aboutsummaryrefslogtreecommitdiff
path: root/src/unittest/test_voxelarea.cpp
blob: a79c9778e02380e8f00e03a14e89b77e20714cab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
Minetest
Copyright (C) 2018 nerzhul, Loic Blot <loic.blot@unix-experience.fr>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "test.h"
#include "voxel.h"

class TestVoxelArea : public TestBase
{
public:
	TestVoxelArea() { TestManager::registerTestModule(this); }
	const char *getName() { return "TestVoxelArea"; }

	void runTests(IGameDef *gamedef);

	void test_addarea();
	void test_pad();
	void test_extent();
	void test_volume();
	void test_contains_voxelarea();
	void test_contains_point();
	void test_contains_i();
	void test_equal();
	void test_plus();
	void test_minor();
	void test_index_xyz_all_pos();
	void test_index_xyz_x_neg();
	void test_index_xyz_y_neg();
	void test_index_xyz_z_neg();
	void test_index_xyz_xy_neg();
	void test_index_xyz_xz_neg();
	void test_index_xyz_yz_neg();
	void test_index_xyz_all_neg();
	void test_index_v3s16_all_pos();
	void test_index_v3s16_x_neg();
	void test_index_v3s16_y_neg();
	void test_index_v3s16_z_neg();
	void test_index_v3s16_xy_neg();
	void test_index_v3s16_xz_neg();
	void test_index_v3s16_yz_neg();
	void test_index_v3s16_all_neg();
	void test_add_x();
	void test_add_y();
	void test_add_z();
	void test_add_p();
};

static TestVoxelArea g_test_instance;

void TestVoxelArea::runTests(IGameDef *gamedef)
{
	TEST(test_addarea);
	TEST(test_pad);
	TEST(test_extent);
	TEST(test_volume);
	TEST(test_contains_voxelarea);
	TEST(test_contains_point);
	TEST(test_contains_i);
	TEST(test_equal);
	TEST(test_plus);
	TEST(test_minor);
	TEST(test_index_xyz_all_pos);
	TEST(test_index_xyz_x_neg);
	TEST(test_index_xyz_y_neg);
	TEST(test_index_xyz_z_neg);
	TEST(test_index_xyz_xy_neg);
	TEST(test_index_xyz_xz_neg);
	TEST(test_index_xyz_yz_neg);
	TEST(test_index_xyz_all_neg);
	TEST(test_index_v3s16_all_pos);
	TEST(test_index_v3s16_x_neg);
	TEST(test_index_v3s16_y_neg);
	TEST(test_index_v3s16_z_neg);
	TEST(test_index_v3s16_xy_neg);
	TEST(test_index_v3s16_xz_neg);
	TEST(test_index_v3s16_yz_neg);
	TEST(test_index_v3s16_all_neg);
	TEST(test_add_x);
	TEST(test_add_y);
	TEST(test_add_z);
	TEST(test_add_p);
}

void TestVoxelArea::test_addarea()
{
	VoxelArea v1(v3s16(-1447, 8854, -875), v3s16(-147, -9547, 669));
	VoxelArea v2(v3s16(-887, 4445, -5478), v3s16(447, -8779, 4778));

	v1.addArea(v2);
	UASSERT(v1.MinEdge == v3s16(-1447, 4445, -5478));
	UASSERT(v1.MaxEdge == v3s16(447, -8779, 4778));
}

void TestVoxelArea::test_pad()
{
	VoxelArea v1(v3s16(-1447, 8854, -875), v3s16(-147, -9547, 669));
	v1.pad(v3s16(100, 200, 300));

	UASSERT(v1.MinEdge == v3s16(-1547, 8654, -1175));
	UASSERT(v1.MaxEdge == v3s16(-47, -9347, 969));
}

void TestVoxelArea::test_extent()
{
	VoxelArea v1(v3s16(-1337, -547, -789), v3s16(-147, 447, 669));
	UASSERT(v1.getExtent() == v3s16(1191, 995, 1459));

	VoxelArea v2(v3s16(32493, -32507, 32752), v3s16(32508, -32492, 32767));
	UASSERT(v2.getExtent() == v3s16(16, 16, 16));
}

void TestVoxelArea::test_volume()
{
	VoxelArea v1(v3s16(-1337, -547, -789), v3s16(-147, 447, 669));
	UASSERTEQ(s32, v1.getVolume(), 1728980655);

	VoxelArea v2(v3s16(32493, -32507, 32752), v3s16(32508, -32492, 32767));
	UASSERTEQ(s32, v2.getVolume(), 4096);
}

void TestVoxelArea::test_contains_voxelarea()
{
	VoxelArea v1(v3s16(-1337, -9547, -789), v3s16(-147, 750, 669));
	UASSERTEQ(bool, v1.contains(VoxelArea(v3s16(-200, 10, 10), v3s16(-150, 10, 10))),
			true);
	UASSERTEQ(bool, v1.contains(VoxelArea(v3s16(-2550, 10, 10), v3s16(10, 10, 10))),
			false);
	UASSERTEQ(bool, v1.contains(VoxelArea(v3s16(-10, 10, 10), v3s16(3500, 10, 10))),
			false);
	UASSERTEQ(bool,
			v1.contains(VoxelArea(
					v3s16(-800, -400, 669), v3s16(-500, 200, 669))),
			true);
	UASSERTEQ(bool,
			v1.contains(VoxelArea(
					v3s16(-800, -400, 670), v3s16(-500, 200, 670))),
			false);
}

void TestVoxelArea::test_contains_point()
{
	VoxelArea v1(v3s16(-1337, -9547, -789), v3s16(-147, 750, 669));
	UASSERTEQ(bool, v1.contains(v3s16(-200, 10, 10)), true);
	UASSERTEQ(bool, v1.contains(v3s16(-10000, 10, 10)), false);
	UASSERTEQ(bool, v1.contains(v3s16(-100, 10000, 10)), false);
	UASSERTEQ(bool, v1.contains(v3s16(-100, 100, 10000)), false);
	UASSERTEQ(bool, v1.contains(v3s16(-100, 100, -10000)), false);
	UASSERTEQ(bool, v1.contains(v3s16(10000, 100, 10)), false);
}

void TestVoxelArea::test_contains_i()
{
	VoxelArea v1(v3s16(-1337, -9547, -789), v3s16(-147, 750, 669));
	UASSERTEQ(bool, v1.contains(10), true);
	UASSERTEQ(bool, v1.contains(v1.getVolume()), false);
	UASSERTEQ(bool, v1.contains(v1.getVolume() - 1), true);
	UASSERTEQ(bool, v1.contains(v1.getVolume() + 1), false);
	UASSERTEQ(bool, v1.contains(-1), false)

	VoxelArea v2(v3s16(10, 10, 10), v3s16(30, 30, 30));
	UASSERTEQ(bool, v2.contains(10), true);
	UASSERTEQ(bool, v2.contains(0), true);
	UASSERTEQ(bool, v2.contains(-1), false);
}

void TestVoxelArea::test_equal()
{
	VoxelArea v1(v3s16(-1337, -9547, -789), v3s16(-147, 750, 669));
	UASSERTEQ(bool, v1 == VoxelArea(v3s16(-1337, -9547, -789), v3s16(-147, 750, 669)),
			true);
	UASSERTEQ(bool, v1 == VoxelArea(v3s16(0, 0, 0), v3s16(-147, 750, 669)), false);
	UASSERTEQ(bool, v1 == VoxelArea(v3s16(0, 0, 0), v3s16(-147, 750, 669)), false);
	UASSERTEQ(bool, v1 == VoxelArea(v3s16(0, 0, 0), v3s16(0, 0, 0)), false);
}

void TestVoxelArea::test_plus()
{
	VoxelArea v1(v3s16(-10, -10, -10), v3s16(100, 100, 100));
	UASSERT(v1 + v3s16(10, 0, 0) ==
			VoxelArea(v3s16(0, -10, -10), v3s16(110, 100, 100)));
	UASSERT(v1 + v3s16(10, -10, 0) ==
			VoxelArea(v3s16(0, -20, -10), v3s16(110, 90, 100)));
	UASSERT(v1 + v3s16(0, 0, 35) ==
			VoxelArea(v3s16(-10, -10, 25), v3s16(100, 100, 135)));
}

void TestVoxelArea::test_minor()
{
	VoxelArea v1(v3s16(-10, -10, -10), v3s16(100, 100, 100));
	UASSERT(v1 - v3s16(10, 0, 0) ==
			VoxelArea(v3s16(-20, -10, -10), v3s16(90, 100, 100)));
	UASSERT(v1 - v3s16(10, -10, 0) ==
			VoxelArea(v3s16(-20, 0, -10), v3s16(90, 110, 100)));
	UASSERT(v1 - v3s16(0, 0, 35) ==
			VoxelArea(v3s16(-10, -10, -45), v3s16(100, 100, 65)));
}

void TestVoxelArea::test_index_xyz_all_pos()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(156, 25, 236), 155);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(156, 25, 236), 1267138774);
}

void TestVoxelArea::test_index_xyz_x_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(-147, 25, 366), -148);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(-147, 25, 366), -870244825);
}

void TestVoxelArea::test_index_xyz_y_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(247, -269, 100), 246);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(247, -269, 100), -989760747);
}

void TestVoxelArea::test_index_xyz_z_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(244, 336, -887), 243);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(244, 336, -887), -191478876);
}

void TestVoxelArea::test_index_xyz_xy_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(-365, -47, 6978), -366);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(-365, -47, 6978), 1493679101);
}

void TestVoxelArea::test_index_xyz_yz_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(66, -58, -789), 65);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(66, -58, -789), 1435362734);
}

