aboutsummaryrefslogtreecommitdiff
path: root/src/script/lua_api/l_object.h
blob: a826384421153a12f60662c767f2dc021c87fbfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#ifndef L_OBJECT_H_
#define L_OBJECT_H_

extern "C" {
#include <lua.h>
#include <lauxlib.h>
}

class ServerActiveObject;
class LuaEntitySAO;
class PlayerSAO;
class Player;

/*
	ObjectRef
*/

class ObjectRef
{
private:
	ServerActiveObject *m_object;

	static const char className[];
	static const luaL_reg methods[];
public:
	static ObjectRef *checkobject(lua_State *L, int narg);

	static ServerActiveObject* getobject(ObjectRef *ref);
private:
	static LuaEntitySAO* getluaobject(ObjectRef *ref);

	static PlayerSAO* getplayersao(ObjectRef *ref);

	static Player* getplayer(ObjectRef *ref);

	// Exported functions

	// garbage collector
	static int gc_object(lua_State *L);

	// remove(self)
	static int l_remove(lua_State *L);

	// getpos(self)
	// returns: {x=num, y=num, z=num}
	static int l_getpos(lua_State *L);

	// setpos(self, pos)
	static int l_setpos(lua_State *L);

	// moveto(self, pos, continuous=false)
	static int l_moveto(lua_State *L);

	// punch(self, puncher, time_from_last_punch, tool_capabilities, dir)
	static int l_punch(lua_State *L);

	// right_click(self, clicker); clicker = an another ObjectRef
	static int l_right_click(lua_State *L);

	// set_hp(self, hp)
	// hp = number of hitpoints (2 * number of hearts)
	// returns: nil
	static int l_set_hp(lua_State *L);

	// get_hp(self)
	// returns: number of hitpoints (2 * number of hearts)
	// 0 if not applicable to this type of object
	static int l_get_hp(lua_State *L);

	// get_inventory(self)
	static int l_get_inventory(lua_State *L);

	// get_wield_list(self)
	static int l_get_wield_list(lua_State *L);

	// get_wield_index(self)
	static int l_get_wield_index(lua_State *L);

	// get_wielded_item(self)
	static int l_get_wielded_item(lua_State *L);

	// set_wielded_item(self, itemstack or itemstring or table or nil)
	static int l_set_wielded_item(lua_State *L);

	// set_armor_groups(self, groups)
	static int l_set_armor_groups(lua_State *L);

	// set_physics_override(self, physics_override_speed, physics_override_jump, physics_override_gravity)
	static int l_set_physics_override(lua_State *L);

	// set_animation(self, frame_range, frame_speed, frame_blend)
	static int l_set_animation(lua_State *L);

	// set_bone_position(self, std::string bone, v3f position, v3f rotation)
	static int l_set_bone_position(lua_State *L);

	// set_attach(self, parent, bone, position, rotation)
	static int l_set_attach(lua_State *L);

	// set_detach(self)
	static int l_set_detach(lua_State *L);

	// set_properties(self, properties)
	static int l_set_properties(lua_State *L);

	/* LuaEntitySAO-only */

	// setvelocity(self, {x=num, y=num, z=num})
	static int l_setvelocity(lua_State *L);

	// getvelocity(self)
	static int l_getvelocity(lua_State *L);

	// setacceleration(self, {x=num, y=num, z=num})
	static int l_setacceleration(lua_State *L);

	// getacceleration(self)
	static int l_getacceleration(lua_State *L);

	// setyaw(self, radians)
	static int l_setyaw(lua_State *L);

	// getyaw(self)
	static int l_getyaw(lua_State *L);

	// settexturemod(self, mod)
	static int l_settexturemod(lua_State *L);

	// setsprite(self, p={x=0,y=0}, num_frames=1, framelength=0.2,
	//           select_horiz_by_yawpitch=false)
	static int l_setsprite(lua_State *L);

	// DEPRECATED
	// get_entity_name(self)
	static int l_get_entity_name(lua_State *L);

	// get_luaentity(self)
	static int l_get_luaentity(lua_State *L);

	/* Player-only */

	// is_player(self)
	static int l_is_player(lua_State *L);

	// get_player_name(self)
	static int l_get_player_name(lua_State *L);

	// get_look_dir(self)
	static int l_get_look_dir(lua_State *L);

	// get_look_pitch(self)
	static int l_get_look_pitch(lua_State *L);

	// get_look_yaw(self)
	static int l_get_look_yaw(lua_State *L);

	// set_look_pitch(self, radians)
	static int l_set_look_pitch(lua_State *L);

	// set_look_yaw(self, radians)
	static int l_set_look_yaw(lua_State *L);

	// set_breath(self, breath)
	static int l_set_breath(lua_State *L);

