summaryrefslogtreecommitdiff
path: root/src/noise.cpp
blob: e16564b05f4da07ab0f14546d74d103eb5932318 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*
 * Minetest
 * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
 * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *  1. Redistributions of source code must retain the above copyright notice, this list of
 *     conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice, this list
 *     of conditions and the following disclaimer in the documentation and/or other materials
 *     provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <cmath>
#include "noise.h"
#include <iostream>
#include <cstring> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"

#define NOISE_MAGIC_X    1619
#define NOISE_MAGIC_Y    31337
#define NOISE_MAGIC_Z    52591
#define NOISE_MAGIC_SEED 1013

typedef float (*Interp2dFxn)(
		float v00, float v10, float v01, float v11,
		float x, float y);

typedef float (*Interp3dFxn)(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z);

FlagDesc flagdesc_noiseparams[] = {
	{"defaults",    NOISE_FLAG_DEFAULTS},
	{"eased",       NOISE_FLAG_EASED},
	{"absvalue",    NOISE_FLAG_ABSVALUE},
	{"pointbuffer", NOISE_FLAG_POINTBUFFER},
	{"simplex",     NOISE_FLAG_SIMPLEX},
	{NULL,          0}
};

///////////////////////////////////////////////////////////////////////////////

PcgRandom::PcgRandom(u64 state, u64 seq)
{
	seed(state, seq);
}

void PcgRandom::seed(u64 state, u64 seq)
{
	m_state = 0U;
	m_inc = (seq << 1u) | 1u;
	next();
	m_state += state;
	next();
}


u32 PcgRandom::next()
{
	u64 oldstate = m_state;
	m_state = oldstate * 6364136223846793005ULL + m_inc;

	u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
	u32 rot = oldstate >> 59u;
	return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}


u32 PcgRandom::range(u32 bound)
{
	// If the bound is 0, we cover the whole RNG's range
	if (bound == 0)
		return next();

	/*
		This is an optimization of the expression:
		  0x100000000ull % bound
		since 64-bit modulo operations typically much slower than 32.
	*/
	u32 threshold = -bound % bound;
	u32 r;

	/*
		If the bound is not a multiple of the RNG's range, it may cause bias,
		e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
		Using rand() % 3, the number 0 would be twice as likely to appear.
		With a very large RNG range, the effect becomes less prevalent but
		still present.

		This can be solved by modifying the range of the RNG to become a
		multiple of bound by dropping values above the a threshold.

		In our example, threshold == 4 % 3 == 1, so reject values < 1
		(that is, 0), thus making the range == 3 with no bias.

		This loop may look dangerous, but will always terminate due to the
		RNG's property of uniformity.
	*/
	while ((r = next()) < threshold)
		;

	return r % bound;
}


s32 PcgRandom::range(s32 min, s32 max)
{
	if (max < min)
		throw PrngException("Invalid range (max < min)");

	// We have to cast to s64 because otherwise this could overflow,
	// and signed overflow is undefined behavior.
	u32 bound = (s64)max - (s64)min + 1;
	return range(bound) + min;
}


void PcgRandom::bytes(void *out, size_t len)
{
	u8 *outb = (u8 *)out;
	int bytes_left = 0;
	u32 r;

	while (len--) {
		if (bytes_left == 0) {
			bytes_left = sizeof(u32);
			r = next();
		}

		*outb = r & 0xFF;
		outb++;
		bytes_left--;
		r >>= CHAR_BIT;
	}
}


s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
{
	s32 accum = 0;
	for (int i = 0; i != num_trials; i++)
		accum += range(min, max);
	return myround((float)accum / num_trials);
}

///////////////////////////////////////////////////////////////////////////////

float noise2d(int x, int y, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


float noise3d(int x, int y, int z, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


inline float dotProduct(float vx, float vy, float wx, float wy)
{
	return vx * wx + vy * wy;
}


inline float linearInterpolation(float v0, float v1, float t)
{
	return v0 + (v1 - v0) * t;
}


inline float biLinearInterpolation(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float u = linearInterpolation(v00, v10, tx);
	float v = linearInterpolation(v01, v11, tx);
	return linearInterpolation(u, v, ty);
}


inline float biLinearInterpolationNoEase(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float u = linearInterpolation(v00, v10, x);
	float v = linearInterpolation(v01, v11, x);
	return linearInterpolation(u, v, y);
}


float triLinearInterpolation(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float tz = easeCurve(z);
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
	return linearInterpolation(u, v, tz);
}