void TestVoxelArea::test_index_xyz_xz_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(-36, 589, -992), -37);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(-36, 589, -992), -1934371362);
}

void TestVoxelArea::test_index_xyz_all_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(-88, -99, -1474), -89);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(-88, -99, -1474), -1343473846);
}

void TestVoxelArea::test_index_v3s16_all_pos()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(156, 25, 236)), 155);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(156, 25, 236)), 1267138774);
}

void TestVoxelArea::test_index_v3s16_x_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(-147, 25, 366)), -148);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(-147, 25, 366)), -870244825);
}

void TestVoxelArea::test_index_v3s16_y_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(247, -269, 100)), 246);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(247, -269, 100)), -989760747);
}

void TestVoxelArea::test_index_v3s16_z_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(244, 336, -887)), 243);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(244, 336, -887)), -191478876);
}

void TestVoxelArea::test_index_v3s16_xy_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(-365, -47, 6978)), -366);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(-365, -47, 6978)), 1493679101);
}

void TestVoxelArea::test_index_v3s16_yz_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(66, -58, -789)), 65);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(66, -58, -789)), 1435362734);
}

void TestVoxelArea::test_index_v3s16_xz_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(-36, 589, -992)), -37);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(-36, 589, -992)), -1934371362);
}

void TestVoxelArea::test_index_v3s16_all_neg()
{
	VoxelArea v1;
	UASSERTEQ(s32, v1.index(v3s16(-88, -99, -1474)), -89);

	VoxelArea v2(v3s16(756, 8854, -875), v3s16(-147, -9547, 669));
	UASSERTEQ(s32, v2.index(v3s16(-88, -99, -1474)), -1343473846);
}

void TestVoxelArea::test_add_x()
{
	v3s16 extent;
	u32 i = 4;
	VoxelArea::add_x(extent, i, 8);
	UASSERTEQ(u32, i, 12)
}

void TestVoxelArea::test_add_y()
{
	v3s16 extent(740, 16, 87);
	u32 i = 8;
	VoxelArea::add_y(extent, i, 88);
	UASSERTEQ(u32, i, 65128)
}

void TestVoxelArea::test_add_z()
{
	v3s16 extent(114, 80, 256);
	u32 i = 4;
	VoxelArea::add_z(extent, i, 8);
	UASSERTEQ(u32, i, 72964)
}

void TestVoxelArea::test_add_p()
{
	v3s16 extent(33, 14, 742);
	v3s16 a(15, 12, 369);
	u32 i = 4;
	VoxelArea::add_p(extent, i, a);
	UASSERTEQ(u32, i, 170893)
}
/a> 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/* mini-gmp, a minimalistic implementation of a GNU GMP subset.

   Contributed to the GNU project by Niels Möller

Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */

/* NOTE: All functions in this file which are not declared in
   mini-gmp.h are internal, and are not intended to be compatible
   neither with GMP nor with future versions of mini-gmp. */

/* Much of the material copied from GMP files, including: gmp-impl.h,
   longlong.h, mpn/generic/add_n.c, mpn/generic/addmul_1.c,
   mpn/generic/lshift.c, mpn/generic/mul_1.c,
   mpn/generic/mul_basecase.c, mpn/generic/rshift.c,
   mpn/generic/sbpi1_div_qr.c, mpn/generic/sub_n.c,
   mpn/generic/submul_1.c. */

#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "mini-gmp.h"


/* Macros */
#define GMP_LIMB_BITS (sizeof(mp_limb_t) * CHAR_BIT)

#define GMP_LIMB_MAX (~ (mp_limb_t) 0)
#define GMP_LIMB_HIGHBIT ((mp_limb_t) 1 << (GMP_LIMB_BITS - 1))

#define GMP_HLIMB_BIT ((mp_limb_t) 1 << (GMP_LIMB_BITS / 2))
#define GMP_LLIMB_MASK (GMP_HLIMB_BIT - 1)

#define GMP_ULONG_BITS (sizeof(unsigned long) * CHAR_BIT)
#define GMP_ULONG_HIGHBIT ((unsigned long) 1 << (GMP_ULONG_BITS - 1))

#define GMP_ABS(x) ((x) >= 0 ? (x) : -(x))
#define GMP_NEG_CAST(T,x) (-((T)((x) + 1) - 1))

#define GMP_MIN(a, b) ((a) < (b) ? (a) : (b))
#define GMP_MAX(a, b) ((a) > (b) ? (a) : (b))

#define gmp_assert_nocarry(x) do { \
    mp_limb_t __cy = x;		   \
    assert (__cy == 0);		   \
  } while (0)

#define gmp_clz(count, x) do {						\
    mp_limb_t __clz_x = (x);						\
    unsigned __clz_c;							\
    for (__clz_c = 0;							\
	 (__clz_x & ((mp_limb_t) 0xff << (GMP_LIMB_BITS - 8))) == 0;	\
	 __clz_c += 8)							\
      __clz_x <<= 8;							\
    for (; (__clz_x & GMP_LIMB_HIGHBIT) == 0; __clz_c++)		\
      __clz_x <<= 1;							\
    (count) = __clz_c;							\
  } while (0)

#define gmp_ctz(count, x) do {						\
    mp_limb_t __ctz_x = (x);						\
    unsigned __ctz_c = 0;						\
    gmp_clz (__ctz_c, __ctz_x & - __ctz_x);				\
    (count) = GMP_LIMB_BITS - 1 - __ctz_c;				\
  } while (0)

#define gmp_add_ssaaaa(sh, sl, ah, al, bh, bl) \
  do {									\
    mp_limb_t __x;							\
    __x = (al) + (bl);							\
    (sh) = (ah) + (bh) + (__x < (al));					\
    (sl) = __x;								\
  } while (0)

#define gmp_sub_ddmmss(sh, sl, ah, al, bh, bl) \
  do {									\
    mp_limb_t __x;							\
    __x = (al) - (bl);							\
    (sh) = (ah) - (bh) - ((al) < (bl));					\
    (sl) = __x;								\
  } while (0)

#define gmp_umul_ppmm(w1, w0, u, v)					\
  do {									\
    mp_limb_t __x0, __x1, __x2, __x3;					\
    unsigned __ul, __vl, __uh, __vh;					\
    mp_limb_t __u = (u), __v = (v);					\
									\
    __ul = __u & GMP_LLIMB_MASK;					\
    __uh = __u >> (GMP_LIMB_BITS / 2);					\
    __vl = __v & GMP_LLIMB_MASK;					\
    __vh = __v >> (GMP_LIMB_BITS / 2);					\
									\
    __x0 = (mp_limb_t) __ul * __vl;					\
    __x1 = (mp_limb_t) __ul * __vh;					\
    __x2 = (mp_limb_t) __uh * __vl;					\
    __x3 = (mp_limb_t) __uh * __vh;					\
									\
    __x1 += __x0 >> (GMP_LIMB_BITS / 2);/* this can't give carry */	\
    __x1 += __x2;		/* but this indeed can */		\
    if (__x1 < __x2)		/* did we get it? */			\
      __x3 += GMP_HLIMB_BIT;	/* yes, add it in the proper pos. */	\
									\
    (w1) = __x3 + (__x1 >> (GMP_LIMB_BITS / 2));			\
    (w0) = (__x1 << (GMP_LIMB_BITS / 2)) + (__x0 & GMP_LLIMB_MASK);	\
  } while (0)

#define gmp_udiv_qrnnd_preinv(q, r, nh, nl, d, di)			\
  do {									\
    mp_limb_t _qh, _ql, _r, _mask;					\
    gmp_umul_ppmm (_qh, _ql, (nh), (di));				\
    gmp_add_ssaaaa (_qh, _ql, _qh, _ql, (nh) + 1, (nl));		\
    _r = (nl) - _qh * (d);						\
    _mask = -(mp_limb_t) (_r > _ql); /* both > and >= are OK */		\
    _qh += _mask;							\
    _r += _mask & (d);							\
    if (_r >= (d))							\
      {									\
	_r -= (d);							\
	_qh++;								\
      }									\
									\
    (r) = _r;								\
    (q) = _qh;								\
  } while (0)

#define gmp_udiv_qr_3by2(q, r1, r0, n2, n1, n0, d1, d0, dinv)		\
  do {									\
    mp_limb_t _q0, _t1, _t0, _mask;					\
    gmp_umul_ppmm ((q), _q0, (n2), (dinv));				\
    gmp_add_ssaaaa ((q), _q0, (q), _q0, (n2), (n1));			\
									\
    /* Compute the two most significant limbs of n - q'd */		\
    (r1) = (n1) - (d1) * (q);						\
    gmp_sub_ddmmss ((r1), (r0), (r1), (n0), (d1), (d0));		\
    gmp_umul_ppmm (_t1, _t0, (d0), (q));				\
    gmp_sub_ddmmss ((r1), (r0), (r1), (r0), _t1, _t0);			\
    (q)++;								\
									\
    /* Conditionally adjust q and the remainders */			\
    _mask = - (mp_limb_t) ((r1) >= _q0);				\
    (q) += _mask;							\
    gmp_add_ssaaaa ((r1), (r0), (r1), (r0), _mask & (d1), _mask & (d0)); \
    if ((r1) >= (d1))							\
      {									\
	if ((r1) > (d1) || (r0) >= (d0))				\
	  {								\
	    (q)++;							\
	    gmp_sub_ddmmss ((r1), (r0), (r1), (r0), (d1), (d0));	\
	  }								\
      }									\
  } while (0)

