1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
/*
* Minetest
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include "noise.h"
#include <iostream>
#include <string.h> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"
#define NOISE_MAGIC_X 1619
#define NOISE_MAGIC_Y 31337
#define NOISE_MAGIC_Z 52591
#define NOISE_MAGIC_SEED 1013
typedef float (*Interp2dFxn)(
float v00, float v10, float v01, float v11,
float x, float y);
typedef float (*Interp3dFxn)(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z);
float cos_lookup[16] = {
1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238,
1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238
};
FlagDesc flagdesc_noiseparams[] = {
{"defaults", NOISE_FLAG_DEFAULTS},
{"eased", NOISE_FLAG_EASED},
{"absvalue", NOISE_FLAG_ABSVALUE},
{"pointbuffer", NOISE_FLAG_POINTBUFFER},
{"simplex", NOISE_FLAG_SIMPLEX},
{NULL, 0}
};
///////////////////////////////////////////////////////////////////////////////
float noise2d(int x, int y, int seed)
{
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
n = (n >> 13) ^ n;
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 1.f - (float)n / 0x40000000;
}
float noise3d(int x, int y, int z, int seed)
{
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
n = (n >> 13) ^ n;
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 1.f - (float)n / 0x40000000;
}
inline float dotProduct(float vx, float vy, float wx, float wy)
{
return vx * wx + vy * wy;
}
inline float linearInterpolation(float v0, float v1, float t)
{
return v0 + (v1 - v0) * t;
}
inline float biLinearInterpolation(
float v00, float v10,
float v01, float v11,
float x, float y)
{
float tx = easeCurve(x);
float ty = easeCurve(y);
#if 0
return (
v00 * (1 - tx) * (1 - ty) +
v10 * tx * (1 - ty) +
v01 * (1 - tx) * ty +
v11 * tx * ty
);
#endif
float u = linearInterpolation(v00, v10, tx);
float v = linearInterpolation(v01, v11, tx);
return linearInterpolation(u, v, ty);
}
inline float biLinearInterpolationNoEase(
float v00, float v10,
float v01, float v11,
float x, float y)
{
float u = linearInterpolation(v00, v10, x);
float v = linearInterpolation(v01, v11, x);
return linearInterpolation(u, v, y);
}
float triLinearInterpolation(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z)
{
float tx = easeCurve(x);
float ty = easeCurve(y);
float tz = easeCurve(z);
#if 0
return (
v000 * (1 - tx) * (1 - ty) * (1 - tz) +
v100 * tx * (1 - ty) * (1 - tz) +
v010 * (1 - tx) * ty * (1 - tz) +
v110 * tx * ty * (1 - tz) +
v001 * (1 - tx) * (1 - ty) * tz +
v101 * tx * (1 - ty) * tz +
v011 * (1 - tx) * ty * tz +
v111 * tx * ty * tz
);
#endif
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
return linearInterpolation(u, v, tz);
}
float triLinearInterpolationNoEase(
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111,
float x, float y, float z)
{
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
return linearInterpolation(u, v, z);
}
#if 0
float noise2d_gradient(float x, float y, int seed)
{
// Calculate the integer coordinates
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
// Calculate the remaining part of the coordinates
float xl = x - (float)x0;
float yl = y - (float)y0;
// Calculate random cosine lookup table indices for the integer corners.
// They are looked up as unit vector gradients from the lookup table.
int n00 = (int)((noise2d(x0, y0, seed)+1)*8);
int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8);
int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8);
int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8);
// Make a dot product for the gradients and the positions, to get the values
float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
// Interpolate between the values
return biLinearInterpolation(s,u,v,w,xl,yl);
}
#endif
float noise2d_gradient(float x, float y, int seed, bool eased)
{
// Calculate the integer coordinates
int x0 = myfloor(x);
int y0 = myfloor(y);
// Calculate the remaining part of the coordinates
float xl = x - (float)x0;
float yl = y - (float)y0;
// Get values for corners of square
float v00 = noise2d(x0, y0, seed);
float v10 = noise2d(x0+1, y0, seed);
float v01 = noise2d(x0, y0+1, seed);
float v11 = noise2d(x0+1, y0+1, seed);
// Interpolate
if (eased)
return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
else
return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}
float noise3d_gradient(float x, float y, float z, int seed, bool eased)
{
// Calculate the integer coordinates
int x0 = myfloor(x);
int y0 = myfloor(y);
int z0 = myfloor(z);
// Calculate the remaining part of the coordinates
float xl = x - (float)x0;
float yl = y - (float)y0;
float zl = z - (float)z0;
// Get values for corners of cube
float v000 = noise3d(x0, y0, z0, seed);
float v100 = noise3d(x0 + 1, y0, z0, seed);
float v010 = noise3d(x0, y0 + 1, z0, seed);
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
float v001 = noise3d(x0, y0, z0 + 1, seed);
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
// Interpolate
if (eased) {
return triLinearInterpolation(
v000, v100, v010, v110,
v001, v101, v011, v111,
xl, yl, zl);
} else {
return triLinearInterpolationNoEase(
v000, v100, v010, v110,
v001, v101, v011, v111,
xl, yl, zl);
}
}
float noise2d_perlin(float x, float y, int seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++)
{
a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
f *= 2.0;
g *= persistence;
}
return a;
}
float noise2d_perlin_abs(float x, float y, int seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
f *= 2.0;
g *= persistence;
}
return a;
}
float noise3d_perlin(float x, float y, float z, int seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
f *= 2.0;
g *= persistence;
}
return a;
}
float noise3d_perlin_abs(float x, float y, float z, int seed,
int octaves, float persistence, bool eased)
{
float a = 0;
float f = 1.0;
float g = 1.0;
for (int i = 0; i < octaves; i++) {
a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
f *= 2.0;
g *= persistence;
}
return a;
}
float contour(float v)
{
v = fabs(v);
if (v >= 1.0)
return 0.0;
return (1.0 - v);
}
///////////////////////// [ New perlin stuff ] ////////////////////////////
Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz)
{
this->np = np;
this->seed = seed;
this->sx = sx;
this->sy = sy;
this->sz = sz;
this->persist_buf = NULL;
this->gradient_buf = NULL;
this->result = NULL;
if (np->flags & NOISE_FLAG_DEFAULTS) {
// By default, only 2d noise is eased.