float triLinearInterpolationNoEase(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
	return linearInterpolation(u, v, z);
}

float noise2d_gradient(float x, float y, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Get values for corners of square
	float v00 = noise2d(x0, y0, seed);
	float v10 = noise2d(x0+1, y0, seed);
	float v01 = noise2d(x0, y0+1, seed);
	float v11 = noise2d(x0+1, y0+1, seed);
	// Interpolate
	if (eased)
		return biLinearInterpolation(v00, v10, v01, v11, xl, yl);

	return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}


float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	int z0 = myfloor(z);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	float zl = z - (float)z0;
	// Get values for corners of cube
	float v000 = noise3d(x0,     y0,     z0,     seed);
	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
	// Interpolate
	if (eased) {
		return triLinearInterpolation(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	}

	return triLinearInterpolationNoEase(
		v000, v100, v010, v110,
		v001, v101, v011, v111,
		xl, yl, zl);
}


float noise2d_perlin(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise2d_perlin_abs(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * std::fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin_abs(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * std::fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float contour(float v)
{
	v = std::fabs(v);
	if (v >= 1.0)
		return 0.0;
	return (1.0 - v);
}


///////////////////////// [ New noise ] ////////////////////////////


float NoisePerlin2D(NoiseParams *np, float x, float y, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise2d_gradient(x * f, y * f, seed + i,
			np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = std::fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


float NoisePerlin3D(NoiseParams *np, float x, float y, float z, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	z /= np->spread.Z;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
			np->flags & NOISE_FLAG_EASED);

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = std::fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


Noise::Noise(NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
{
	np = *np_;
	this->seed = seed;
	this->sx   = sx;
	this->sy   = sy;
	this->sz   = sz;

	allocBuffers();
}


Noise::~Noise()
{
	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] noise_buf;
	delete[] result;
}


void Noise::allocBuffers()
{
	if (sx < 1)
		sx = 1;
	if (sy < 1)
		sy = 1;
	if (sz < 1)
		sz = 1;

	this->noise_buf = NULL;
	resizeNoiseBuf(sz > 1);

	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] result;

	try {
		size_t bufsize = sx * sy * sz;
		this->persist_buf  = NULL;
		this->gradient_buf = new float[bufsize];
		this->result       = new float[bufsize];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


void Noise::setSize(u32 sx, u32 sy, u32 sz)
{
	this->sx = sx;
	this->sy = sy;
	this->sz = sz;

	allocBuffers();
}


void Noise::setSpreadFactor(v3f spread)
{
	this->np.spread = spread;

	resizeNoiseBuf(sz > 1);
}


void Noise::setOctaves(int octaves)
{
	this->np.octaves = octaves;

	resizeNoiseBuf(sz > 1);
}


void Noise::resizeNoiseBuf(bool is3d)
{
	// Maximum possible spread value factor
	float ofactor = (np.lacunarity > 1.0) ?
		pow(np.lacunarity, np.octaves - 1) :
		np.lacunarity;

	// Noise lattice point count
	// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
	float num_noise_points_x = sx * ofactor / np.spread.X;
	float num_noise_points_y = sy * ofactor / np.spread.Y;
	float num_noise_points_z = sz * ofactor / np.spread.Z;

	// Protect against obviously invalid parameters
	if (num_noise_points_x > 1000000000.f ||
			num_noise_points_y > 1000000000.f ||
			num_noise_points_z > 1000000000.f)
		throw InvalidNoiseParamsException();

	// Protect against an octave having a spread < 1, causing broken noise values
	if (np.spread.X / ofactor < 1.0f ||
			np.spread.Y / ofactor < 1.0f ||
			np.spread.Z / ofactor < 1.0f) {
		errorstream << "A noise parameter has too many octaves: "
			<< np.octaves << " octaves" << std::endl;
		throw InvalidNoiseParamsException("A noise parameter has too many octaves");
	}

	// + 2 for the two initial endpoints
	// + 1 for potentially crossing a boundary due to offset
	size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3;
	size_t nly = (size_t)std::ceil(num_noise_points_y) + 3;
	size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1;

	delete[] noise_buf;
	try {
		noise_buf = new float[nlx * nly * nlz];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