/* Swap macros. */
#define MP_LIMB_T_SWAP(x, y)						\
  do {									\
    mp_limb_t __mp_limb_t_swap__tmp = (x);				\
    (x) = (y);								\
    (y) = __mp_limb_t_swap__tmp;					\
  } while (0)
#define MP_SIZE_T_SWAP(x, y)						\
  do {									\
    mp_size_t __mp_size_t_swap__tmp = (x);				\
    (x) = (y);								\
    (y) = __mp_size_t_swap__tmp;					\
  } while (0)
#define MP_BITCNT_T_SWAP(x,y)			\
  do {						\
    mp_bitcnt_t __mp_bitcnt_t_swap__tmp = (x);	\
    (x) = (y);					\
    (y) = __mp_bitcnt_t_swap__tmp;		\
  } while (0)
#define MP_PTR_SWAP(x, y)						\
  do {									\
    mp_ptr __mp_ptr_swap__tmp = (x);					\
    (x) = (y);								\
    (y) = __mp_ptr_swap__tmp;						\
  } while (0)
#define MP_SRCPTR_SWAP(x, y)						\
  do {									\
    mp_srcptr __mp_srcptr_swap__tmp = (x);				\
    (x) = (y);								\
    (y) = __mp_srcptr_swap__tmp;					\
  } while (0)

#define MPN_PTR_SWAP(xp,xs, yp,ys)					\
  do {									\
    MP_PTR_SWAP (xp, yp);						\
    MP_SIZE_T_SWAP (xs, ys);						\
  } while(0)
#define MPN_SRCPTR_SWAP(xp,xs, yp,ys)					\
  do {									\
    MP_SRCPTR_SWAP (xp, yp);						\
    MP_SIZE_T_SWAP (xs, ys);						\
  } while(0)

#define MPZ_PTR_SWAP(x, y)						\
  do {									\
    mpz_ptr __mpz_ptr_swap__tmp = (x);					\
    (x) = (y);								\
    (y) = __mpz_ptr_swap__tmp;						\
  } while (0)
#define MPZ_SRCPTR_SWAP(x, y)						\
  do {									\
    mpz_srcptr __mpz_srcptr_swap__tmp = (x);			\
    (x) = (y);								\
    (y) = __mpz_srcptr_swap__tmp;					\
  } while (0)


/* Memory allocation and other helper functions. */
static void
gmp_die (const char *msg)
{
  fprintf (stderr, "%s\n", msg);
  abort();
}

static void *
gmp_default_alloc (size_t size)
{
  void *p;

  assert (size > 0);

  p = malloc (size);
  if (!p)
    gmp_die("gmp_default_alloc: Virtual memory exhausted.");

  return p;
}

static void *
gmp_default_realloc (void *old, size_t old_size, size_t new_size)
{
  mp_ptr p;

  p = realloc (old, new_size);

  if (!p)
    gmp_die("gmp_default_realoc: Virtual memory exhausted.");

  return p;
}

static void
gmp_default_free (void *p, size_t size)
{
  free (p);
}

static void * (*gmp_allocate_func) (size_t) = gmp_default_alloc;
static void * (*gmp_reallocate_func) (void *, size_t, size_t) = gmp_default_realloc;
static void (*gmp_free_func) (void *, size_t) = gmp_default_free;

void
mp_get_memory_functions (void *(**alloc_func) (size_t),
			 void *(**realloc_func) (void *, size_t, size_t),
			 void (**free_func) (void *, size_t))
{
  if (alloc_func)
    *alloc_func = gmp_allocate_func;

  if (realloc_func)
    *realloc_func = gmp_reallocate_func;

  if (free_func)
    *free_func = gmp_free_func;
}

void
mp_set_memory_functions (void *(*alloc_func) (size_t),
			 void *(*realloc_func) (void *, size_t, size_t),
			 void (*free_func) (void *, size_t))
{
  if (!alloc_func)
    alloc_func = gmp_default_alloc;
  if (!realloc_func)
    realloc_func = gmp_default_realloc;
  if (!free_func)
    free_func = gmp_default_free;

  gmp_allocate_func = alloc_func;
  gmp_reallocate_func = realloc_func;
  gmp_free_func = free_func;
}

#define gmp_xalloc(size) ((*gmp_allocate_func)((size)))
#define gmp_free(p) ((*gmp_free_func) ((p), 0))

static mp_ptr
gmp_xalloc_limbs (mp_size_t size)
{
  return gmp_xalloc (size * sizeof (mp_limb_t));
}

static mp_ptr
gmp_xrealloc_limbs (mp_ptr old, mp_size_t size)
{
  assert (size > 0);
  return (*gmp_reallocate_func) (old, 0, size * sizeof (mp_limb_t));
}


/* MPN interface */

void
mpn_copyi (mp_ptr d, mp_srcptr s, mp_size_t n)
{
  mp_size_t i;
  for (i = 0; i < n; i++)
    d[i] = s[i];
}

void
mpn_copyd (mp_ptr d, mp_srcptr s, mp_size_t n)
{
  while (n-- > 0)
    d[n] = s[n];
}

int
mpn_cmp (mp_srcptr ap, mp_srcptr bp, mp_size_t n)
{
  for (; n > 0; n--)
    {
      if (ap[n-1] < bp[n-1])
	return -1;
      else if (ap[n-1] > bp[n-1])
	return 1;
    }
  return 0;
}

static int
mpn_cmp4 (mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn)
{
  if (an > bn)
    return 1;
  else if (an < bn)
    return -1;
  else
    return mpn_cmp (ap, bp, an);
}

static mp_size_t
mpn_normalized_size (mp_srcptr xp, mp_size_t n)
{
  for (; n > 0 && xp[n-1] == 0; n--)
    ;
  return n;
}

#define mpn_zero_p(xp, n) (mpn_normalized_size ((xp), (n)) == 0)

mp_limb_t
mpn_add_1 (mp_ptr rp, mp_srcptr ap, mp_size_t n, mp_limb_t b)
{
  mp_size_t i;

  assert (n > 0);

  for (i = 0; i < n; i++)
    {
      mp_limb_t r = ap[i] + b;
      /* Carry out */
      b = (r < b);
      rp[i] = r;
    }
  return b;
}

mp_limb_t
mpn_add_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)
{
  mp_size_t i;
  mp_limb_t cy;

  for (i = 0, cy = 0; i < n; i++)
    {
      mp_limb_t a, b, r;
      a = ap[i]; b = bp[i];
      r = a + cy;
      cy = (r < cy);
      r += b;
      cy += (r < b);
      rp[i] = r;
    }
  return cy;
}

mp_limb_t
mpn_add (mp_ptr rp, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn)
{
  mp_limb_t cy;

  assert (an >= bn);

  cy = mpn_add_n (rp, ap, bp, bn);
  if (an > bn)
    cy = mpn_add_1 (rp + bn, ap + bn, an - bn, cy);
  return cy;
}

mp_limb_t
mpn_sub_1 (mp_ptr rp, mp_srcptr ap, mp_size_t n, mp_limb_t b)
{
  mp_size_t i;

  assert (n > 0);

  for (i = 0; i < n; i++)
    {
      mp_limb_t a = ap[i];
      /* Carry out */
      mp_limb_t cy = a < b;;
      rp[i] = a - b;
      b = cy;
    }
  return b;
}

mp_limb_t
mpn_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)
{
  mp_size_t i;
  mp_limb_t cy;

  for (i = 0, cy = 0; i < n; i++)
    {
      mp_limb_t a, b;
      a = ap[i]; b = bp[i];
      b += cy;
      cy = (b < cy);
      cy += (a < b);
      rp[i] = a - b;
    }
  return cy;
}

mp_limb_t
mpn_sub (mp_ptr rp, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn)
{
  mp_limb_t cy;

  assert (an >= bn);

  cy = mpn_sub_n (rp, ap, bp, bn);
  if (an > bn)
    cy = mpn_sub_1 (rp + bn, ap + bn, an - bn, cy);
  return cy;
}

mp_limb_t
mpn_mul_1 (mp_ptr rp, mp_srcptr up, mp_size_t n, mp_limb_t vl)
{
  mp_limb_t ul, cl, hpl, lpl;

  assert (n >= 1);

  cl = 0;
  do
    {
      ul = *up++;
      gmp_umul_ppmm (hpl, lpl, ul, vl);

      lpl += cl;
      cl = (lpl < cl) + hpl;

      *rp++ = lpl;
    }
  while (--n != 0);

  return cl;
}

mp_limb_t
mpn_addmul_1 (mp_ptr rp, mp_srcptr up, mp_size_t n, mp_limb_t vl)
{
  mp_limb_t ul, cl, hpl, lpl, rl;

  assert (n >= 1);

  cl = 0;
  do
    {
      ul = *up++;
      gmp_umul_ppmm (hpl, lpl, ul, vl);

      lpl += cl;
      cl = (lpl < cl) + hpl;

      rl = *rp;
      lpl = rl + lpl;
      cl += lpl < rl;
      *rp++ = lpl;
    }
  while (--n != 0);

  return cl;
}

mp_limb_t
mpn_submul_1 (mp_ptr rp, mp_srcptr up, mp_size_t n, mp_limb_t vl)
{
  mp_limb_t ul, cl, hpl, lpl, rl;

  assert (n >= 1);

  cl = 0;
  do
    {
      ul = *up++;
      gmp_umul_ppmm (hpl, lpl, ul, vl);

      lpl += cl;
      cl = (lpl < cl) + hpl;

      rl = *rp;
      lpl = rl - lpl;
      cl += lpl > rl;
      *rp++ = lpl;
    }
  while (--n != 0);

  return cl;
}

mp_limb_t
mpn_mul (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr vp, mp_size_t vn)
{
  assert (un >= vn);
  assert (vn >= 1);