	// get_breath(self, breath)
	static int l_get_breath(lua_State *L);

	// set_inventory_formspec(self, formspec)
	static int l_set_inventory_formspec(lua_State *L);

	// get_inventory_formspec(self) -> formspec
	static int l_get_inventory_formspec(lua_State *L);

	// get_player_control(self)
	static int l_get_player_control(lua_State *L);

	// get_player_control_bits(self)
	static int l_get_player_control_bits(lua_State *L);

	// hud_add(self, id, form)
	static int l_hud_add(lua_State *L);

	// hud_rm(self, id)
	static int l_hud_remove(lua_State *L);

	// hud_change(self, id, stat, data)
	static int l_hud_change(lua_State *L);

	// hud_get_next_id(self)
	static u32 hud_get_next_id(lua_State *L);

	// hud_get(self, id)
	static int l_hud_get(lua_State *L);

	// hud_set_flags(self, flags)
	static int l_hud_set_flags(lua_State *L);

	// hud_set_hotbar_itemcount(self, hotbar_itemcount)
	static int l_hud_set_hotbar_itemcount(lua_State *L);

public:
	ObjectRef(ServerActiveObject *object);

	~ObjectRef();

	// Creates an ObjectRef and leaves it on top of stack
	// Not callable from Lua; all references are created on the C side.
	static void create(lua_State *L, ServerActiveObject *object);

	static void set_null(lua_State *L);

	static void Register(lua_State *L);
};

