aboutsummaryrefslogtreecommitdiff
path: root/src/script/lua_api/l_object.h
blob: 2a76d8a706c32d1929b40c11a31f5187fa3edb97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#pragma once

#include "lua_api/l_base.h"
#include "irrlichttypes.h"

class ServerActiveObject;
class LuaEntitySAO;
class PlayerSAO;
class RemotePlayer;

/*
	ObjectRef
*/

class ObjectRef : public ModApiBase {
public:
	ObjectRef(ServerActiveObject *object);

	~ObjectRef() = default;

	// Creates an ObjectRef and leaves it on top of stack
	// Not callable from Lua; all references are created on the C side.
	static void create(lua_State *L, ServerActiveObject *object);

	static void set_null(lua_State *L);

	static void Register(lua_State *L);

	static ObjectRef *checkobject(lua_State *L, int narg);

	static ServerActiveObject* getobject(ObjectRef *ref);
private:
	ServerActiveObject *m_object = nullptr;

	static const char className[];
	static const luaL_Reg methods[];


	static LuaEntitySAO* getluaobject(ObjectRef *ref);

	static PlayerSAO* getplayersao(ObjectRef *ref);

	static RemotePlayer *getplayer(ObjectRef *ref);

	// Exported functions

	// garbage collector
	static int gc_object(lua_State *L);

	// remove(self)
	static int l_remove(lua_State *L);

	// get_pos(self)
	// returns: {x=num, y=num, z=num}
	static int l_get_pos(lua_State *L);

	// set_pos(self, pos)
	static int l_set_pos(lua_State *L);

	// move_to(self, pos, continuous=false)
	static int l_move_to(lua_State *L);

	// punch(self, puncher, time_from_last_punch, tool_capabilities, dir)
	static int l_punch(lua_State *L);

	// right_click(self, clicker); clicker = an another ObjectRef
	static int l_right_click(lua_State *L);

	// set_hp(self, hp)
	// hp = number of hitpoints (2 * number of hearts)
	// returns: nil
	static int l_set_hp(lua_State *L);

	// get_hp(self)
	// returns: number of hitpoints (2 * number of hearts)
	// 0 if not applicable to this type of object
	static int l_get_hp(lua_State *L);

	// get_inventory(self)
	static int l_get_inventory(lua_State *L);

	// get_wield_list(self)
	static int l_get_wield_list(lua_State *L);

	// get_wield_index(self)
	static int l_get_wield_index(lua_State *L);

	// get_wielded_item(self)
	static int l_get_wielded_item(lua_State *L);

	// set_wielded_item(self, itemstack or itemstring or table or nil)
	static int l_set_wielded_item(lua_State *L);

	// set_armor_groups(self, groups)
	static int l_set_armor_groups(lua_State *L);

	// get_armor_groups(self)
	static int l_get_armor_groups(lua_State *L);

	// set_physics_override(self, physics_override_speed, physics_override_jump,
	//                      physics_override_gravity, sneak, sneak_glitch, new_move)
	static int l_set_physics_override(lua_State *L);

	// get_physics_override(self)
	static int l_get_physics_override(lua_State *L);

	// set_animation(self, frame_range, frame_speed, frame_blend, frame_loop)
	static int l_set_animation(lua_State *L);

	// set_animation_frame_speed(self, frame_speed)
	static int l_set_animation_frame_speed(lua_State *L);

	// get_animation(self)
	static int l_get_animation(lua_State *L);

	// set_bone_position(self, std::string bone, v3f position, v3f rotation)
	static int l_set_bone_position(lua_State *L);

	// get_bone_position(self, bone)
	static int l_get_bone_position(lua_State *L);

	// set_attach(self, parent, bone, position, rotation)
	static int l_set_attach(lua_State *L);

	// get_attach(self)
	static int l_get_attach(lua_State *L);

	// set_detach(self)
	static int l_set_detach(lua_State *L);

	// set_properties(self, properties)
	static int l_set_properties(lua_State *L);

	// get_properties(self)
	static int l_get_properties(lua_State *L);

	// is_player(self)
	static int l_is_player(lua_State *L);

	/* LuaEntitySAO-only */

	// set_velocity(self, {x=num, y=num, z=num})
	static int l_set_velocity(lua_State *L);

	// get_velocity(self)
	static int l_get_velocity(lua_State *L);

	// set_acceleration(self, {x=num, y=num, z=num})
	static int l_set_acceleration(lua_State *L);

	// get_acceleration(self)
	static int l_get_acceleration(lua_State *L);

	// set_yaw(self, radians)
	static int l_set_yaw(lua_State *L);