  /* We first multiply by the low order limb. This result can be
     stored, not added, to rp. We also avoid a loop for zeroing this
     way. */

  rp[un] = mpn_mul_1 (rp, up, un, vp[0]);
  rp += 1, vp += 1, vn -= 1;

  /* Now accumulate the product of up[] and the next higher limb from
     vp[]. */

  while (vn >= 1)
    {
      rp[un] = mpn_addmul_1 (rp, up, un, vp[0]);
      rp += 1, vp += 1, vn -= 1;
    }
  return rp[un - 1];
}

void
mpn_mul_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)
{
  mpn_mul (rp, ap, n, bp, n);
}

void
mpn_sqr (mp_ptr rp, mp_srcptr ap, mp_size_t n)
{
  mpn_mul (rp, ap, n, ap, n);
}

mp_limb_t
mpn_lshift (mp_ptr rp, mp_srcptr up, mp_size_t n, unsigned int cnt)
{
  mp_limb_t high_limb, low_limb;
  unsigned int tnc;
  mp_size_t i;
  mp_limb_t retval;

  assert (n >= 1);
  assert (cnt >= 1);
  assert (cnt < GMP_LIMB_BITS);

  up += n;
  rp += n;

  tnc = GMP_LIMB_BITS - cnt;
  low_limb = *--up;
  retval = low_limb >> tnc;
  high_limb = (low_limb << cnt);

  for (i = n - 1; i != 0; i--)
    {
      low_limb = *--up;
      *--rp = high_limb | (low_limb >> tnc);
      high_limb = (low_limb << cnt);
    }
  *--rp = high_limb;

  return retval;
}

mp_limb_t
mpn_rshift (mp_ptr rp, mp_srcptr up, mp_size_t n, unsigned int cnt)
{
  mp_limb_t high_limb, low_limb;
  unsigned int tnc;
  mp_size_t i;
  mp_limb_t retval;

  assert (n >= 1);
  assert (cnt >= 1);
  assert (cnt < GMP_LIMB_BITS);

  tnc = GMP_LIMB_BITS - cnt;
  high_limb = *up++;
  retval = (high_limb << tnc);
  low_limb = high_limb >> cnt;

  for (i = n - 1; i != 0; i--)
    {
      high_limb = *up++;
      *rp++ = low_limb | (high_limb << tnc);
      low_limb = high_limb >> cnt;
    }
  *rp = low_limb;

  return retval;
}


/* MPN division interface. */
mp_limb_t
mpn_invert_3by2 (mp_limb_t u1, mp_limb_t u0)
{
  mp_limb_t r, p, m;
  unsigned ul, uh;
  unsigned ql, qh;

  /* First, do a 2/1 inverse. */
  /* The inverse m is defined as floor( (B^2 - 1 - u1)/u1 ), so that 0 <
   * B^2 - (B + m) u1 <= u1 */
  assert (u1 >= GMP_LIMB_HIGHBIT);

  ul = u1 & GMP_LLIMB_MASK;
  uh = u1 >> (GMP_LIMB_BITS / 2);

  qh = ~u1 / uh;
  r = ((~u1 - (mp_limb_t) qh * uh) << (GMP_LIMB_BITS / 2)) | GMP_LLIMB_MASK;

  p = (mp_limb_t) qh * ul;
  /* Adjustment steps taken from udiv_qrnnd_c */
  if (r < p)
    {
      qh--;
      r += u1;
      if (r >= u1) /* i.e. we didn't get carry when adding to r */
	if (r < p)
	  {
	    qh--;
	    r += u1;
	  }
    }
  r -= p;

  /* Do a 3/2 division (with half limb size) */
  p = (r >> (GMP_LIMB_BITS / 2)) * qh + r;
  ql = (p >> (GMP_LIMB_BITS / 2)) + 1;

  /* By the 3/2 method, we don't need the high half limb. */
  r = (r << (GMP_LIMB_BITS / 2)) + GMP_LLIMB_MASK - ql * u1;

  if (r >= (p << (GMP_LIMB_BITS / 2)))
    {
      ql--;
      r += u1;
    }
  m = ((mp_limb_t) qh << (GMP_LIMB_BITS / 2)) + ql;
  if (r >= u1)
    {
      m++;
      r -= u1;
    }

  if (u0 > 0)
    {
      mp_limb_t th, tl;
      r = ~r;
      r += u0;
      if (r < u0)
	{
	  m--;
	  if (r >= u1)
	    {
	      m--;
	      r -= u1;
	    }
	  r -= u1;
	}
      gmp_umul_ppmm (th, tl, u0, m);
      r += th;
      if (r < th)
	{
	  m--;
	  if (r > u1 || (r == u1 && tl > u0))
	    m--;
	}
    }

  return m;
}

struct gmp_div_inverse
{
  /* Normalization shift count. */
  unsigned shift;
  /* Normalized divisor (d0 unused for mpn_div_qr_1) */
  mp_limb_t d1, d0;
  /* Inverse, for 2/1 or 3/2. */
  mp_limb_t di;
};

static void
mpn_div_qr_1_invert (struct gmp_div_inverse *inv, mp_limb_t d)
{
  unsigned shift;

  assert (d > 0);
  gmp_clz (shift, d);
  inv->shift = shift;
  inv->d1 = d << shift;
  inv->di = mpn_invert_limb (inv->d1);
}

static void
mpn_div_qr_2_invert (struct gmp_div_inverse *inv,
		     mp_limb_t d1, mp_limb_t d0)
{
  unsigned shift;

  assert (d1 > 0);
  gmp_clz (shift, d1);
  inv->shift = shift;
  if (shift > 0)
    {
      d1 = (d1 << shift) | (d0 >> (GMP_LIMB_BITS - shift));
      d0 <<= shift;
    }
  inv->d1 = d1;
  inv->d0 = d0;
  inv->di = mpn_invert_3by2 (d1, d0);
}

static void
mpn_div_qr_invert (struct gmp_div_inverse *inv,
		   mp_srcptr dp, mp_size_t dn)
{
  assert (dn > 0);

  if (dn == 1)
    mpn_div_qr_1_invert (inv, dp[0]);
  else if (dn == 2)
    mpn_div_qr_2_invert (inv, dp[1], dp[0]);
  else
    {
      unsigned shift;
      mp_limb_t d1, d0;

      d1 = dp[dn-1];
      d0 = dp[dn-2];
      assert (d1 > 0);
      gmp_clz (shift, d1);
      inv->shift = shift;
      if (shift > 0)
	{
	  d1 = (d1 << shift) | (d0 >> (GMP_LIMB_BITS - shift));
	  d0 = (d0 << shift) | (dp[dn-3] >> (GMP_LIMB_BITS - shift));
	}
      inv->d1 = d1;
      inv->d0 = d0;
      inv->di = mpn_invert_3by2 (d1, d0);
    }
}

/* Not matching current public gmp interface, rather corresponding to
   the sbpi1_div_* functions. */
static mp_limb_t
mpn_div_qr_1_preinv (mp_ptr qp, mp_srcptr np, mp_size_t nn,
		     const struct gmp_div_inverse *inv)
{
  mp_limb_t d, di;
  mp_limb_t r;
  mp_ptr tp = NULL;

  if (inv->shift > 0)
    {
      tp = gmp_xalloc_limbs (nn);
      r = mpn_lshift (tp, np, nn, inv->shift);
      np = tp;
    }
  else
    r = 0;

  d = inv->d1;
  di = inv->di;
  while (nn-- > 0)
    {
      mp_limb_t q;

      gmp_udiv_qrnnd_preinv (q, r, r, np[nn], d, di);
      if (qp)
	qp[nn] = q;
    }
  if (inv->shift > 0)
    gmp_free (tp);

  return r >> inv->shift;
}

static mp_limb_t
mpn_div_qr_1 (mp_ptr qp, mp_srcptr np, mp_size_t nn, mp_limb_t d)
{
  assert (d > 0);

  /* Special case for powers of two. */
  if (d > 1 && (d & (d-1)) == 0)
    {
      unsigned shift;
      mp_limb_t r = np[0] & (d-1);
      gmp_ctz (shift, d);
      if (qp)
	mpn_rshift (qp, np, nn, shift);

      return r;
    }
  else
    {
      struct gmp_div_inverse inv;
      mpn_div_qr_1_invert (&inv, d);
      return mpn_div_qr_1_preinv (qp, np, nn, &inv);
    }
}

static void
mpn_div_qr_2_preinv (mp_ptr qp, mp_ptr rp, mp_srcptr np, mp_size_t nn,
		     const struct gmp_div_inverse *inv)
{
  unsigned shift;
  mp_size_t i;
  mp_limb_t d1, d0, di, r1, r0;
  mp_ptr tp;

  assert (nn >= 2);
  shift = inv->shift;
  d1 = inv->d1;
  d0 = inv->d0;
  di = inv->di;

  if (shift > 0)
    {
      tp = gmp_xalloc_limbs (nn);
      r1 = mpn_lshift (tp, np, nn, shift);
      np = tp;
    }
  else
    r1 = 0;

  r0 = np[nn - 1];

  for (i = nn - 2; i >= 0; i--)
    {
      mp_limb_t n0, q;
      n0 = np[i];
      gmp_udiv_qr_3by2 (q, r1, r0, r1, r0, n0, d1, d0, di);

      if (qp)
	qp[i] = q;
    }

  if (shift > 0)
    {
      assert ((r0 << (GMP_LIMB_BITS - shift)) == 0);
      r0 = (r0 >> shift) | (r1 << (GMP_LIMB_BITS - shift));
      r1 >>= shift;