#endif /* L_OBJECT_H_ */
an>, 0, -0.3826, -0.7071, -0.9238, 1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238 }; /////////////////////////////////////////////////////////////////////////////// //noise poly: p(n) = 60493n^3 + 19990303n + 137612589 float noise2d(int x, int y, int seed) { int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)n / 0x40000000; } float noise3d(int x, int y, int z, int seed) { int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n >> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)n / 0x40000000; } float dotProduct(float vx, float vy, float wx, float wy) { return vx * wx + vy * wy; } inline float linearInterpolation(float v0, float v1, float t) { return v0 + (v1 - v0) * t; } float biLinearInterpolation( float v00, float v10, float v01, float v11, float x, float y) { float tx = easeCurve(x); float ty = easeCurve(y); float u = linearInterpolation(v00, v10, tx); float v = linearInterpolation(v01, v11, tx); return linearInterpolation(u, v, ty); } float biLinearInterpolationNoEase( float x0y0, float x1y0, float x0y1, float x1y1, float x, float y) { float u = linearInterpolation(x0y0, x1y0, x); float v = linearInterpolation(x0y1, x1y1, x); return linearInterpolation(u, v, y); } /* float triLinearInterpolation( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float u = biLinearInterpolation(v000, v100, v010, v110, x, y); float v = biLinearInterpolation(v001, v101, v011, v111, x, y); return linearInterpolation(u, v, z); } float triLinearInterpolationNoEase( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); return linearInterpolation(u, v, z); } */ float triLinearInterpolation( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float tx = easeCurve(x); float ty = easeCurve(y); float tz = easeCurve(z); return ( v000 * (1 - tx) * (1 - ty) * (1 - tz) + v100 * tx * (1 - ty) * (1 - tz) + v010 * (1 - tx) * ty * (1 - tz) + v110 * tx * ty * (1 - tz) + v001 * (1 - tx) * (1 - ty) * tz + v101 * tx * (1 - ty) * tz + v011 * (1 - tx) * ty * tz + v111 * tx * ty * tz ); } float triLinearInterpolationNoEase( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float tx = x; float ty = y; float tz = z; return ( v000 * (1 - tx) * (1 - ty) * (1 - tz) + v100 * tx * (1 - ty) * (1 - tz) + v010 * (1 - tx) * ty * (1 - tz) + v110 * tx * ty * (1 - tz) + v001 * (1 - tx) * (1 - ty) * tz + v101 * tx * (1 - ty) * tz + v011 * (1 - tx) * ty * tz + v111 * tx * ty * tz ); } #if 0 float noise2d_gradient(float x, float y, int seed) { // Calculate the integer coordinates int x0 = (x > 0.0 ? (int)x : (int)x - 1); int y0 = (y > 0.0 ? (int)y : (int)y - 1); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; // Calculate random cosine lookup table indices for the integer corners. // They are looked up as unit vector gradients from the lookup table. int n00 = (int)((noise2d(x0, y0, seed)+1)*8); int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8); int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8); int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8); // Make a dot product for the gradients and the positions, to get the values float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl); float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl); float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl); float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl); // Interpolate between the values return biLinearInterpolation(s,u,v,w,xl,yl); } #endif float noise2d_gradient(float x, float y, int seed) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; // Get values for corners of square float v00 = noise2d(x0, y0, seed); float v10 = noise2d(x0+1, y0, seed); float v01 = noise2d(x0, y0+1, seed); float v11 = noise2d(x0+1, y0+1, seed); // Interpolate return biLinearInterpolation(v00, v10, v01, v11, xl, yl); } float noise3d_gradient(float x, float y, float z, int seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); int z0 = myfloor(z); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; float zl = z - (float)z0; // Get values for corners of cube float v000 = noise3d(x0, y0, z0, seed); float v100 = noise3d(x0 + 1, y0, z0, seed); float v010 = noise3d(x0, y0 + 1, z0, seed); float v110 = noise3d(x0 + 1, y0 + 1, z0, seed); float v001 = noise3d(x0, y0, z0 + 1, seed); float v101 = noise3d(x0 + 1, y0, z0 + 1, seed); float v011 = noise3d(x0, y0 + 1, z0 + 1, seed); float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed); // Interpolate if (eased) { return triLinearInterpolation( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } else { return triLinearInterpolationNoEase( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } } float noise2d_perlin(float x, float y, int seed, int octaves, float persistence) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise2d_gradient(x * f, y * f, seed + i); f *= 2.0; g *= persistence; } return a; } float noise2d_perlin_abs(float x, float y, int seed, int octaves, float persistence) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * fabs(noise2d_gradient(x * f, y * f, seed + i)); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin(float x, float y, float z, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin_abs(float x, float y, float z, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float contour(float v) { v = fabs(v); if(v >= 1.0) return 0.0; return (1.0 - v); } ///////////////////////// [ New perlin stuff ] //////////////////////////// Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz) { this->np = np; this->seed = seed; this->sx = sx; this->sy = sy; this->sz = sz; this->noisebuf = NULL; resizeNoiseBuf(sz > 1); this->buf = new float[sx * sy * sz]; this->result = new float[sx * sy * sz]; } Noise::~Noise() { delete[] buf; delete[] result; delete[] noisebuf; } void Noise::setSize(int sx, int sy, int sz) { this->sx = sx; this->sy = sy; this->sz = sz; this->noisebuf = NULL; resizeNoiseBuf(sz > 1); delete[] buf; delete[] result; this->buf = new float[sx * sy * sz]; this->result = new