aboutsummaryrefslogtreecommitdiff
path: root/src/unittest/test_threading.cpp
blob: 8d4d814fd3ede8f24fd61b680c007a5b7c71981e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "test.h"

#include <atomic>
#include "threading/semaphore.h"
#include "threading/thread.h"


class TestThreading : public TestBase {
public:
	TestThreading() { TestManager::registerTestModule(this); }
	const char *getName() { return "TestThreading"; }
	void runTests(IGameDef *gamedef);

	void testStartStopWait();
	void testThreadKill();
	void testAtomicSemaphoreThread();
};

static TestThreading g_test_instance;

void TestThreading::runTests(IGameDef *gamedef)
{
	TEST(testStartStopWait);
	TEST(testThreadKill);
	TEST(testAtomicSemaphoreThread);
}

class SimpleTestThread : public Thread {
public:
	SimpleTestThread(unsigned int interval) :
		Thread("SimpleTest"),
		m_interval(interval)
	{
	}

private:
	void *run()
	{
		void *retval = this;

		if (isCurrentThread() == false)
			retval = (void *)0xBAD;

		while (!stopRequested())
			sleep_ms(m_interval);

		return retval;
	}

	unsigned int m_interval;
};

void TestThreading::testStartStopWait()
{
	void *thread_retval;
	SimpleTestThread *thread = new SimpleTestThread(25);

	// Try this a couple times, since a Thread should be reusable after waiting
	for (size_t i = 0; i != 5; i++) {
		// Can't wait() on a joined, stopped thread
		UASSERT(thread->wait() == false);

		// start() should work the first time, but not the second.
		UASSERT(thread->start() == true);
		UASSERT(thread->start() == false);

		UASSERT(thread->isRunning() == true);
		UASSERT(thread->isCurrentThread() == false);

		// Let it loop a few times...
		sleep_ms(70);

		// It's still running, so the return value shouldn't be available to us.
		UASSERT(thread->getReturnValue(&thread_retval) == false);

		// stop() should always succeed
		UASSERT(thread->stop() == true);

		// wait() only needs to wait the first time - the other two are no-ops.
		UASSERT(thread->wait() == true);
		UASSERT(thread->wait() == false);
		UASSERT(thread->wait() == false);

		// Now that the thread is stopped, we should be able to get the
		// return value, and it should be the object itself.
		thread_retval = NULL;
		UASSERT(thread->getReturnValue(&thread_retval) == true);
		UASSERT(thread_retval == thread);
	}

	delete thread;
}


void TestThreading::testThreadKill()
{
	SimpleTestThread *thread = new SimpleTestThread(300);

	UASSERT(thread->start() == true);

	// kill()ing is quite violent, so let's make sure our victim is sleeping
	// before we do this... so we don't corrupt the rest of the program's state
	sleep_ms(100);
	UASSERT(thread->kill() == true);

	// The state of the thread object should be reset if all went well
	UASSERT(thread->isRunning() == false);
	UASSERT(thread->start() == true);
	UASSERT(thread->stop() == true);
	UASSERT(thread->wait() == true);

	// kill() after already waiting should fail.
	UASSERT(thread->kill() == false);

	delete thread;
}


class AtomicTestThread : public Thread {
public:
	AtomicTestThread(std::atomic<u32> &v, Semaphore &trigger) :
		Thread("AtomicTest"),
		val(v),
		trigger(trigger)
	{
	}

private:
	void *run()
	{
		trigger.wait();
		for (u32 i = 0; i < 0x10000; ++i)
			++val;
		return NULL;
	}

	std::atomic<u32> &val;
	Semaphore &trigger;
};


void TestThreading::testAtomicSemaphoreThread()
{
	std::atomic<u32> val;
	val = 0;
	Semaphore trigger;
	static const u8 num_threads = 4;