      gmp_free (tp);
    }

  rp[1] = r1;
  rp[0] = r0;
}

#if 0
static void
mpn_div_qr_2 (mp_ptr qp, mp_ptr rp, mp_srcptr np, mp_size_t nn,
	      mp_limb_t d1, mp_limb_t d0)
{
  struct gmp_div_inverse inv;
  assert (nn >= 2);

  mpn_div_qr_2_invert (&inv, d1, d0);
  mpn_div_qr_2_preinv (qp, rp, np, nn, &inv);
}
#endif

static void
mpn_div_qr_pi1 (mp_ptr qp,
		mp_ptr np, mp_size_t nn, mp_limb_t n1,
		mp_srcptr dp, mp_size_t dn,
		mp_limb_t dinv)
{
  mp_size_t i;

  mp_limb_t d1, d0;
  mp_limb_t cy, cy1;
  mp_limb_t q;

  assert (dn > 2);
  assert (nn >= dn);

  d1 = dp[dn - 1];
  d0 = dp[dn - 2];

  assert ((d1 & GMP_LIMB_HIGHBIT) != 0);
  /* Iteration variable is the index of the q limb.
   *
   * We divide <n1, np[dn-1+i], np[dn-2+i], np[dn-3+i],..., np[i]>
   * by            <d1,          d0,        dp[dn-3],  ..., dp[0] >
   */

  for (i = nn - dn; i >= 0; i--)
    {
      mp_limb_t n0 = np[dn-1+i];

      if (n1 == d1 && n0 == d0)
	{
	  q = GMP_LIMB_MAX;
	  mpn_submul_1 (np+i, dp, dn, q);
	  n1 = np[dn-1+i];	/* update n1, last loop's value will now be invalid */
	}
      else
	{
	  gmp_udiv_qr_3by2 (q, n1, n0, n1, n0, np[dn-2+i], d1, d0, dinv);

	  cy = mpn_submul_1 (np + i, dp, dn-2, q);

	  cy1 = n0 < cy;
	  n0 = n0 - cy;
	  cy = n1 < cy1;
	  n1 = n1 - cy1;
	  np[dn-2+i] = n0;

	  if (cy != 0)
	    {
	      n1 += d1 + mpn_add_n (np + i, np + i, dp, dn - 1);
	      q--;
	    }
	}

      if (qp)
	qp[i] = q;
    }

  np[dn - 1] = n1;
}

static void
mpn_div_qr_preinv (mp_ptr qp, mp_ptr np, mp_size_t nn,
		   mp_srcptr dp, mp_size_t dn,
		   const struct gmp_div_inverse *inv)
{
  assert (dn > 0);
  assert (nn >= dn);

  if (dn == 1)
    np[0] = mpn_div_qr_1_preinv (qp, np, nn, inv);
  else if (dn == 2)
    mpn_div_qr_2_preinv (qp, np, np, nn, inv);
  else
    {
      mp_limb_t nh;
      unsigned shift;

      assert (inv->d1 == dp[dn-1]);
      assert (inv->d0 == dp[dn-2]);
      assert ((inv->d1 & GMP_LIMB_HIGHBIT) != 0);

      shift = inv->shift;
      if (shift > 0)
	nh = mpn_lshift (np, np, nn, shift);
      else
	nh = 0;

      mpn_div_qr_pi1 (qp, np, nn, nh, dp, dn, inv->di);

      if (shift > 0)
	gmp_assert_nocarry (mpn_rshift (np, np, dn, shift));
    }
}

static void
mpn_div_qr (mp_ptr qp, mp_ptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn)
{
  struct gmp_div_inverse inv;
  mp_ptr tp = NULL;

  assert (dn > 0);
  assert (nn >= dn);

  mpn_div_qr_invert (&inv, dp, dn);
  if (dn > 2 && inv.shift > 0)
    {
      tp = gmp_xalloc_limbs (dn);
      gmp_assert_nocarry (mpn_lshift (tp, dp, dn, inv.shift));
      dp = tp;
    }
  mpn_div_qr_preinv (qp, np, nn, dp, dn, &inv);
  if (tp)
    gmp_free (tp);
}


/* MPN base conversion. */
static unsigned
mpn_base_power_of_two_p (unsigned b)
{
  switch (b)
    {
    case 2: return 1;
    case 4: return 2;
    case 8: return 3;
    case 16: return 4;
    case 32: return 5;
    case 64: return 6;
    case 128: return 7;
    case 256: return 8;
    default: return 0;
    }
}

struct mpn_base_info
{
  /* bb is the largest power of the base which fits in one limb, and
     exp is the corresponding exponent. */
  unsigned exp;
  mp_limb_t bb;
};

static void
mpn_get_base_info (struct mpn_base_info *info, mp_limb_t b)
{
  mp_limb_t m;
  mp_limb_t p;
  unsigned exp;

  m = GMP_LIMB_MAX / b;
  for (exp = 1, p = b; p <= m; exp++)
    p *= b;

  info->exp = exp;
  info->bb = p;
}

static mp_bitcnt_t
mpn_limb_size_in_base_2 (mp_limb_t u)
{
  unsigned shift;

  assert (u > 0);
  gmp_clz (shift, u);
  return GMP_LIMB_BITS - shift;
}

static size_t
mpn_get_str_bits (unsigned char *sp, unsigned bits, mp_srcptr up, mp_size_t un)
{
  unsigned char mask;
  size_t sn, j;
  mp_size_t i;
  int shift;

  sn = ((un - 1) * GMP_LIMB_BITS + mpn_limb_size_in_base_2 (up[un-1])
	+ bits - 1) / bits;

  mask = (1U << bits) - 1;

  for (i = 0, j = sn, shift = 0; j-- > 0;)
    {
      unsigned char digit = up[i] >> shift;

      shift += bits;

      if (shift >= GMP_LIMB_BITS && ++i < un)
	{
	  shift -= GMP_LIMB_BITS;
	  digit |= up[i] << (bits - shift);
	}
      sp[j] = digit & mask;
    }
  return sn;
}

/* We generate digits from the least significant end, and reverse at
   the end. */
static size_t
mpn_limb_get_str (unsigned char *sp, mp_limb_t w,
		  const struct gmp_div_inverse *binv)
{
  mp_size_t i;
  for (i = 0; w > 0; i++)
    {
      mp_limb_t h, l, r;

      h = w >> (GMP_LIMB_BITS - binv->shift);
      l = w << binv->shift;

      gmp_udiv_qrnnd_preinv (w, r, h, l, binv->d1, binv->di);
      assert ( (r << (GMP_LIMB_BITS - binv->shift)) == 0);
      r >>= binv->shift;

      sp[i] = r;
    }
  return i;
}

static size_t
mpn_get_str_other (unsigned char *sp,
		   int base, const struct mpn_base_info *info,
		   mp_ptr up, mp_size_t un)
{
  struct gmp_div_inverse binv;
  size_t sn;
  size_t i;

  mpn_div_qr_1_invert (&binv, base);

  sn = 0;

  if (un > 1)
    {
      struct gmp_div_inverse bbinv;
      mpn_div_qr_1_invert (&bbinv, info->bb);

      do
	{
	  mp_limb_t w;
	  size_t done;
	  w = mpn_div_qr_1_preinv (up, up, un, &bbinv);
	  un -= (up[un-1] == 0);
	  done = mpn_limb_get_str (sp + sn, w, &binv);

	  for (sn += done; done < info->exp; done++)
	    sp[sn++] = 0;
	}
      while (un > 1);
    }
  sn += mpn_limb_get_str (sp + sn, up[0], &binv);

  /* Reverse order */
  for (i = 0; 2*i + 1 < sn; i++)
    {
      unsigned char t = sp[i];
      sp[i] = sp[sn - i - 1];
      sp[sn - i - 1] = t;
    }

  return sn;
}

size_t
mpn_get_str (unsigned char *sp, int base, mp_ptr up, mp_size_t un)
{
  unsigned bits;

  assert (un > 0);
  assert (up[un-1] > 0);

  bits = mpn_base_power_of_two_p (base);
  if (bits)
    return mpn_get_str_bits (sp, bits, up, un);
  else
    {
      struct mpn_base_info info;

      mpn_get_base_info (&info, base);
      return mpn_get_str_other (sp, base, &info, up, un);
    }
}

static mp_size_t
mpn_set_str_bits (mp_ptr rp, const unsigned char *sp, size_t sn,
		  unsigned bits)
{
  mp_size_t rn;
  size_t j;
  unsigned shift;

  for (j = sn, rn = 0, shift = 0; j-- > 0; )
    {
      if (shift == 0)
	{
	  rp[rn++] = sp[j];
	  shift += bits;
	}
      else
	{
	  rp[rn-1] |= (mp_limb_t) sp[j] << shift;
	  shift += bits;
	  if (shift >= GMP_LIMB_BITS)
	    {
	      shift -= GMP_LIMB_BITS;
	      if (shift > 0)
		rp[rn++] = (mp_limb_t) sp[j] >> (bits - shift);
	    }
	}
    }
  rn = mpn_normalized_size (rp, rn);
  return rn;
}

static mp_size_t
mpn_set_str_other (mp_ptr rp, const unsigned char *sp, size_t sn,
		   mp_limb_t b, const struct mpn_base_info *info)
{
  mp_size_t rn;
  mp_limb_t w;
  unsigned first;
  unsigned k;
  size_t j;

  first = 1 + (sn - 1) % info->exp;

  j = 0;
  w = sp[j++];
  for (k = 1; k < first; k++)
    w = w * b + sp[j++];

  rp[0] = w;

  for (rn = (w > 0); j < sn;)
    {
      mp_limb_t cy;

      w = sp[j++];
      for (k = 1; k < info->exp; k++)
	w = w * b + sp[j++];

      cy = mpn_mul_1 (rp, rp, rn, info->bb);
      cy += mpn_add_1 (rp, rp, rn, w);
      if (cy > 0)
	rp[rn++] = cy;
    }
  assert (j == sn);

  return rn;
}

mp_size_t
mpn_set_str (mp_ptr rp, const unsigned char *sp, size_t sn, int base)
{
  unsigned bits;

  if (sn == 0)
    return 0;

  bits = mpn_base_power_of_two_p (base);
  if (bits)
    return mpn_set_str_bits (rp, sp, sn, bits);
  else
    {
      struct mpn_base_info info;

      mpn_get_base_info (&info, base);
      return mpn_set_str_other (rp, sp, sn, base, &info);
    }
}