	// get_yaw(self)
	static int l_get_yaw(lua_State *L);

	// set_texture_mod(self, mod)
	static int l_set_texture_mod(lua_State *L);

	// l_get_texture_mod(self)
	static int l_get_texture_mod(lua_State *L);

	// set_sprite(self, p={x=0,y=0}, num_frames=1, framelength=0.2,
	//           select_horiz_by_yawpitch=false)
	static int l_set_sprite(lua_State *L);

	// DEPRECATED
	// get_entity_name(self)
	static int l_get_entity_name(lua_State *L);

	// get_luaentity(self)
	static int l_get_luaentity(lua_State *L);

	/* Player-only */

	// is_player_connected(self)
	static int l_is_player_connected(lua_State *L);

	// get_player_name(self)
	static int l_get_player_name(lua_State *L);

	// get_player_velocity(self)
	static int l_get_player_velocity(lua_State *L);

	// get_look_dir(self)
	static int l_get_look_dir(lua_State *L);

	// DEPRECATED
	// get_look_pitch(self)
	static int l_get_look_pitch(lua_State *L);

	// DEPRECATED
	// get_look_yaw(self)
	static int l_get_look_yaw(lua_State *L);

	// get_look_pitch2(self)
	static int l_get_look_vertical(lua_State *L);

	// get_look_yaw2(self)
	static int l_get_look_horizontal(lua_State *L);

	// set_look_vertical(self, radians)
	static int l_set_look_vertical(lua_State *L);

	// set_look_horizontal(self, radians)
	static int l_set_look_horizontal(lua_State *L);

	// DEPRECATED
	// set_look_pitch(self, radians)
	static int l_set_look_pitch(lua_State *L);

	// DEPRECATED
	// set_look_yaw(self, radians)
	static int l_set_look_yaw(lua_State *L);

	// set_breath(self, breath)
	static int l_set_breath(lua_State *L);

	// get_breath(self, breath)
	static int l_get_breath(lua_State *L);

	// set_attribute(self, attribute, value)
	static int l_set_attribute(lua_State *L);

	// get_attribute(self, attribute)
	static int l_get_attribute(lua_State *L);

	// set_inventory_formspec(self, formspec)
	static int l_set_inventory_formspec(lua_State *L);

	// get_inventory_formspec(self) -> formspec
	static int l_get_inventory_formspec(lua_State *L);

	// get_player_control(self)
	static int l_get_player_control(lua_State *L);

	// get_player_control_bits(self)
	static int l_get_player_control_bits(lua_State *L);

	// hud_add(self, id, form)
	static int l_hud_add(lua_State *L);

	// hud_rm(self, id)
	static int l_hud_remove(lua_State *L);

	// hud_change(self, id, stat, data)
	static int l_hud_change(lua_State *L);

	// hud_get_next_id(self)
	static u32 hud_get_next_id(lua_State *L);

	// hud_get(self, id)
	static int l_hud_get(lua_State *L);

	// hud_set_flags(self, flags)
	static int l_hud_set_flags(lua_State *L);

	// hud_get_flags()
	static int l_hud_get_flags(lua_State *L);

	// hud_set_hotbar_itemcount(self, hotbar_itemcount)
	static int l_hud_set_hotbar_itemcount(lua_State *L);

	// hud_get_hotbar_itemcount(self)
	static int l_hud_get_hotbar_itemcount(lua_State *L);

	// hud_set_hotbar_image(self, name)
	static int l_hud_set_hotbar_image(lua_State *L);

	// hud_get_hotbar_image(self)
	static int l_hud_get_hotbar_image(lua_State *L);

	// hud_set_hotbar_selected_image(self, name)
	static int l_hud_set_hotbar_selected_image(lua_State *L);

	// hud_get_hotbar_selected_image(self)
	static int l_hud_get_hotbar_selected_image(lua_State *L);

	// set_sky(self, bgcolor, type, list, clouds = true)
	static int l_set_sky(lua_State *L);

	// get_sky(self)
	static int l_get_sky(lua_State *L);

	// set_clouds(self, {density=, color=, ambient=, height=, thickness=, speed=})
	static int l_set_clouds(lua_State *L);

	// get_clouds(self)
	static int l_get_clouds(lua_State *L);

	// override_day_night_ratio(self, type)
	static int l_override_day_night_ratio(lua_State *L);

	// get_day_night_ratio(self)
	static int l_get_day_night_ratio(lua_State *L);

	// set_local_animation(self, {stand/idle}, {walk}, {dig}, {walk+dig}, frame_speed)
	static int l_set_local_animation(lua_State *L);

	// get_local_animation(self)
	static int l_get_local_animation(lua_State *L);