if (sz <= 1)
np->flags |= NOISE_FLAG_EASED;
}
allocBuffers();
}
Noise::~Noise()
{
delete[] gradient_buf;
delete[] persist_buf;
delete[] noise_buf;
delete[] result;
}
void Noise::allocBuffers()
{
this->noise_buf = NULL;
resizeNoiseBuf(sz > 1);
delete[] gradient_buf;
delete[] persist_buf;
delete[] result;
try {
size_t bufsize = sx * sy * sz;
this->persist_buf = NULL;
this->gradient_buf = new float[bufsize];
this->result = new float[bufsize];
} catch (std::bad_alloc &e) {
throw InvalidNoiseParamsException();
}
}
void Noise::setSize(int sx, int sy, int sz)
{
this->sx = sx;
this->sy = sy;
this->sz = sz;
allocBuffers();
}
void Noise::setSpreadFactor(v3f spread)
{
this->np->spread = spread;
resizeNoiseBuf(sz > 1);
}
void Noise::setOctaves(int octaves)
{
this->np->octaves = octaves;
resizeNoiseBuf(sz > 1);
}
void Noise::resizeNoiseBuf(bool is3d)
{
int nlx, nly, nlz;
float ofactor;
//maximum possible spread value factor
ofactor = (float)(1 << (np->octaves - 1));
//noise lattice point count
//(int)(sz * spread * ofactor) is # of lattice points crossed due to length
// + 2 for the two initial endpoints
// + 1 for potentially crossing a boundary due to offset
nlx = (int)(sx * ofactor / np->spread.X) + 3;
nly = (int)(sy * ofactor / np->spread.Y) + 3;
nlz = is3d ? (int)(sz * ofactor / np->spread.Z) + 3 : 1;
delete[] noise_buf;
try {
noise_buf = new float[nlx * nly * nlz];
} catch (std::bad_alloc &e) {
throw InvalidNoiseParamsException();
}
}
/*
* NB: This algorithm is not optimal in terms of space complexity. The entire
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
* 2 lines + 2 planes.
* However, this would require the noise calls to be interposed with the
* interpolation loops, which may trash the icache, leading to lower overall
* performance.
* Another optimization that could save half as many noise calls is to carry over
* values from the previous noise lattice as midpoints in the new lattice for the
* next octave.
*/
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
float x, float y,
float step_x, float step_y,
int seed)
{
float v00, v01, v10, v11, u, v, orig_u;
int index, i, j, x0, y0, noisex, noisey;
int nlx, nly;
Interp2dFxn interpolate = (np->flags & NOISE_FLAG_EASED) ?
biLinearInterpolation : biLinearInterpolationNoEase;
x0 = floor(x);
y0 = floor(y);
u = x - (float)x0;
v = y - (float)y0;
orig_u = u;
//calculate noise point lattice
nlx = (int)(u + sx * step_x) + 2;
nly = (int)(v + sy * step_y) + 2;
index = 0;
for (j = 0; j != nly; j++)
for (i = 0; i != nlx; i++)
noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
//calculate interpolations
index = 0;
noisey = 0;
for (j = 0; j != sy; j++) {
v00 = noise_buf[idx(0, noisey)];
v10 = noise_buf[idx(1, noisey)];
v01 = noise_buf[idx(0, noisey + 1)];
v11 = noise_buf[idx(1, noisey + 1)];
u = orig_u;
noisex = 0;
for (i = 0; i != sx; i++) {
gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);
u += step_x;
if (u >= 1.0) {
u -= 1.0;
noisex++;
v00 = v10;
v01 = v11;
v10 = noise_buf[idx(noisex + 1, noisey)];
v11 = noise_buf[idx(noisex + 1, noisey + 1)];
}
}
v += step_y;
if (v >= 1.0) {
v -= 1.0;
noisey++;
}
}
}
#undef idx
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
float x, float y, float z,
float step_x, float step_y, float step_z,
int seed)
{
float v000, v010, v100, v110;
float v001, v011, v101, v111;
float u, v, w, orig_u, orig_v;
int index, i, j, k, x0, y0, z0, noisex, noisey, noisez;
int nlx, nly, nlz;
Interp3dFxn interpolate = (np->flags & NOISE_FLAG_EASED) ?