/* MPZ interface */
void
mpz_init (mpz_t r)
{
  r->_mp_alloc = 1;
  r->_mp_size = 0;
  r->_mp_d = gmp_xalloc_limbs (1);
}

/* The utility of this function is a bit limited, since many functions
   assings the result variable using mpz_swap. */
void
mpz_init2 (mpz_t r, mp_bitcnt_t bits)
{
  mp_size_t rn;

  bits -= (bits != 0);		/* Round down, except if 0 */
  rn = 1 + bits / GMP_LIMB_BITS;

  r->_mp_alloc = rn;
  r->_mp_size = 0;
  r->_mp_d = gmp_xalloc_limbs (rn);
}

void
mpz_clear (mpz_t r)
{
  gmp_free (r->_mp_d);
}

static void *
mpz_realloc (mpz_t r, mp_size_t size)
{
  size = GMP_MAX (size, 1);

  r->_mp_d = gmp_xrealloc_limbs (r->_mp_d, size);
  r->_mp_alloc = size;

  if (GMP_ABS (r->_mp_size) > size)
    r->_mp_size = 0;

  return r->_mp_d;
}

/* Realloc for an mpz_t WHAT if it has less than NEEDED limbs.  */
#define MPZ_REALLOC(z,n) ((n) > (z)->_mp_alloc			\
			  ? mpz_realloc(z,n)			\
			  : (z)->_mp_d)

/* MPZ assignment and basic conversions. */
void
mpz_set_si (mpz_t r, signed long int x)
{
  if (x >= 0)
    mpz_set_ui (r, x);
  else /* (x < 0) */
    {
      r->_mp_size = -1;
      r->_mp_d[0] = GMP_NEG_CAST (unsigned long int, x);
    }
}

void
mpz_set_ui (mpz_t r, unsigned long int x)
{
  if (x > 0)
    {
      r->_mp_size = 1;
      r->_mp_d[0] = x;
    }
  else
    r->_mp_size = 0;
}

void
mpz_set (mpz_t r, const mpz_t x)
{
  /* Allow the NOP r == x */
  if (r != x)
    {
      mp_size_t n;
      mp_ptr rp;

      n = GMP_ABS (x->_mp_size);
      rp = MPZ_REALLOC (r, n);

      mpn_copyi (rp, x->_mp_d, n);
      r->_mp_size = x->_mp_size;
    }
}

void
mpz_init_set_si (mpz_t r, signed long int x)
{
  mpz_init (r);
  mpz_set_si (r, x);
}

void
mpz_init_set_ui (mpz_t r, unsigned long int x)
{
  mpz_init (r);
  mpz_set_ui (r, x);
}

void
mpz_init_set (mpz_t r, const mpz_t x)
{
  mpz_init (r);
  mpz_set (r, x);
}

int
mpz_fits_slong_p (const mpz_t u)
{
  mp_size_t us = u->_mp_size;

  if (us == 0)
    return 1;
  else if (us == 1)
    return u->_mp_d[0] < GMP_LIMB_HIGHBIT;
  else if (us == -1)
    return u->_mp_d[0] <= GMP_LIMB_HIGHBIT;
  else
    return 0;
}

int
mpz_fits_ulong_p (const mpz_t u)
{
  mp_size_t us = u->_mp_size;

  return us == 0 || us == 1;
}

long int
mpz_get_si (const mpz_t u)
{
  mp_size_t us = u->_mp_size;

  if (us > 0)
    return (long) (u->_mp_d[0] & ~GMP_LIMB_HIGHBIT);
  else if (us < 0)
    return (long) (- u->_mp_d[0] | GMP_LIMB_HIGHBIT);
  else
    return 0;
}

unsigned long int
mpz_get_ui (const mpz_t u)
{
  return u->_mp_size == 0 ? 0 : u->_mp_d[0];
}

size_t
mpz_size (const mpz_t u)
{
  return GMP_ABS (u->_mp_size);
}

mp_limb_t
mpz_getlimbn (const mpz_t u, mp_size_t n)
{
  if (n >= 0 && n < GMP_ABS (u->_mp_size))
    return u->_mp_d[n];
  else
    return 0;
}


/* Conversions and comparison to double. */
void
mpz_set_d (mpz_t r, double x)
{
  int sign;
  mp_ptr rp;
  mp_size_t rn, i;
  double B;
  double Bi;
  mp_limb_t f;

  /* x != x is true when x is a NaN, and x == x * 0.5 is true when x is
     zero or infinity. */
  if (x == 0.0 || x != x || x == x * 0.5)
    {
      r->_mp_size = 0;
      return;
    }

  if (x < 0.0)
    {
      x = - x;
      sign = 1;
    }
  else
    sign = 0;

  if (x < 1.0)
    {
      r->_mp_size = 0;
      return;
    }
  B = 2.0 * (double) GMP_LIMB_HIGHBIT;
  Bi = 1.0 / B;
  for (rn = 1; x >= B; rn++)
    x *= Bi;

  rp = MPZ_REALLOC (r, rn);

  f = (mp_limb_t) x;
  x -= f;
  assert (x < 1.0);
  rp[rn-1] = f;
  for (i = rn-1; i-- > 0; )
    {
      x = B * x;
      f = (mp_limb_t) x;
      x -= f;
      assert (x < 1.0);
      rp[i] = f;
    }

  r->_mp_size = sign ? - rn : rn;
}

void
mpz_init_set_d (mpz_t r, double x)
{
  mpz_init (r);
  mpz_set_d (r, x);
}

double
mpz_get_d (const mpz_t u)
{
  mp_size_t un;
  double x;
  double B = 2.0 * (double) GMP_LIMB_HIGHBIT;

  un = GMP_ABS (u->_mp_size);

  if (un == 0)
    return 0.0;

  x = u->_mp_d[--un];
  while (un > 0)
    x = B*x + u->_mp_d[--un];

  if (u->_mp_size < 0)
    x = -x;

  return x;
}

int
mpz_cmpabs_d (const mpz_t x, double d)
{
  mp_size_t xn;
  double B, Bi;
  mp_size_t i;

  xn = x->_mp_size;
  d = GMP_ABS (d);

  if (xn != 0)
    {
      xn = GMP_ABS (xn);

      B = 2.0 * (double) GMP_LIMB_HIGHBIT;
      Bi = 1.0 / B;

      /* Scale d so it can be compared with the top limb. */
      for (i = 1; i < xn; i++)
	d *= Bi;

      if (d >= B)
	return -1;

      /* Compare floor(d) to top limb, subtract and cancel when equal. */
      for (i = xn; i-- > 0;)
	{
	  mp_limb_t f, xl;

	  f = (mp_limb_t) d;
	  xl = x->_mp_d[i];
	  if (xl > f)
	    return 1;
	  else if (xl < f)
	    return -1;
	  d = B * (d - f);
	}
    }
  return - (d > 0.0);
}

int
mpz_cmp_d (const mpz_t x, double d)
{
  if (x->_mp_size < 0)
    {
      if (d >= 0.0)
	return -1;
      else
	return -mpz_cmpabs_d (x, d);
    }
  else
    {
      if (d < 0.0)
	return 1;
      else
	return mpz_cmpabs_d (x, d);
    }
}


/* MPZ comparisons and the like. */
int
mpz_sgn (const mpz_t u)
{
  mp_size_t usize = u->_mp_size;

  if (usize > 0)
    return 1;
  else if (usize < 0)
    return -1;
  else
    return 0;
}

int
mpz_cmp_si (const mpz_t u, long v)
{
  mp_size_t usize = u->_mp_size;

  if (usize < -1)
    return -1;
  else if (v >= 0)
    return mpz_cmp_ui (u, v);
  else if (usize >= 0)
    return 1;
  else /* usize == -1 */
    {
      mp_limb_t ul = u->_mp_d[0];
      if ((mp_limb_t)GMP_NEG_CAST (unsigned long int, v) < ul)
	return -1;
      else if ( (mp_limb_t)GMP_NEG_CAST (unsigned long int, v) > ul)
	return 1;
    }
  return 0;
}

int
mpz_cmp_ui (const mpz_t u, unsigned long v)
{
  mp_size_t usize = u->_mp_size;

  if (usize > 1)
    return 1;
  else if (usize < 0)
    return -1;
  else
    {
      mp_limb_t ul = (usize > 0) ? u->_mp_d[0] : 0;
      if (ul > v)
	return 1;
      else if (ul < v)
	return -1;
    }
  return 0;
}

int
mpz_cmp (const mpz_t a, const mpz_t b)
{
  mp_size_t asize = a->_mp_size;
  mp_size_t bsize = b->_mp_size;

