material = material_type; if (drawtype == NDT_PLANTLIKE_ROOTED) { if (waving == 1) special_material = TILE_MATERIAL_WAVING_PLANTS; else if (waving == 2) special_material = TILE_MATERIAL_WAVING_LEAVES; } u32 special_shader = shdsrc->getShader("nodes_shader", special_material, drawtype); // Special tiles (fill in f->special_tiles[]) for (u16 j = 0; j < CF_SPECIAL_COUNT; j++) fillTileAttribs(tsrc, &special_tiles[j].layers[0], special_tiles[j], tdef_spec[j], color, special_material, special_shader, tdef_spec[j].backface_culling, tsettings); if (param_type_2 == CPT2_COLOR || param_type_2 == CPT2_COLORED_FACEDIR || param_type_2 == CPT2_COLORED_WALLMOUNTED) palette = tsrc->getPalette(palette_name); if (drawtype == NDT_MESH && !mesh.empty()) { // Meshnode drawtype // Read the mesh and apply scale mesh_ptr[0] = client->getMesh(mesh); if (mesh_ptr[0]){ v3f scale = v3f(1.0, 1.0, 1.0) * BS * visual_scale; scaleMesh(mesh_ptr[0], scale); recalculateBoundingBox(mesh_ptr[0]); meshmanip->recalculateNormals(mesh_ptr[0], true, false); } } //Cache 6dfacedir and wallmounted rotated clones of meshes if (tsettings.enable_mesh_cache && mesh_ptr[0] && (param_type_2 == CPT2_FACEDIR || param_type_2 == CPT2_COLORED_FACEDIR)) { for (u16 j = 1; j < 24; j++) { mesh_ptr[j] = cloneMesh(mesh_ptr[0]); rotateMeshBy6dFacedir(mesh_ptr[j], j); recalculateBoundingBox(mesh_ptr[j]); meshmanip->recalculateNormals(mesh_ptr[j], true, false); } } else if (tsettings.enable_mesh_cache && mesh_ptr[0] && (param_type_2 == CPT2_WALLMOUNTED || param_type_2 == CPT2_COLORED_WALLMOUNTED)) { static const u8 wm_to_6d[6] = { 20, 0, 16 + 1, 12 + 3, 8, 4 + 2 }; for (u16 j = 1; j < 6; j++) { mesh_ptr[j] = cloneMesh(mesh_ptr[0]); rotateMeshBy6dFacedir(mesh_ptr[j], wm_to_6d[j]); recalculateBoundingBox(mesh_ptr[j]); meshmanip->recalculateNormals(mesh_ptr[j], true, false); } rotateMeshBy6dFacedir(mesh_ptr[0], wm_to_6d[0]); recalculateBoundingBox(mesh_ptr[0]); meshmanip->recalculateNormals(mesh_ptr[0], true, false); } } #endif /* NodeDefManager */ NodeDefManager::NodeDefManager() { clear(); } NodeDefManager::~NodeDefManager() { #ifndef SERVER for (ContentFeatures &f : m_content_features) { for (auto &j : f.mesh_ptr) { if (j) j->drop(); } } #endif } void NodeDefManager::clear() { m_content_features.clear(); m_name_id_mapping.clear(); m_name_id_mapping_with_aliases.clear(); m_group_to_items.clear(); m_next_id = 0; m_selection_box_union.reset(0,0,0); m_selection_box_int_union.reset(0,0,0); resetNodeResolveState(); u32 initial_length = 0; initial_length = MYMAX(initial_length, CONTENT_UNKNOWN + 1); initial_length = MYMAX(initial_length, CONTENT_AIR + 1); initial_length = MYMAX(initial_length, CONTENT_IGNORE + 1); m_content_features.resize(initial_length); // Set CONTENT_UNKNOWN { ContentFeatures f; f.name = "unknown"; // Insert directly into containers content_t c = CONTENT_UNKNOWN; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_AIR { ContentFeatures f; f.name = "air"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_LIGHT; f.light_propagates = true; f.sunlight_propagates = true; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; f.floodable = true; f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_AIR; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_IGNORE { ContentFeatures f; f.name = "ignore"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_NONE; f.light_propagates = false; f.sunlight_propagates = false; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; // A way to remove accidental CONTENT_IGNOREs f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_IGNORE; m_content_features[c] = f; addNameIdMapping(c, f.name); } } bool NodeDefManager::getId(const std::string &name, content_t &result) const { std::unordered_map<std::string, content_t>::const_iterator i = m_name_id_mapping_with_aliases.find(name); if(i == m_name_id_mapping_with_aliases.end()) return false; result = i->second; return true; } content_t NodeDefManager::getId(const std::string &name) const { content_t id = CONTENT_IGNORE; getId(name, id); return id; } bool NodeDefManager::getIds(const std::string &name, std::vector<content_t> &result) const { //TimeTaker t("getIds", NULL, PRECISION_MICRO); if (name.substr(0,6) != "group:") { content_t id = CONTENT_IGNORE; bool exists = getId(name, id); if (exists) result.push_back(id); return exists; } std::string group = name.substr(6); std::unordered_map<std::string, std::vector<content_t>>::const_iterator i = m_group_to_items.find(group); if (i == m_group_to_items.end()) return true; const std::vector<content_t> &items = i->second; result.insert(result.end(), items.begin(), items.end()); //printf("getIds: %dus\n", t.stop()); return true; } const ContentFeatures& NodeDefManager::get(const std::string &name) const { content_t id = CONTENT_UNKNOWN; getId(name, id); return get(id); } // returns CONTENT_IGNORE if no free ID found content_t NodeDefManager::allocateId() { for (content_t id = m_next_id; id >= m_next_id; // overflow? ++id) { while (id >= m_content_features.size()) { m_content_features.emplace_back(); } const ContentFeatures &f = m_content_features[id]; if (f.name.empty()) { m_next_id = id + 1; return id; } } // If we arrive here, an overflow occurred in id. // That means no ID was found return CONTENT_IGNORE; } /*! * Returns the smallest box that contains all boxes * in the vector. Box_union is expanded. * @param[in] boxes the vector containing the boxes * @param[in, out] box_union the union of the arguments */ void boxVectorUnion(const std::vector<aabb3f> &boxes, aabb3f *box_union) { for (const aabb3f &box : boxes) { box_union->addInternalBox(box); } } /*! * Returns a box that contains the nodebox in every case. * The argument node_union is expanded. * @param[in] nodebox the nodebox to be measured * @param[in] features used to decide whether the nodebox * can be rotated * @param[in, out] box_union the union of the arguments */ void getNodeBoxUnion(const NodeBox &nodebox, const ContentFeatures &features, aabb3f *box_union) { switch(nodebox.type) { case NODEBOX_FIXED: case NODEBOX_LEVELED: { // Raw union aabb3f half_processed(0, 0, 0, 0, 0, 0); boxVectorUnion(nodebox.fixed, &half_processed); // Set leveled boxes to maximal if (nodebox.type == NODEBOX_LEVELED) { half_processed.MaxEdge.Y = +BS / 2; } if (features.param_type_2 == CPT2_FACEDIR || features.param_type_2 == CPT2_COLORED_FACEDIR) { // Get maximal coordinate f32 coords[] = { fabsf(half_processed.MinEdge.X), fabsf(half_processed.MinEdge.Y), fabsf(half_processed.MinEdge.Z), fabsf(half_processed.MaxEdge.X), fabsf(half_processed.MaxEdge.Y), fabsf(half_processed.MaxEdge.Z) }; f32 max = 0; for (float coord : coords) { if (max < coord) { max = coord; } } // Add the union of all possible rotated boxes box_union->addInternalPoint(-max, -max, -max); box_union->addInternalPoint(+max, +max, +max); } else { box_union->addInternalBox(half_processed); } break; } case NODEBOX_WALLMOUNTED: { // Add fix boxes box_union->addInternalBox(nodebox.wall_top); box_union->addInternalBox(nodebox.wall_bottom); // Find maximal coordinate in the X-Z plane f32 coords[] = { fabsf(nodebox.wall_side.MinEdge.X), fabsf(nodebox.wall_side.MinEdge.Z), fabsf(nodebox.wall_side.MaxEdge.X), fabsf(nodebox.wall_side.MaxEdge.Z) }; f32 max = 0; for (float coord : coords) { if (max < coord) { max = coord; } } // Add the union of all possible rotated boxes box_union->addInternalPoint(-max, nodebox.wall_side.MinEdge.Y, -max); box_union->addInternalPoint(max, nodebox.wall_side.MaxEdge.Y, max); break; } case NODEBOX_CONNECTED: { // Add all possible connected boxes boxVectorUnion(nodebox.fixed, box_union); boxVectorUnion(nodebox.connect_top, box_union); boxVectorUnion(nodebox.connect_bottom, box_union); boxVectorUnion(nodebox.connect_front, box_union); boxVectorUnion(nodebox.connect_left, box_union); boxVectorUnion(nodebox.connect_back, box_union); boxVectorUnion(nodebox.connect_right, box_union); boxVectorUnion(nodebox.disconnected_top, box_union); boxVectorUnion(nodebox.disconnected_bottom, box_union); boxVectorUnion(nodebox.disconnected_front, box_union); boxVectorUnion(nodebox.disconnected_left, box_union); boxVectorUnion(nodebox.disconnected_back, box_union); boxVectorUnion(nodebox.disconnected_right, box_union); boxVectorUnion(nodebox.disconnected, box_union); boxVectorUnion(nodebox.disconnected_sides, box_union); break; } default: { // NODEBOX_REGULAR box_union->addInternalPoint(-BS / 2, -BS / 2, -BS / 2); box_union->addInternalPoint(+BS / 2, +BS / 2, +BS / 2); } } } inline void NodeDefManager::fixSelectionBoxIntUnion() { m_selection_box_int_union.MinEdge.X = floorf( m_selection_box_union.MinEdge.X / BS + 0.5f); m_selection_box_int_union.MinEdge.Y = floorf( m_selection_box_union.MinEdge.Y / BS + 0.5f); m_selection_box_int_union.MinEdge.Z = floorf( m_selection_box_union.MinEdge.Z / BS + 0.5f); m_selection_box_int_union.MaxEdge.X = ceilf( m_selection_box_union.MaxEdge.X / BS - 0.5f); m_selection_box_int_union.MaxEdge.Y = ceilf( m_selection_box_union.MaxEdge.Y / BS - 0.5f); m_selection_box_int_union.MaxEdge.Z = ceilf( m_selection_box_union.MaxEdge.Z / BS - 0.5f); } void NodeDefManager::eraseIdFromGroups(content_t id) { // For all groups in m_group_to_items... for (auto iter_groups = m_group_to_items.begin(); iter_groups != m_group_to_items.end();) { // Get the group items vector. std::vector<content_t> &items = iter_groups->second; // Remove any occurence of the id in the group items vector. items.erase(std::remove(items.begin(), items.end(), id), items.end()); // If group is empty, erase its vector from the map. if (items.empty()) iter_groups = m_group_to_items.erase(iter_groups); else ++iter_groups; } } // IWritableNodeDefManager content_t NodeDefManager::set(const std::string &name, const ContentFeatures &def) { // Pre-conditions assert(name != ""); assert(name != "ignore"); assert(name == def.name); content_t id = CONTENT_IGNORE; if (!m_name_id_mapping.getId(name, id)) { // ignore aliases // Get new id id = allocateId(); if (id == CONTENT_IGNORE) { warningstream << "NodeDefManager: Absolute " "limit reached" << std::endl; return CONTENT_IGNORE; } assert(id != CONTENT_IGNORE); addNameIdMapping(id, name); } // If there is already ContentFeatures registered for this id, clear old groups if (id < m_content_features.size()) eraseIdFromGroups(id); m_content_features[id] = def; verbosestream << "NodeDefManager: registering content id \"" << id << "\": name=\"" << def.name << "\""<<std::endl; getNodeBoxUnion(def.selection_box, def, &m_selection_box_union); fixSelectionBoxIntUnion(); // Add this content to the list of all groups it belongs to for (const auto &group : def.groups) { const std::string &group_name = group.first; m_group_to_items[group_name].push_back(id); } return id; } content_t NodeDefManager::allocateDummy(const std::string &name) { assert(name != ""); // Pre-condition ContentFeatures f; f.name = name; return set(name, f); } void NodeDefManager::removeNode(const std::string &name) { // Pre-condition assert(name != ""); // Erase name from name ID mapping content_t id = CONTENT_IGNORE; if (m_name_id_mapping.getId(name, id)) { m_name_id_mapping.eraseName(name); m_name_id_mapping_with_aliases.erase(name); } eraseIdFromGroups(id); } void NodeDefManager::updateAliases(IItemDefManager *idef) { std::set<std::string> all; idef->getAll(all); m_name_id_mapping_with_aliases.clear(); for (const std::string &name : all) { const std::string &convert_to = idef->getAlias(name); content_t id; if (m_name_id_mapping.getId(convert_to, id)) { m_name_id_mapping_with_aliases.insert( std::make_pair(name, id)); } } } void NodeDefManager::applyTextureOverrides(const std::string &override_filepath) { infostream << "NodeDefManager::applyTextureOverrides(): Applying " "overrides to textures from " << override_filepath << std::endl; std::ifstream infile(override_filepath.c_str()); std::string line; int line_c = 0; while (std::getline(infile, line)) { line_c++; // Also trim '\r' on DOS-style files line = trim(line); if (line.empty()) continue; std::vector<std::string> splitted = str_split(line, ' '); if (splitted.size() != 3) { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Syntax error" << std::endl; continue; } content_t id; if (!getId(splitted[0], id)) continue; // Ignore unknown node ContentFeatures &nodedef = m_content_features[id]; if (splitted[1] == "top") nodedef.tiledef[0].name = splitted[2]; else if (splitted[1] == "bottom") nodedef.tiledef[1].name = splitted[2]; else if (splitted[1] == "right") nodedef.tiledef[2].name = splitted[2]; else if (splitted[1] == "left") nodedef.tiledef[3].name = splitted[2]; else if (splitted[1] == "back") nodedef.tiledef[4].name = splitted[2]; else if (splitted[1] == "front") nodedef.tiledef[5].name = splitted[2]; else if (splitted[1] == "all" || splitted[1] == "*") for (TileDef &i : nodedef.tiledef) i.name = splitted[2]; else if (splitted[1] == "sides") for (int i = 2; i < 6; i++) nodedef.tiledef[i].name = splitted[2]; else { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Unknown node side \"" << splitted[1] << "\"" << std::endl; continue; } } } void NodeDefManager::updateTextures(IGameDef *gamedef, void (*progress_callback)(void *progress_args, u32 progress, u32 max_progress), void *progress_callback_args) { #ifndef SERVER infostream << "NodeDefManager::updateTextures(): Updating " "textures in node definitions" << std::endl; Client *client = (Client *)gamedef; ITextureSource *tsrc = client->tsrc(); IShaderSource *shdsrc = client->getShaderSource(); scene::IMeshManipulator *meshmanip = RenderingEngine::get_scene_manager()->getMeshManipulator(); TextureSettings tsettings; tsettings.readSettings(); u32 size = m_content_features.size(); for (u32 i = 0; i < size; i++) { ContentFeatures *f = &(m_content_features[i]); f->updateTextures(tsrc, shdsrc, meshmanip, client, tsettings); progress_callback(progress_callback_args, i, size); } #endif } void NodeDefManager::serialize(std::ostream &os, u16 protocol_version) const { writeU8(os, 1); // version u16 count = 0; std::ostringstream os2(std::ios::binary); for (u32 i = 0; i < m_content_features.size(); i++) { if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) continue; const ContentFeatures *f = &m_content_features[i]; if (f->name.empty()) continue; writeU16(os2, i); // Wrap it in a string to allow different lengths without // strict version incompatibilities std::ostringstream wrapper_os(std::ios::binary); f->serialize(wrapper_os, protocol_version); os2<<serializeString(wrapper_os.str()); // must not overflow u16 next = count + 1; FATAL_ERROR_IF(next < count, "Overflow"); count++; } writeU16(os, count); os << serializeLongString(os2.str()); } void NodeDefManager::deSerialize(std::istream &is) { clear(); int version = readU8(is); if (version != 1) throw SerializationError("unsupported NodeDefinitionManager version"); u16 count = readU16(is); std::istringstream is2(deSerializeLongString(is), std::ios::binary); ContentFeatures f; for (u16 n = 0; n < count; n++) { u16 i = readU16(is2); // Read it from the string wrapper std::string wrapper = deSerializeString(is2); std::istringstream wrapper_is(wrapper, std::ios::binary); f.deSerialize(wrapper_is); // Check error conditions if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) { warningstream << "NodeDefManager::deSerialize(): " "not changing builtin node " << i << std::endl; continue; } if (f.name.empty()) { warningstream << "NodeDefManager::deSerialize(): " "received empty name" << std::endl; continue; } // Ignore aliases u16 existing_id; if (m_name_id_mapping.getId(f.name, existing_id) && i != existing_id) { warningstream << "NodeDefManager::deSerialize(): " "already defined with different ID: " << f.name << std::endl; continue; } // All is ok, add node definition with the requested ID if (i >= m_content_features.size()) m_content_features.resize((u32)(i) + 1); m_content_features[i] = f; addNameIdMapping(i, f.name); verbosestream << "deserialized " << f.name << std::endl; getNodeBoxUnion(f.selection_box, f, &m_selection_box_union); fixSelectionBoxIntUnion(); } } void NodeDefManager::addNameIdMapping(content_t i, std::string name) { m_name_id_mapping.set(i, name); m_name_id_mapping_with_aliases.insert(std::make_pair(name, i)); } NodeDefManager *createNodeDefManager() { return new NodeDefManager(); } void NodeDefManager::pendNodeResolve(NodeResolver *nr) const { nr->m_ndef = this; if (m_node_registration_complete) nr->nodeResolveInternal(); else m_pending_resolve_callbacks.push_back(nr); } bool NodeDefManager::cancelNodeResolveCallback(NodeResolver *nr) const { size_t len = m_pending_resolve_callbacks.size(); for (size_t i = 0; i != len; i++) { if (nr != m_pending_resolve_callbacks[i]) continue; len--; m_pending_resolve_callbacks[i] = m_pending_resolve_callbacks[len]; m_pending_resolve_callbacks.resize(len); return true; } return false; } void NodeDefManager::runNodeResolveCallbacks() { for (size_t i = 0; i != m_pending_resolve_callbacks.size(); i++) { NodeResolver *nr = m_pending_resolve_callbacks[i]; nr->nodeResolveInternal(); } m_pending_resolve_callbacks.clear(); } void NodeDefManager::resetNodeResolveState() { m_node_registration_complete = false; m_pending_resolve_callbacks.clear(); } void NodeDefManager::mapNodeboxConnections() { for (ContentFeatures &f : m_content_features) { if (f.drawtype != NDT_NODEBOX || f.node_box.type != NODEBOX_CONNECTED) continue; for (const std::string &name : f.connects_to) { getIds(name, f.connects_to_ids); } } } bool NodeDefManager::nodeboxConnects(MapNode from, MapNode to, u8 connect_face) const { const ContentFeatures &f1 = get(from); if ((f1.drawtype != NDT_NODEBOX) || (f1.node_box.type != NODEBOX_CONNECTED)) return false; // lookup target in connected set if (!CONTAINS(f1.connects_to_ids, to.param0)) return false; const ContentFeatures &f2 = get(to); if ((f2.drawtype == NDT_NODEBOX) && (f2.node_box.type == NODEBOX_CONNECTED)) // ignores actually looking if back connection exists return CONTAINS(f2.connects_to_ids, from.param0); // does to node declare usable faces? if (f2.connect_sides > 0) { if ((f2.param_type_2 == CPT2_FACEDIR || f2.param_type_2 == CPT2_COLORED_FACEDIR) && (connect_face >= 4)) { static const u8 rot[33 * 4] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 4 - back 8, 4, 32, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8 - right 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 8, 4, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 - front 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 16, 8, 4 // 32 - left }; return (f2.connect_sides & rot[(connect_face * 4) + (to.param2 & 0x1F)]); } return (f2.connect_sides & connect_face); } // the target is just a regular node, so connect no matter back connection return true; } //// //// NodeResolver //// NodeResolver::NodeResolver() { m_nodenames.reserve(16); m_nnlistsizes.reserve(4); } NodeResolver::~NodeResolver() { if (!m_resolve_done && m_ndef) m_ndef->cancelNodeResolveCallback(this); } void NodeResolver::nodeResolveInternal() { m_nodenames_idx = 0; m_nnlistsizes_idx = 0; resolveNodeNames(); m_resolve_done = true; m_nodenames.clear(); m_nnlistsizes.clear(); } bool NodeResolver::getIdFromNrBacklog(content_t *result_out, const std::string &node_alt, content_t c_fallback, bool error_on_fallback) { if (m_nodenames_idx == m_nodenames.size()) { *result_out = c_fallback; errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string name = m_nodenames[m_nodenames_idx++]; bool success = m_ndef->getId(name, c); if (!success && !node_alt.empty()) { name = node_alt; success = m_ndef->getId(name, c); } if (!success) { if (error_on_fallback) errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; c = c_fallback; } *result_out = c; return success; } bool NodeResolver::getIdsFromNrBacklog(std::vector<content_t> *result_out, bool all_required, content_t c_fallback) { bool success = true; if (m_nnlistsizes_idx == m_nnlistsizes.size()) { errorstream << "NodeResolver: no more node lists" << std::endl; return false; } size_t length = m_nnlistsizes[m_nnlistsizes_idx++]; while (length--) { if (m_nodenames_idx == m_nodenames.size()) { errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string &name = m_nodenames[m_nodenames_idx++]; if (name.substr(0,6) != "group:") { if (m_ndef->getId(name, c)) { result_out->push_back(c); } else if (all_required) { errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; result_out->push_back(c_fallback); success = false; } } else { m_ndef->getIds(name, *result_out); } } return success; }