triLinearInterpolation : triLinearInterpolationNoEase;
x0 = floor(x);
y0 = floor(y);
z0 = floor(z);
u = x - (float)x0;
v = y - (float)y0;
w = z - (float)z0;
orig_u = u;
orig_v = v;
//calculate noise point lattice
nlx = (int)(u + sx * step_x) + 2;
nly = (int)(v + sy * step_y) + 2;
nlz = (int)(w + sz * step_z) + 2;
index = 0;
for (k = 0; k != nlz; k++)
for (j = 0; j != nly; j++)
for (i = 0; i != nlx; i++)
noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
//calculate interpolations
index = 0;
noisey = 0;
noisez = 0;
for (k = 0; k != sz; k++) {
v = orig_v;
noisey = 0;
for (j = 0; j != sy; j++) {
v000 = noise_buf[idx(0, noisey, noisez)];
v100 = noise_buf[idx(1, noisey, noisez)];
v010 = noise_buf[idx(0, noisey + 1, noisez)];
v110 = noise_buf[idx(1, noisey + 1, noisez)];
v001 = noise_buf[idx(0, noisey, noisez + 1)];
v101 = noise_buf[idx(1, noisey, noisez + 1)];
v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
u = orig_u;
noisex = 0;
for (i = 0; i != sx; i++) {
gradient_buf[index++] = interpolate(
v000, v100, v010, v110,
v001, v101, v011, v111,
u, v, w);
u += step_x;
if (u >= 1.0) {
u -= 1.0;
noisex++;
v000 = v100;
v010 = v110;
v100 = noise_buf[idx(noisex + 1, noisey, noisez)];
v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
v001 = v101;
v011 = v111;
v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)];
v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
}
}
v += step_y;
if (v >= 1.0) {
v -= 1.0;
noisey++;
}
}
w += step_z;
if (w >= 1.0) {
w -= 1.0;
noisez++;
}
}
}
#undef idx
float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
float f = 1.0, g = 1.0;
size_t bufsize = sx * sy;
x /= np->spread.X;
y /= np->spread.Y;
memset(result, 0, sizeof(float) * bufsize);
if (persistence_map) {
if (!persist_buf)
persist_buf = new float[bufsize];
for (size_t i = 0; i != bufsize; i++)
persist_buf[i] = 1.0;
}
for (size_t oct = 0; oct < np->octaves; oct++) {
gradientMap2D(x * f, y * f,
f / np->spread.X, f / np->spread.Y,
seed + np->seed + oct);
updateResults(g, persist_buf, persistence_map, bufsize);
f *= np->lacunarity;
g *= np->persist;
}
return result;
}
float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
float f = 1.0, g = 1.0;
size_t bufsize = sx * sy * sz;
x /= np->spread.X;
y /= np->spread.Y;
z /= np->spread.Z;
memset(result, 0, sizeof(float) * bufsize);
if (persistence_map) {
if (!persist_buf)
persist_buf = new float[bufsize];
for (size_t i = 0; i != bufsize; i++)
persist_buf[i] = 1.0;
}
for (size_t oct = 0; oct < np->octaves; oct++) {
gradientMap3D(x * f, y * f, z * f,
f / np->spread.X, f / np->spread.Y, f / np->spread.Z,
seed + np->seed + oct);
updateResults(g, persist_buf, persistence_map, bufsize);
f *= np->lacunarity;
g *= np->persist;
}
return result;
}
void Noise::updateResults(float g, float *gmap,
float *persistence_map, size_t bufsize)
{
// This looks very ugly, but it is 50-70% faster than having
// conditional statements inside the loop
if (np->flags & NOISE_FLAG_ABSVALUE) {
if (persistence_map) {
for (size_t i = 0; i != bufsize; i++) {
result[i] += gmap[i] * fabs(gradient_buf[i]);
gmap[i] *= persistence_map[i];
}
} else {
for (size_t i = 0; i != bufsize; i++)
result[i] += g * fabs(gradient_buf[i]);
}
} else {
if (persistence_map) {
for (size_t i = 0; i != bufsize; i++) {
result[i] += gmap[i] * gradient_buf[i];
gmap[i] *= persistence_map[i];
}
} else {
for (size_t i = 0; i != bufsize; i++)
result[i] += g * gradient_buf[i];
}
}
}
void Noise::transformNoiseMap()
{
// Because sx, sy, and sz are object members whose values may conceivably be
// modified in other threads. gcc (at least) will consider the buffer size
// computation as invalidated between loop comparisons, resulting in a ~2x
// slowdown even with -O2. To prevent this, store the value in a local.
size_t bufsize = sx * sy * sz;
for (size_t i = 0; i != bufsize; i++)
result[i] = result[i] * np->scale + np->offset;
}
|