  if (asize > bsize)
    return 1;
  else if (asize < bsize)
    return -1;
  else if (asize > 0)
    return mpn_cmp (a->_mp_d, b->_mp_d, asize);
  else if (asize < 0)
    return -mpn_cmp (a->_mp_d, b->_mp_d, -asize);
  else
    return 0;
}

int
mpz_cmpabs_ui (const mpz_t u, unsigned long v)
{
  mp_size_t un = GMP_ABS (u->_mp_size);
  mp_limb_t ul;

  if (un > 1)
    return 1;

  ul = (un == 1) ? u->_mp_d[0] : 0;

  if (ul > v)
    return 1;
  else if (ul < v)
    return -1;
  else
    return 0;
}

int
mpz_cmpabs (const mpz_t u, const mpz_t v)
{
  return mpn_cmp4 (u->_mp_d, GMP_ABS (u->_mp_size),
		   v->_mp_d, GMP_ABS (v->_mp_size));
}

void
mpz_abs (mpz_t r, const mpz_t u)
{
  if (r != u)
    mpz_set (r, u);

  r->_mp_size = GMP_ABS (r->_mp_size);
}

void
mpz_neg (mpz_t r, const mpz_t u)
{
  if (r != u)
    mpz_set (r, u);

  r->_mp_size = -r->_mp_size;
}

void
mpz_swap (mpz_t u, mpz_t v)
{
  MP_SIZE_T_SWAP (u->_mp_size, v->_mp_size);
  MP_SIZE_T_SWAP (u->_mp_alloc, v->_mp_alloc);
  MP_PTR_SWAP (u->_mp_d, v->_mp_d);
}


/* MPZ addition and subtraction */

/* Adds to the absolute value. Returns new size, but doesn't store it. */
static mp_size_t
mpz_abs_add_ui (mpz_t r, const mpz_t a, unsigned long b)
{
  mp_size_t an;
  mp_ptr rp;
  mp_limb_t cy;

  an = GMP_ABS (a->_mp_size);
  if (an == 0)
    {
      r->_mp_d[0] = b;
      return b > 0;
    }

  rp = MPZ_REALLOC (r, an + 1);

  cy = mpn_add_1 (rp, a->_mp_d, an, b);
  rp[an] = cy;
  an += (cy > 0);

  return an;
}

/* Subtract from the absolute value. Returns new size, (or -1 on underflow),
   but doesn't store it. */
static mp_size_t
mpz_abs_sub_ui (mpz_t r, const mpz_t a, unsigned long b)
{
  mp_size_t an = GMP_ABS (a->_mp_size);
  mp_ptr rp = MPZ_REALLOC (r, an);

  if (an == 0)
    {
      rp[0] = b;
      return -(b > 0);
    }
  else if (an == 1 && a->_mp_d[0] < b)
    {
      rp[0] = b - a->_mp_d[0];
      return -1;
    }
  else
    {
      gmp_assert_nocarry (mpn_sub_1 (rp, a->_mp_d, an, b));
      return mpn_normalized_size (rp, an);
    }
}

void
mpz_add_ui (mpz_t r, const mpz_t a, unsigned long b)
{
  if (a->_mp_size >= 0)
    r->_mp_size = mpz_abs_add_ui (r, a, b);
  else
    r->_mp_size = -mpz_abs_sub_ui (r, a, b);
}

void
mpz_sub_ui (mpz_t r, const mpz_t a, unsigned long b)
{
  if (a->_mp_size < 0)
    r->_mp_size = -mpz_abs_add_ui (r, a, b);
  else
    r->_mp_size = mpz_abs_sub_ui (r, a, b);
}

void
mpz_ui_sub (mpz_t r, unsigned long a, const mpz_t b)
{
  if (b->_mp_size < 0)
    r->_mp_size = mpz_abs_add_ui (r, b, a);
  else
    r->_mp_size = -mpz_abs_sub_ui (r, b, a);
}

static mp_size_t
mpz_abs_add (mpz_t r, const mpz_t a, const mpz_t b)
{
  mp_size_t an = GMP_ABS (a->_mp_size);
  mp_size_t bn = GMP_ABS (b->_mp_size);
  mp_size_t rn;
  mp_ptr rp;
  mp_limb_t cy;

  rn = GMP_MAX (an, bn);
  rp = MPZ_REALLOC (r, rn + 1);
  if (an >= bn)
    cy = mpn_add (rp, a->_mp_d, an, b->_mp_d, bn);
  else
    cy = mpn_add (rp, b->_mp_d, bn, a->_mp_d, an);

  rp[rn] = cy;

  return rn + (cy > 0);
}

static mp_size_t
mpz_abs_sub (mpz_t r, const mpz_t a, const mpz_t b)
{
  mp_size_t an = GMP_ABS (a->_mp_size);
  mp_size_t bn = GMP_ABS (b->_mp_size);
  int cmp;
  mp_ptr rp;

  cmp = mpn_cmp4 (a->_mp_d, an, b->_mp_d, bn);
  if (cmp > 0)
    {
      rp = MPZ_REALLOC (r, an);
      gmp_assert_nocarry (mpn_sub (rp, a->_mp_d, an, b->_mp_d, bn));
      return mpn_normalized_size (rp, an);
    }
  else if (cmp < 0)
    {
      rp = MPZ_REALLOC (r, bn);
      gmp_assert_nocarry (mpn_sub (rp, b->_mp_d, bn, a->_mp_d, an));
      return -mpn_normalized_size (rp, bn);
    }
  else
    return 0;
}

void
mpz_add (mpz_t r, const mpz_t a, const mpz_t b)
{
  mp_size_t rn;

  if ( (a->_mp_size ^ b->_mp_size) >= 0)
    rn = mpz_abs_add (r, a, b);
  else
    rn = mpz_abs_sub (r, a, b);

  r->_mp_size = a->_mp_size >= 0 ? rn : - rn;
}

void
mpz_sub (mpz_t r, const mpz_t a, const mpz_t b)
{
  mp_size_t rn;

  if ( (a->_mp_size ^ b->_mp_size) >= 0)
    rn = mpz_abs_sub (r, a, b);
  else
    rn = mpz_abs_add (r, a, b);

  r->_mp_size = a->_mp_size >= 0 ? rn : - rn;
}


/* MPZ multiplication */
void
mpz_mul_si (mpz_t r, const mpz_t u, long int v)
{
  if (v < 0)
    {
      mpz_mul_ui (r, u, GMP_NEG_CAST (unsigned long int, v));
      mpz_neg (r, r);
    }
  else
    mpz_mul_ui (r, u, (unsigned long int) v);
}

void
mpz_mul_ui (mpz_t r, const mpz_t u, unsigned long int v)
{
  mp_size_t un;
  mpz_t t;
  mp_ptr tp;
  mp_limb_t cy;

  un = GMP_ABS (u->_mp_size);

  if (un == 0 || v == 0)
    {
      r->_mp_size = 0;
      return;
    }

  mpz_init2 (t, (un + 1) * GMP_LIMB_BITS);

  tp = t->_mp_d;
  cy = mpn_mul_1 (tp, u->_mp_d, un, v);
  tp[un] = cy;

  t->_mp_size = un + (cy > 0);
  if (u->_mp_size < 0)
    t->_mp_size = - t->_mp_size;

  mpz_swap (r, t);
  mpz_clear (t);
}

void
mpz_mul (mpz_t r, const mpz_t u, const mpz_t v)
{
  int sign;
  mp_size_t un, vn, rn;
  mpz_t t;
  mp_ptr tp;

  un = GMP_ABS (u->_mp_size);
  vn = GMP_ABS (v->_mp_size);

  if (un == 0 || vn == 0)
    {
      r->_mp_size = 0;
      return;
    }

  sign = (u->_mp_size ^ v->_mp_size) < 0;

  mpz_init2 (t, (un + vn) * GMP_LIMB_BITS);

  tp = t->_mp_d;
  if (un >= vn)
    mpn_mul (tp, u->_mp_d, un, v->_mp_d, vn);
  else
    mpn_mul (tp, v->_mp_d, vn, u->_mp_d, un);

  rn = un + vn;
  rn -= tp[rn-1] == 0;

  t->_mp_size = sign ? - rn : rn;
  mpz_swap (r, t);
  mpz_clear (t);
}

void
mpz_mul_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t bits)
{
  mp_size_t un, rn;
  mp_size_t limbs;
  unsigned shift;
  mp_ptr rp;

  un = GMP_ABS (u->_mp_size);
  if (un == 0)
    {
      r->_mp_size = 0;
      return;
    }

  limbs = bits / GMP_LIMB_BITS;
  shift = bits % GMP_LIMB_BITS;

  rn = un + limbs + (shift > 0);
  rp = MPZ_REALLOC (r, rn);
  if (shift > 0)
    {
      mp_limb_t cy = mpn_lshift (rp + limbs, u->_mp_d, un, shift);
      rp[rn-1] = cy;
      rn -= (cy == 0);
    }
  else
    mpn_copyd (rp + limbs, u->_mp_d, un);

  while (limbs > 0)
    rp[--limbs] = 0;

  r->_mp_size = (u->_mp_size < 0) ? - rn : rn;
}


/* MPZ division */
enum mpz_div_round_mode { GMP_DIV_FLOOR, GMP_DIV_CEIL, GMP_DIV_TRUNC };