	// set_eye_offset(self, v3f first pv, v3f third pv)
	static int l_set_eye_offset(lua_State *L);

	// get_eye_offset(self)
	static int l_get_eye_offset(lua_State *L);

	// set_nametag_attributes(self, attributes)
	static int l_set_nametag_attributes(lua_State *L);

	// get_nametag_attributes(self)
	static int l_get_nametag_attributes(lua_State *L);

};
"hl opt">; return r % bound; } s32 PcgRandom::range(s32 min, s32 max) { if (max < min) throw PrngException("Invalid range (max < min)"); // We have to cast to s64 because otherwise this could overflow, // and signed overflow is undefined behavior. u32 bound = (s64)max - (s64)min + 1; return range(bound) + min; } void PcgRandom::bytes(void *out, size_t len) { u8 *outb = (u8 *)out; int bytes_left = 0; u32 r; while (len--) { if (bytes_left == 0) { bytes_left = sizeof(u32); r = next(); } *outb = r & 0xFF; outb++; bytes_left--; r >>= CHAR_BIT; } } s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials) { s32 accum = 0; for (int i = 0; i != num_trials; i++) accum += range(min, max); return myround((float)accum / num_trials); } /////////////////////////////////////////////////////////////////////////////// float noise2d(int x, int y, s32 seed) { unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)(int)n / 0x40000000; } float noise3d(int x, int y, int z, s32 seed) { unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)(int)n / 0x40000000; } inline float dotProduct(float vx, float vy, float wx, float wy) { return vx * wx + vy * wy; } inline float linearInterpolation(float v0, float v1, float t) { return v0 + (v1 - v0) * t; } inline float biLinearInterpolation( float v00, float v10, float v01, float v11, float x, float y) { float tx = easeCurve(x); float ty = easeCurve(y); float u = linearInterpolation(v00, v10, tx); float v = linearInterpolation(v01, v11, tx); return linearInterpolation(u, v, ty); } inline float biLinearInterpolationNoEase( float v00, float v10, float v01, float v11, float x, float y) { float u = linearInterpolation(v00, v10, x); float v = linearInterpolation(v01, v11, x); return linearInterpolation(u, v, y); } float triLinearInterpolation( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float tx = easeCurve(x); float ty = easeCurve(y); float tz = easeCurve(z); float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty); return linearInterpolation(u, v, tz); } float triLinearInterpolationNoEase( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); return linearInterpolation(u, v, z); } float noise2d_gradient(float x, float y, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; // Get values for corners of square float v00 = noise2d(x0, y0, seed); float v10 = noise2d(x0+1, y0, seed); float v01 = noise2d(x0, y0+1, seed); float v11 = noise2d(x0+1, y0+1, seed); // Interpolate if (eased) return biLinearInterpolation(v00, v10, v01, v11, xl, yl); return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl); } float noise3d_gradient(float x, float y, float z, s32 seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); int z0 = myfloor(z); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; float zl = z - (float)z0; // Get values for corners of cube float v000 = noise3d(x0, y0, z0, seed); float v100 = noise3d(x0 + 1, y0, z0, seed); float v010 = noise3d(x0, y0 + 1, z0, seed); float v110 = noise3d(x0 + 1, y0 + 1, z0, seed); float v001 = noise3d(x0, y0, z0 + 1, seed); float v101 = noise3d(x0 + 1, y0, z0 + 1, seed); float v011 = noise3d(x0, y0 + 1, z0 + 1, seed); float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed); // Interpolate if (eased) { return triLinearInterpolation( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } return triLinearInterpolationNoEase( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } float noise2d_perlin(float x, float y, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise2d_gradient(x * f, y * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise2d_perlin_abs(float x, float y, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * std::fabs(noise2d_gradient(x * f, y * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin(float x, float y, float z, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin_abs(float x, float y, float z, s32 seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * std::fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float contour(float v) { v = std::fabs(v); if (v >= 1.0) return 0.0; return (1.0 - v); } ///////////////////////// [ New noise ] //////////////////////////// float NoisePerlin2D(NoiseParams *np, float x, float y, s32 seed) { float a = 0; float f = 1.0; float g = 1.0; x /= np->spread.X; y /= np->spread.Y; seed += np->seed; for (size_t i = 0; i < np->octaves; i++) { float noiseval = noise2d_gradient(x * f, y * f, seed + i, np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED)); if (np->flags & NOISE_FLAG_ABSVALUE) noiseval = std::fabs(noiseval); a += g * noiseval; f *= np->lacunarity; g *= np->persist; } return np->offset + a * np->scale; } float NoisePerlin3D(NoiseParams *np, float x, float y, float z, s32 seed) { float a = 0; float f = 1.0; float g = 1.0; x /= np->spread.X; y /= np->spread.Y; z /= np->spread.Z; seed += np->seed; for (size_t i = 0; i < np->octaves; i++) { float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i, np->flags & NOISE_FLAG_EASED); if (np->flags & NOISE_FLAG_ABSVALUE) noiseval = std::fabs(noiseval); a += g * noiseval; f *= np->lacunarity; g *= np->persist; } return np->offset + a * np->scale; } Noise::Noise(NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz) { memcpy(&np, np_, sizeof(np)); this->seed = seed; this->sx = sx; this->sy = sy; this->sz = sz; allocBuffers(); } Noise::~Noise() { delete[] gradient_buf; delete[] persist_buf; delete[] noise_buf; delete[] result; } void Noise::allocBuffers() { if (sx < 1) sx = 1; if (sy < 1) sy = 1; if (sz < 1) sz = 1; this->noise_buf = NULL; resizeNoiseBuf(sz > 1); delete[] gradient_buf; delete[] persist_buf; delete[] result; try { size_t bufsize = sx * sy * sz; this->persist_buf = NULL; this->gradient_buf = new float[bufsize]; this->result = new float[bufsize]; } catch (std::bad_alloc &e) { throw InvalidNoiseParamsException(); } } void Noise::setSize(u32 sx, u32 sy, u32 sz) { this->sx = sx; this->sy = sy; this->sz = sz; allocBuffers(); } void Noise::setSpreadFactor(v3f spread) { this->np.spread = spread; resizeNoiseBuf(sz > 1); } void Noise::setOctaves(int octaves) { this->np.octaves = octaves; resizeNoiseBuf(sz > 1); } void Noise::resizeNoiseBuf(bool is3d) { //maximum possible spread value factor float ofactor = (np.lacunarity > 1.0) ? pow(np.lacunarity, np.octaves - 1) : np.lacunarity; // noise lattice point count // (int)(sz * spread * ofactor) is # of lattice points crossed due to length float num_noise_points_x = sx * ofactor / np.spread.X; float num_noise_points_y = sy * ofactor / np.spread.Y; float num_noise_points_z = sz * ofactor / np.spread.Z; // protect against obviously invalid parameters if (num_noise_points_x > 1000000000.f || num_noise_points_y > 1000000000.f || num_noise_points_z > 1000000000.f) throw InvalidNoiseParamsException(); // + 2 for the two initial endpoints // + 1 for potentially crossing a boundary due to offset size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3; size_t nly = (size_t)std::ceil(num_noise_points_y) + 3; size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1; delete[] noise_buf; try { noise_buf = new float[nlx * nly * nlz]; } catch (std::bad_alloc &e) { throw InvalidNoiseParamsException(); } } /* * NB: This algorithm is not optimal in terms of space complexity. The entire * integer lattice of noise points could be done as 2 lines instead, and for 3D, * 2 lines + 2 planes. * However, this would require the noise calls to be interposed with the * interpolation loops, which may trash the icache, leading to lower overall * performance. * Another optimization that could save half as many noise calls is to carry over * values from the previous noise lattice as midpoints in the new lattice for the * next octave. */ #define idx(x, y) ((y) * nlx + (x)) void Noise::gradientMap2D( float x, float y, float step_x, float step_y, s32 seed) { float v00, v01, v10, v11, u, v, orig_u; u32 index, i, j, noisex, noisey; u32 nlx, nly; s32 x0, y0; bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED); Interp2dFxn interpolate = eased ? biLinearInterpolation : biLinearInterpolationNoEase; x0 = std::floor(x); y0 = std::floor(y); u = x - (float)x0; v = y - (float)y0; orig_u = u; //calculate noise point lattice nlx = (u32)(u + sx * step_x) + 2; nly = (u32)(v + sy * step_y) + 2; index = 0; for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) noise_buf[index++] = noise2d(x0 + i, y0 + j, seed); //calculate interpolations index = 0; noisey = 0; for (j = 0; j != sy; j++) { v00 = noise_buf[idx(0, noisey)]; v10 = noise_buf[idx(1, noisey)]; v01 = noise_buf[idx(0, noisey + 1)]; v11 = noise_buf[idx(1, noisey + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v); u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v00 = v10; v01 = v11; v10 = noise_buf[idx(noisex + 1, noisey)]; v11 = noise_buf[idx(noisex + 1, noisey + 1)]; } } v += step_y; if (v >= 1.0) { v -= 1.0; noisey++; } } } #undef idx #define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x)) void Noise::gradientMap3D( float x, float y, float z, float step_x, float step_y, float step_z, s32 seed) { float v000, v010, v100, v110; float v001, v011, v101, v111; float u, v, w, orig_u, orig_v; u32 index, i, j, k, noisex, noisey, noisez; u32 nlx, nly, nlz; s32 x0, y0, z0; Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ? triLinearInterpolation : triLinearInterpolationNoEase; x0 = std::floor(x); y0 = std::floor(y); z0 = std::floor(z); u = x - (float)x0; v = y - (float)y0; w = z - (float)z0; orig_u = u; orig_v = v; //calculate noise point lattice nlx = (u32)(u + sx * step_x) + 2; nly = (u32)(v + sy * step_y) + 2; nlz = (u32)(w + sz * step_z) + 2; index = 0; for (k = 0; k != nlz; k++) for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed); //calculate interpolations index = 0; noisey = 0; noisez = 0; for (k = 0; k != sz; k++) { v = orig_v; noisey = 0; for (j = 0; j != sy; j++) { v000 = noise_buf[idx(0, noisey, noisez)]; v100 = noise_buf[idx(1, noisey, noisez)]; v010 = noise_buf[idx(0, noisey + 1, noisez)]; v110 = noise_buf[idx(1, noisey + 1, noisez)]; v001 = noise_buf[idx(0, noisey, noisez + 1)]; v101 = noise_buf[idx(1, noisey, noisez + 1)]; v011 = noise_buf[idx(0, noisey + 1, noisez + 1)]; v111 = noise_buf[idx(1, noisey + 1, noisez + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { gradient_buf[index++] = interpolate( v000, v100, v010, v110, v001, v101, v011, v111, u, v, w); u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v000 = v100; v010 = v110; v100 = noise_buf[idx(noisex + 1, noisey, noisez)]; v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)]; v001 = v101; v011 = v111; v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)]; v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)]; } } v += step_y; if (v >= 1.0) { v -= 1.0; noisey++; } } w += step_z; if (w >= 1.0) { w -= 1.0; noisez++; } } } #undef idx float *Noise::perlinMap2D(float x, float y, float *persistence_map) { float f = 1.0, g = 1.0; size_t bufsize = sx * sy; x /= np.spread.X; y /= np.spread.Y; memset(result, 0, sizeof(float) * bufsize); if (persistence_map) { if (!persist_buf) persist_buf = new float[bufsize]; for (size_t i = 0; i != bufsize; i++) persist_buf[i] = 1.0; } for (size_t oct = 0; oct < np.octaves; oct++) { gradientMap2D(x * f, y * f, f / np.spread.X, f / np.spread.Y, seed + np.seed + oct); updateResults(g, persist_buf, persistence_map, bufsize); f *= np.lacunarity; g *= np.persist; } if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) { for (size_t i = 0; i != bufsize; i++) result[i] = result[i] * np.scale + np.offset; } return result; } float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map) { float f = 1.0, g = 1.0; size_t bufsize = sx * sy * sz; x /= np.spread.X; y /= np.spread.Y; z /= np.spread.Z; memset(result, 0, sizeof(float) * bufsize); if (persistence_map) { if (!persist_buf) persist_buf = new float[bufsize]; for (size_t i = 0; i != bufsize; i++) persist_buf[i] = 1.0; } for (size_t oct = 0; oct < np.octaves; oct++) { gradientMap3D(x * f, y * f, z * f, f / np.spread.X, f / np.spread.Y, f / np.spread.Z, seed + np.seed + oct); updateResults(g, persist_buf, persistence_map, bufsize); f *= np.lacunarity; g *= np.persist; } if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) { for (size_t i = 0; i != bufsize; i++) result[i] = result[i] * np.scale + np.offset; } return result; } void Noise::updateResults(float g, float *gmap, const float *persistence_map, size_t bufsize) { // This looks very ugly, but it is 50-70% faster than having // conditional statements inside the loop if (np.flags & NOISE_FLAG_ABSVALUE) { if (persistence_map) { for (size_t i = 0; i != bufsize; i++) { result[i] += gmap[i] * std::fabs(gradient_buf[i]); gmap[i] *= persistence_map[i]; } } else { for (size_t i = 0; i != bufsize; i++) result[i] += g * std::fabs(gradient_buf[i]); } } else { if (persistence_map) { for (size_t i = 0; i != bufsize; i++) { result[i] += gmap[i] * gradient_buf[i]; gmap[i] *= persistence_map[i]; } } else { for (size_t i = 0; i != bufsize; i++) result[i] += g * gradient_buf[i]; } } }