/*
 * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 * 2 lines + 2 planes.
 * However, this would require the noise calls to be interposed with the
 * interpolation loops, which may trash the icache, leading to lower overall
 * performance.
 * Another optimization that could save half as many noise calls is to carry over
 * values from the previous noise lattice as midpoints in the new lattice for the
 * next octave.
 */
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
		float x, float y,
		float step_x, float step_y,
		s32 seed)
{
	float v00, v01, v10, v11, u, v, orig_u;
	u32 index, i, j, noisex, noisey;
	u32 nlx, nly;
	s32 x0, y0;

	bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
	Interp2dFxn interpolate = eased ?
		biLinearInterpolation : biLinearInterpolationNoEase;

	x0 = std::floor(x);
	y0 = std::floor(y);
	u = x - (float)x0;
	v = y - (float)y0;
	orig_u = u;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	index = 0;
	for (j = 0; j != nly; j++)
		for (i = 0; i != nlx; i++)
			noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	for (j = 0; j != sy; j++) {
		v00 = noise_buf[idx(0, noisey)];
		v10 = noise_buf[idx(1, noisey)];
		v01 = noise_buf[idx(0, noisey + 1)];
		v11 = noise_buf[idx(1, noisey + 1)];

		u = orig_u;
		noisex = 0;
		for (i = 0; i != sx; i++) {
			gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);

			u += step_x;
			if (u >= 1.0) {
				u -= 1.0;
				noisex++;
				v00 = v10;
				v01 = v11;
				v10 = noise_buf[idx(noisex + 1, noisey)];
				v11 = noise_buf[idx(noisex + 1, noisey + 1)];
			}
		}

		v += step_y;
		if (v >= 1.0) {
			v -= 1.0;
			noisey++;
		}
	}
}
#undef idx


#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
		float x, float y, float z,
		float step_x, float step_y, float step_z,
		s32 seed)
{
	float v000, v010, v100, v110;
	float v001, v011, v101, v111;
	float u, v, w, orig_u, orig_v;
	u32 index, i, j, k, noisex, noisey, noisez;
	u32 nlx, nly, nlz;
	s32 x0, y0, z0;

	Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
		triLinearInterpolation : triLinearInterpolationNoEase;

	x0 = std::floor(x);
	y0 = std::floor(y);
	z0 = std::floor(z);
	u = x - (float)x0;
	v = y - (float)y0;
	w = z - (float)z0;
	orig_u = u;
	orig_v = v;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	nlz = (u32)(w + sz * step_z) + 2;
	index = 0;
	for (k = 0; k != nlz; k++)
		for (j = 0; j != nly; j++)
			for (i = 0; i != nlx; i++)
				noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	noisez = 0;
	for (k = 0; k != sz; k++) {
		v = orig_v;
		noisey = 0;
		for (j = 0; j != sy; j++) {
			v000 = noise_buf[idx(0, noisey,     noisez)];
			v100 = noise_buf[idx(1, noisey,     noisez)];
			v010 = noise_buf[idx(0, noisey + 1, noisez)];
			v110 = noise_buf[idx(1, noisey + 1, noisez)];
			v001 = noise_buf[idx(0, noisey,     noisez + 1)];
			v101 = noise_buf[idx(1, noisey,     noisez + 1)];
			v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
			v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];

			u = orig_u;
			noisex = 0;
			for (i = 0; i != sx; i++) {
				gradient_buf[index++] = interpolate(
					v000, v100, v010, v110,
					v001, v101, v011, v111,
					u, v, w);

				u += step_x;
				if (u >= 1.0) {
					u -= 1.0;
					noisex++;
					v000 = v100;
					v010 = v110;
					v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
					v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
					v001 = v101;
					v011 = v111;
					v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
					v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
				}
			}

			v += step_y;
			if (v >= 1.0) {
				v -= 1.0;
				noisey++;
			}
		}

		w += step_z;
		if (w >= 1.0) {
			w -= 1.0;
			noisez++;
		}
	}
}
#undef idx


float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy;

	x /= np.spread.X;
	y /= np.spread.Y;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap2D(x * f, y * f,
			f / np.spread.X, f / np.spread.Y,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy * sz;

	x /= np.spread.X;
	y /= np.spread.Y;
	z /= np.spread.Z;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap3D(x * f, y * f, z * f,
			f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


void Noise::updateResults(float g, float *gmap,
	const float *persistence_map, size_t bufsize)
{
	// This looks very ugly, but it is 50-70% faster than having
	// conditional statements inside the loop
	if (np.flags & NOISE_FLAG_ABSVALUE) {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * std::fabs(gradient_buf[i]);
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * std::fabs(gradient_buf[i]);
		}
	} else {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * gradient_buf[i];
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * gradient_buf[i];
		}
	}
}