	AtomicTestThread *threads[num_threads];
	for (auto &thread : threads) {
		thread = new AtomicTestThread(val, trigger);
		UASSERT(thread->start());
	}

	trigger.post(num_threads);

	for (AtomicTestThread *thread : threads) {
		thread->wait();
		delete thread;
	}

	UASSERT(val == num_threads * 0x10000);
}

2.lib") #endif typedef SOCKET socket_t; typedef int socklen_t; #else #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <fcntl.h> #include <netdb.h> #include <unistd.h> #include <arpa/inet.h> typedef int socket_t; #endif // Set to true to enable verbose debug output bool socket_enable_debug_output = false; bool g_sockets_initialized = false; // Initialize sockets void sockets_init() { #ifdef _WIN32 // Windows needs sockets to be initialized before use WSADATA WsaData; if(WSAStartup( MAKEWORD(2,2), &WsaData ) != NO_ERROR) throw SocketException("WSAStartup failed"); #endif g_sockets_initialized = true; } void sockets_cleanup() { #ifdef _WIN32 // On Windows, cleanup sockets after use WSACleanup(); #endif } /* Address */ Address::Address() { m_addr_family = 0; memset(&m_address, 0, sizeof(m_address)); m_port = 0; } Address::Address(u32 address, u16 port) { memset(&m_address, 0, sizeof(m_address)); setAddress(address); setPort(port); } Address::Address(u8 a, u8 b, u8 c, u8 d, u16 port) { memset(&m_address, 0, sizeof(m_address)); setAddress(a, b, c, d); setPort(port); } Address::Address(const IPv6AddressBytes * ipv6_bytes, u16 port) { memset(&m_address, 0, sizeof(m_address)); setAddress(ipv6_bytes); setPort(port); } // Equality (address family, address and port must be equal) bool Address::operator==(Address &address) { if(address.m_addr_family != m_addr_family || address.m_port != m_port) return false; else if(m_addr_family == AF_INET) { return m_address.ipv4.sin_addr.s_addr == address.m_address.ipv4.sin_addr.s_addr; } else if(m_addr_family == AF_INET6) { return memcmp(m_address.ipv6.sin6_addr.s6_addr, address.m_address.ipv6.sin6_addr.s6_addr, 16) == 0; } else return false; } bool Address::operator!=(Address &address) { return !(*this == address); } void Address::Resolve(const char *name) { if (!name || name[0] == 0) { if (m_addr_family == AF_INET) { setAddress((u32) 0); } else if (m_addr_family == AF_INET6) { setAddress((IPv6AddressBytes*) 0); } return; } struct addrinfo *resolved, hints; memset(&hints, 0, sizeof(hints)); // Setup hints hints.ai_socktype = 0; hints.ai_protocol = 0; hints.ai_flags = 0; if(g_settings->getBool("enable_ipv6")) { // AF_UNSPEC allows both IPv6 and IPv4 addresses to be returned hints.ai_family = AF_UNSPEC; } else { hints.ai_family = AF_INET; } // Do getaddrinfo() int e = getaddrinfo(name, NULL, &hints, &resolved); if(e != 0) throw ResolveError(gai_strerror(e)); // Copy data if(resolved->ai_family == AF_INET) { struct sockaddr_in *t = (struct sockaddr_in *) resolved->ai_addr; m_addr_family = AF_INET; m_address.ipv4 = *t; } else if(resolved->ai_family == AF_INET6) { struct sockaddr_in6 *t = (struct sockaddr_in6 *) resolved->ai_addr; m_addr_family = AF_INET6; m_address.ipv6 = *t; } else { freeaddrinfo(resolved); throw ResolveError(""); } freeaddrinfo(resolved); } // IP address -> textual representation std::string Address::serializeString() const { // windows XP doesnt have inet_ntop, maybe use better func #ifdef _WIN32 if(m_addr_family == AF_INET) { u8 a, b, c, d; u32 addr; addr = ntohl(m_address.ipv4.sin_addr.s_addr); a = (addr & 0xFF000000) >> 24; b = (addr & 0x00FF0000) >> 16; c = (addr & 0x0000FF00) >> 8; d = (addr & 0x000000FF); return itos(a) + "." + itos(b) + "." + itos(c) + "." + itos(d); } else if(m_addr_family == AF_INET6) { std::ostringstream os; for(int i = 0; i < 16; i += 2) { u16 section = (m_address.ipv6.sin6_addr.s6_addr[i] << 8) | (m_address.ipv6.sin6_addr.s6_addr[i + 1]); os << std::hex << section; if(i < 14) os << ":"; } return os.str(); } else return std::string(""); #else char str[INET6_ADDRSTRLEN]; if (inet_ntop(m_addr_family, (m_addr_family == AF_INET) ? (void*)&(m_address.ipv4.sin_addr) : (void*)&(m_address.ipv6.sin6_addr), str, INET6_ADDRSTRLEN) == NULL) { return std::string(""); } return std::string(str); #endif } struct sockaddr_in Address::getAddress() const { return m_address.ipv4; // NOTE: NO PORT INCLUDED, use getPort() } struct sockaddr_in6 Address::getAddress6() const { return m_address.ipv6; // NOTE: NO PORT INCLUDED, use getPort() } u16 Address::getPort() const { return m_port; } int Address::getFamily() const { return m_addr_family; } bool Address::isIPv6() const { return m_addr_family == AF_INET6; } bool Address::isZero() const { if (m_addr_family == AF_INET) { return m_address.ipv4.sin_addr.s_addr == 0; } else if (m_addr_family == AF_INET6) { static const char zero[16] = {0}; return memcmp(m_address.ipv6.sin6_addr.s6_addr, zero, 16) == 0; } return false; } void Address::setAddress(u32 address) { m_addr_family = AF_INET; m_address.ipv4.sin_family = AF_INET; m_address.ipv4.sin_addr.s_addr = htonl(address); } void Address::setAddress(u8 a, u8 b, u8 c, u8 d) { m_addr_family = AF_INET; m_address.ipv4.sin_family = AF_INET; u32 addr = htonl((a << 24) | (b << 16) | (c << 8) | d); m_address.ipv4.sin_addr.s_addr = addr; } void Address::setAddress(const IPv6AddressBytes * ipv6_bytes) { m_addr_family = AF_INET6; m_address.ipv6.sin6_family = AF_INET6; if(ipv6_bytes) memcpy(m_address.ipv6.sin6_addr.s6_addr, ipv6_bytes->bytes, 16); else memset(m_address.ipv6.sin6_addr.s6_addr, 0, 16); } void Address::setPort(u16 port) { m_port = port; } void Address::print(std::ostream *s) const { if(m_addr_family == AF_INET6) { (*s) << "[" << serializeString() << "]:" << m_port; } else { (*s) << serializeString() << ":" << m_port; } } /* UDPSocket */ UDPSocket::UDPSocket(bool ipv6) { if(g_sockets_initialized == false) throw SocketException("Sockets not initialized"); // Use IPv6 if specified m_addr_family = ipv6 ? AF_INET6 : AF_INET; m_handle = socket(m_addr_family, SOCK_DGRAM, IPPROTO_UDP); if(socket_enable_debug_output) { dstream << "UDPSocket(" << (int) m_handle << ")::UDPSocket(): ipv6 = " << (ipv6 ? "true" : "false") << std::endl; } if(m_handle <= 0) { throw SocketException("Failed to create socket"); } setTimeoutMs(0); } UDPSocket::~UDPSocket() { if(socket_enable_debug_output) { dstream << "UDPSocket( " << (int) m_handle << ")::~UDPSocket()" << std::endl; } #ifdef _WIN32 closesocket(m_handle); #else close(m_handle); #endif } void UDPSocket::Bind(Address addr) { if(socket_enable_debug_output) { dstream << "UDPSocket(" << (int) m_handle << ")::Bind(): " << addr.serializeString() << ":" << addr.getPort() << std::endl; } if (addr.getFamily() != m_addr_family) { char errmsg[] = "Socket and bind address families do not match"; errorstream << "Bind failed: " << errmsg << std::endl; throw SocketException(errmsg); } if(m_addr_family == AF_INET6) { struct sockaddr_in6 address; memset(&address, 0, sizeof(address)); address = addr.getAddress6(); address.sin6_family = AF_INET6; address.sin6_port = htons(addr.getPort()); if(bind(m_handle, (const struct sockaddr *) &address, sizeof(struct sockaddr_in6)) < 0) { dstream << (int) m_handle << ": Bind failed: " << strerror(errno) << std::endl; throw SocketException("Failed to bind socket"); } } else { struct sockaddr_in address; memset(&address, 0, sizeof(address)); address = addr.getAddress(); address.sin_family = AF_INET; address.sin_port = htons(addr.getPort()); if(bind(m_handle, (const struct sockaddr *) &address, sizeof(struct sockaddr_in)) < 0) { dstream << (int) m_handle << ": Bind failed: " << strerror(errno) << std::endl; throw SocketException("Failed to bind socket"); } } } void UDPSocket::Send(const Address & destination, const void * data, int size) { bool dumping_packet = false; // for INTERNET_SIMULATOR if(INTERNET_SIMULATOR) dumping_packet = (myrand() % INTERNET_SIMULATOR_PACKET_LOSS == 0); if(socket_enable_debug_output) { // Print packet destination