float[sx * sy * sz]; } void Noise::setSpreadFactor(v3f spread) { this->np->spread = spread; resizeNoiseBuf(sz > 1); } void Noise::setOctaves(int octaves) { this->np->octaves = octaves; resizeNoiseBuf(sz > 1); } void Noise::resizeNoiseBuf(bool is3d) { int nlx, nly, nlz; float ofactor; //maximum possible spread value factor ofactor = (float)(1 << (np->octaves - 1)); //noise lattice point count //(int)(sz * spread * ofactor) is # of lattice points crossed due to length // + 2 for the two initial endpoints // + 1 for potentially crossing a boundary due to offset nlx = (int)(sx * ofactor / np->spread.X) + 3; nly = (int)(sy * ofactor / np->spread.Y) + 3; nlz = is3d ? (int)(sz * ofactor / np->spread.Z) + 3 : 1; if (noisebuf) delete[] noisebuf; noisebuf = new float[nlx * nly * nlz]; } /* * NB: This algorithm is not optimal in terms of space complexity. The entire * integer lattice of noise points could be done as 2 lines instead, and for 3D, * 2 lines + 2 planes. * However, this would require the noise calls to be interposed with the * interpolation loops, which may trash the icache, leading to lower overall * performance. * Another optimization that could save half as many noise calls is to carry over * values from the previous noise lattice as midpoints in the new lattice for the * next octave. */ #define idx(x, y) ((y) * nlx + (x)) void Noise::gradientMap2D( float x, float y, float step_x, float step_y, int seed) { float v00, v01, v10, v11, u, v, orig_u; int index, i, j, x0, y0, noisex, noisey; int nlx, nly; x0 = floor(x); y0 = floor(y); u = x - (float)x0; v = y - (float)y0; orig_u = u; //calculate noise point lattice nlx = (int)(u + sx * step_x) + 2; nly = (int)(v + sy * step_y) + 2; index = 0; for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) noisebuf[index++] = noise2d(x0 + i, y0 + j, seed); //calculate interpolations index = 0; noisey = 0; for (j = 0; j != sy; j++) { v00 = noisebuf[idx(0, noisey)]; v10 = noisebuf[idx(1, noisey)]; v01 = noisebuf[idx(0, noisey + 1)]; v11 = noisebuf[idx(1, noisey + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { buf[index++] = biLinearInterpolation(v00, v10, v01, v11, u, v); u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v00 = v10; v01 = v11; v10 = noisebuf[idx(noisex + 1, noisey)]; v11 = noisebuf[idx(noisex + 1, noisey + 1)]; } } v += step_y; if (v >= 1.0) { v -= 1.0; noisey++; } } } #undef idx #define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x)) void Noise::gradientMap3D( float x, float y, float z, float step_x, float step_y, float step_z, int seed, bool eased) { float v000, v010, v100, v110; float v001, v011, v101, v111; float u, v, w, orig_u, orig_v; int index, i, j, k, x0, y0, z0, noisex, noisey, noisez; int nlx, nly, nlz; Interp3dFxn interpolate = eased ? triLinearInterpolation : triLinearInterpolationNoEase; x0 = floor(x); y0 = floor(y); z0 = floor(z); u = x - (float)x0; v = y - (float)y0; w = z - (float)z0; orig_u = u; orig_v = v; //calculate noise point lattice nlx = (int)(u + sx * step_x) + 2; nly = (int)(v + sy * step_y) + 2; nlz = (int)(w + sz * step_z) + 2; index = 0; for (k = 0; k != nlz; k++) for (j = 0; j != nly; j++) for (i = 0; i != nlx; i++) noisebuf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed); //calculate interpolations index = 0; noisey = 0; noisez = 0; for (k = 0; k != sz; k++) { v = orig_v; noisey = 0; for (j = 0; j != sy; j++) { v000 = noisebuf[idx(0, noisey, noisez)]; v100 = noisebuf[idx(1, noisey, noisez)]; v010 = noisebuf[idx(0, noisey + 1, noisez)]; v110 = noisebuf[idx(1, noisey + 1, noisez)]; v001 = noisebuf[idx(0, noisey, noisez + 1)]; v101 = noisebuf[idx(1, noisey, noisez + 1)]; v011 = noisebuf[idx(0, noisey + 1, noisez + 1)]; v111 = noisebuf[idx(1, noisey + 1, noisez + 1)]; u = orig_u; noisex = 0; for (i = 0; i != sx; i++) { buf[index++] = interpolate( v000, v100, v010, v110, v001, v101, v011, v111, u, v, w); u += step_x; if (u >= 1.0) { u -= 1.0; noisex++; v000 = v100; v010 = v110; v100 = noisebuf[idx(noisex + 1, noisey, noisez)]; v110 = noisebuf[idx(noisex + 1, noisey + 1, noisez)]; v001 = v101; v011 = v111; v101 = noisebuf[idx(noisex + 1, noisey, noisez + 1)]; v111 = noisebuf[idx(noisex + 1, noisey + 1, noisez + 1)]; } } v += step_y; if (v >= 1.0) { v -= 1.0; noisey++; } } w += step_z; if (w >= 1.0) { w -= 1.0; noisez++; } } } #undef idx float *Noise::perlinMap2D(float x, float y) { float f = 1.0, g = 1.0; size_t bufsize = sx * sy; x /= np->spread.X; y /= np->spread.Y; memset(result, 0, sizeof(float) * bufsize); for (int oct = 0; oct < np->octaves; oct++) { gradientMap2D(x * f, y * f, f / np->spread.X, f / np->spread.Y, seed + np->seed + oct); for (size_t i = 0; i != bufsize; i++) result[i] += g * buf[i]; f *= 2.0; g *= np->persist; } return result; } float *Noise::perlinMap2DModulated(float x, float y, float *persist_map) { float f = 1.0; size_t bufsize = sx * sy; x /= np->spread.X; y /= np->spread.Y; memset(result, 0, sizeof(float) * bufsize); float *g = new float[bufsize]; for (size_t i = 0; i != bufsize; i++) g[i] = 1.0; for (int oct = 0; oct < np->octaves; oct++) { gradientMap2D(x * f, y * f, f / np->spread.X, f / np->spread.Y, seed + np->seed + oct); for (size_t i = 0; i != bufsize; i++) { result[i] += g[i] * buf[i]; g[i] *= persist_map[i]; } f *= 2.0; } delete[] g; return result; } float *Noise::perlinMap3D(float x, float y, float z, bool eased) { float f = 1.0, g = 1.0; size_t bufsize = sx * sy * sz; x /= np->spread.X; y /= np->spread.Y; z /= np->spread.Z; memset(result, 0, sizeof(float) * bufsize); for (int oct = 0; oct < np->octaves; oct++) { gradientMap3D(x * f, y * f, z * f, f / np->spread.X, f / np->spread.Y, f / np->spread.Z, seed + np->seed + oct, eased); for (size_t i = 0; i != bufsize; i++) result[i] += g * buf[i]; f *= 2.0; g *= np->persist; } return result; } void Noise::transformNoiseMap() { size_t i = 0; for (int z = 0; z != sz; z++) for (int y = 0; y != sy; y++) for (int x = 0; x != sx; x++) { result[i] = result[i] * np->scale + np->offset; i++; } }