and size dstream << (int) m_handle << " -> "; destination.print(&dstream); dstream << ", size=" << size; // Print packet contents dstream << ", data="; for(int i = 0; i < size && i < 20; i++) { if(i % 2 == 0) dstream << " "; unsigned int a = ((const unsigned char *) data)[i]; dstream << std::hex << std::setw(2) << std::setfill('0') << a; } if(size > 20) dstream << "..."; if(dumping_packet) dstream << " (DUMPED BY INTERNET_SIMULATOR)"; dstream << std::endl; } if(dumping_packet) { // Lol let's forget it dstream << "UDPSocket::Send(): " "INTERNET_SIMULATOR: dumping packet." << std::endl; return; } if(destination.getFamily() != m_addr_family) throw SendFailedException("Address family mismatch"); int sent; if(m_addr_family == AF_INET6) { struct sockaddr_in6 address = destination.getAddress6(); address.sin6_port = htons(destination.getPort()); sent = sendto(m_handle, (const char *) data, size, 0, (struct sockaddr *) &address, sizeof(struct sockaddr_in6)); } else { struct sockaddr_in address = destination.getAddress(); address.sin_port = htons(destination.getPort()); sent = sendto(m_handle, (const char *) data, size, 0, (struct sockaddr *) &address, sizeof(struct sockaddr_in)); } if(sent != size) { throw SendFailedException("Failed to send packet"); } } int UDPSocket::Receive(Address & sender, void * data, int size) { // Return on timeout if(WaitData(m_timeout_ms) == false) { return -1; } int received; if(m_addr_family == AF_INET6) { struct sockaddr_in6 address; memset(&address, 0, sizeof(address)); socklen_t address_len = sizeof(address); received = recvfrom(m_handle, (char *) data, size, 0, (struct sockaddr *) &address, &address_len); if(received < 0) return -1; u16 address_port = ntohs(address.sin6_port); IPv6AddressBytes bytes; memcpy(bytes.bytes, address.sin6_addr.s6_addr, 16); sender = Address(&bytes, address_port); } else { struct sockaddr_in address; memset(&address, 0, sizeof(address)); socklen_t address_len = sizeof(address); received = recvfrom(m_handle, (char *) data, size, 0, (struct sockaddr *) &address, &address_len); if(received < 0) return -1; u32 address_ip = ntohl(address.sin_addr.s_addr); u16 address_port = ntohs(address.sin_port); sender = Address(address_ip, address_port); } if(socket_enable_debug_output) { // Print packet sender and size dstream << (int) m_handle << " <- "; sender.print(&dstream); dstream << ", size=" << received; // Print packet contents dstream << ", data="; for(int i = 0; i < received && i < 20; i++) { if(i % 2 == 0) dstream << " "; unsigned int a = ((const unsigned char *) data)[i]; dstream << std::hex << std::setw(2) << std::setfill('0') << a; } if(received > 20) dstream << "..."; dstream << std::endl; } return received; } int UDPSocket::GetHandle() { return m_handle; } void UDPSocket::setTimeoutMs(int timeout_ms) { m_timeout_ms = timeout_ms; } bool UDPSocket::WaitData(int timeout_ms) { fd_set readset; int result; // Initialize the set FD_ZERO(&readset); FD_SET(m_handle, &readset); // Initialize time out struct struct timeval tv; tv.tv_sec = 0; tv.tv_usec = timeout_ms * 1000; // select() result = select(m_handle+1, &readset, NULL, NULL, &tv); if(result == 0) return false; else if(result < 0 && (errno == EINTR || errno == EBADF)) // N.B. select() fails when sockets are destroyed on Connection's dtor // with EBADF. Instead of doing tricky synchronization, allow this // thread to exit but don't throw an exception. return false; else if(result < 0) { dstream << (int) m_handle << ": Select failed: " << strerror(errno) << std::endl; #ifdef _WIN32 int e = WSAGetLastError(); dstream << (int) m_handle << ": WSAGetLastError()=" << e << std::endl; if(e == 10004 /* = WSAEINTR */ || e == 10009 /*WSAEBADF*/) { dstream << "WARNING: Ignoring WSAEINTR/WSAEBADF." << std::endl; return false; } #endif throw SocketException("Select failed"); } else if(FD_ISSET(m_handle, &readset) == false) { // No data return false; } // There is data return true; }