/* Allows q or r to be zero. Returns 1 iff remainder is non-zero. */
static int
mpz_div_qr (mpz_t q, mpz_t r,
	    const mpz_t n, const mpz_t d, enum mpz_div_round_mode mode)
{
  mp_size_t ns, ds, nn, dn, qs;
  ns = n->_mp_size;
  ds = d->_mp_size;

  if (ds == 0)
    gmp_die("mpz_div_qr: Divide by zero.");

  if (ns == 0)
    {
      if (q)
	q->_mp_size = 0;
      if (r)
	r->_mp_size = 0;
      return 0;
    }

  nn = GMP_ABS (ns);
  dn = GMP_ABS (ds);

  qs = ds ^ ns;

  if (nn < dn)
    {
      if (mode == GMP_DIV_CEIL && qs >= 0)
	{
	  /* q = 1, r = n - d */
	  if (r)
	    mpz_sub (r, n, d);
	  if (q)
	    mpz_set_ui (q, 1);
	}
      else if (mode == GMP_DIV_FLOOR && qs < 0)
	{
	  /* q = -1, r = n + d */
	  if (r)
	    mpz_add (r, n, d);
	  if (q)
	    mpz_set_si (q, -1);
	}
      else
	{
	  /* q = 0, r = d */
	  if (r)
	    mpz_set (r, n);
	  if (q)
	    q->_mp_size = 0;
	}
      return 1;
    }
  else
    {
      mp_ptr np, qp;
      mp_size_t qn, rn;
      mpz_t tq, tr;

      mpz_init (tr);
      mpz_set (tr, n);
      np = tr->_mp_d;

      qn = nn - dn + 1;

      if (q)
	{
	  mpz_init2 (tq, qn * GMP_LIMB_BITS);
	  qp = tq->_mp_d;
	}
      else
	qp = NULL;

      mpn_div_qr (qp, np, nn, d->_mp_d, dn);

      if (qp)
	{
	  qn -= (qp[qn-1] == 0);

	  tq->_mp_size = qs < 0 ? -qn : qn;
	}
      rn = mpn_normalized_size (np, dn);
      tr->_mp_size = ns < 0 ? - rn : rn;

      if (mode == GMP_DIV_FLOOR && qs < 0 && rn != 0)
	{
	  if (q)
	    mpz_sub_ui (tq, tq, 1);
	  if (r)
	    mpz_add (tr, tr, d);
	}
      else if (mode == GMP_DIV_CEIL && qs >= 0 && rn != 0)
	{
	  if (q)
	    mpz_add_ui (tq, tq, 1);
	  if (r)
	    mpz_sub (tr, tr, d);
	}

      if (q)
	{
	  mpz_swap (tq, q);
	  mpz_clear (tq);
	}
      if (r)
	mpz_swap (tr, r);

      mpz_clear (tr);

      return rn != 0;
    }
}

void
mpz_cdiv_qr (mpz_t q, mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, r, n, d, GMP_DIV_CEIL);
}

void
mpz_fdiv_qr (mpz_t q, mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, r, n, d, GMP_DIV_FLOOR);
}

void
mpz_tdiv_qr (mpz_t q, mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, r, n, d, GMP_DIV_TRUNC);
}

void
mpz_cdiv_q (mpz_t q, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, NULL, n, d, GMP_DIV_CEIL);
}

void
mpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, NULL, n, d, GMP_DIV_FLOOR);
}

void
mpz_tdiv_q (mpz_t q, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (q, NULL, n, d, GMP_DIV_TRUNC);
}

void
mpz_cdiv_r (mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (NULL, r, n, d, GMP_DIV_CEIL);
}

void
mpz_fdiv_r (mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (NULL, r, n, d, GMP_DIV_FLOOR);
}

void
mpz_tdiv_r (mpz_t r, const mpz_t n, const mpz_t d)
{
  mpz_div_qr (NULL, r, n, d, GMP_DIV_TRUNC);
}

void
mpz_mod (mpz_t r, const mpz_t n, const mpz_t d)
{
  if (d->_mp_size >= 0)
    mpz_div_qr (NULL, r, n, d, GMP_DIV_FLOOR);
  else
    mpz_div_qr (NULL, r, n, d, GMP_DIV_CEIL);
}

static void
mpz_div_q_2exp (mpz_t q, const mpz_t u, mp_bitcnt_t bit_index,
		enum mpz_div_round_mode mode)
{
  mp_size_t un, qn;
  mp_size_t limb_cnt;
  mp_ptr qp;
  mp_limb_t adjust;

  un = u->_mp_size;
  if (un == 0)
    {
      q->_mp_size = 0;
      return;
    }
  limb_cnt = bit_index / GMP_LIMB_BITS;
  qn = GMP_ABS (un) - limb_cnt;
  bit_index %= GMP_LIMB_BITS;

  if (mode == ((un > 0) ? GMP_DIV_CEIL : GMP_DIV_FLOOR)) /* un != 0 here. */
    /* Note: Below, the final indexing at limb_cnt is valid because at
       that point we have qn > 0. */
    adjust = (qn <= 0
	      || !mpn_zero_p (u->_mp_d, limb_cnt)
	      || (u->_mp_d[limb_cnt]
		  & (((mp_limb_t) 1 << bit_index) - 1)));
  else
    adjust = 0;

  if (qn <= 0)
    qn = 0;

  else
    {
      qp = MPZ_REALLOC (q, qn);

      if (bit_index != 0)
	{
	  mpn_rshift (qp, u->_mp_d + limb_cnt, qn, bit_index);
	  qn -= qp[qn - 1] == 0;
	}
      else
	{
	  mpn_copyi (qp, u->_mp_d + limb_cnt, qn);
	}
    }

  q->_mp_size = qn;

  mpz_add_ui (q, q, adjust);
  if (un < 0)
    mpz_neg (q, q);
}

static void
mpz_div_r_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t bit_index,
		enum mpz_div_round_mode mode)
{
  mp_size_t us, un, rn;
  mp_ptr rp;
  mp_limb_t mask;

  us = u->_mp_size;
  if (us == 0 || bit_index == 0)
    {
      r->_mp_size = 0;
      return;
    }
  rn = (bit_index + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
  assert (rn > 0);

  rp = MPZ_REALLOC (r, rn);
  un = GMP_ABS (us);

  mask = GMP_LIMB_MAX >> (rn * GMP_LIMB_BITS - bit_index);

  if (rn > un)
    {
      /* Quotient (with truncation) is zero, and remainder is
	 non-zero */
      if (mode == ((us > 0) ? GMP_DIV_CEIL : GMP_DIV_FLOOR)) /* us != 0 here. */
	{
	  /* Have to negate and sign extend. */
	  mp_size_t i;
	  mp_limb_t cy;

	  for (cy = 1, i = 0; i < un; i++)
	    {
	      mp_limb_t s = ~u->_mp_d[i] + cy;
	      cy = s < cy;
	      rp[i] = s;
	    }
	  assert (cy == 0);
	  for (; i < rn - 1; i++)
	    rp[i] = GMP_LIMB_MAX;

	  rp[rn-1] = mask;
	  us = -us;
	}
      else
	{
	  /* Just copy */
	  if (r != u)
	    mpn_copyi (rp, u->_mp_d, un);

	  rn = un;
	}
    }
  else
    {
      if (r != u)
	mpn_copyi (rp, u->_mp_d, rn - 1);

      rp[rn-1] = u->_mp_d[rn-1] & mask;

      if (mode == ((us > 0) ? GMP_DIV_CEIL : GMP_DIV_FLOOR)) /* us != 0 here. */
	{
	  /* If r != 0, compute 2^{bit_count} - r. */
	  mp_size_t i;

	  for (i = 0; i < rn && rp[i] == 0; i++)
	    ;
	  if (i < rn)
	    {
	      /* r > 0, need to flip sign. */
	      rp[i] = ~rp[i] + 1;
	      for (i++; i < rn; i++)
		rp[i] = ~rp[i];

	      rp[rn-1] &= mask;

	      /* us is not used for anything else, so we can modify it
		 here to indicate flipped sign. */
	      us = -us;
	    }
	}
    }
  rn = mpn_normalized_size (rp, rn);
  r->_mp_size = us < 0 ? -rn : rn;
}

void
mpz_cdiv_q_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_q_2exp (r, u, cnt, GMP_DIV_CEIL);
}

void
mpz_fdiv_q_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_q_2exp (r, u, cnt, GMP_DIV_FLOOR);
}

void
mpz_tdiv_q_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_q_2exp (r, u, cnt, GMP_DIV_TRUNC);
}

void
mpz_cdiv_r_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_r_2exp (r, u, cnt, GMP_DIV_CEIL);
}

void
mpz_fdiv_r_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_r_2exp (r, u, cnt, GMP_DIV_FLOOR);
}

void
mpz_tdiv_r_2exp (mpz_t r, const mpz_t u, mp_bitcnt_t cnt)
{
  mpz_div_r_2exp (r, u, cnt, GMP_DIV_TRUNC);
}

void
mpz_divexact (mpz_t q, const mpz_t n, const mpz_t d)
{
  gmp_assert_nocarry (mpz_div_qr (q, NULL, n, d, GMP_DIV_TRUNC));
}

int
mpz_divisible_p (const mpz_t n, const mpz_t d)
{
  return mpz_div_qr (NULL, NULL, n, d, GMP_DIV_TRUNC) == 0;
}

static unsigned long
mpz_div_qr_ui (mpz_t q, mpz_t r,
	       const mpz_t n, unsigned long d, enum mpz_div_round_mode mode)
{
  mp_size_t ns, qn;
  mp_ptr qp;
  mp_limb_t rl;
  mp_size_t rs;

  ns = n->_mp_size;
  if (ns == 0)
    {
      if (q)
	q->_mp_size = 0;
      if (r)
	r->_mp_size = 0;
      return 0;
    }

  qn = GMP_ABS (ns);
  if (q)
    qp = MPZ_REALLOC (q, qn);
  else
    qp = NULL;

  rl = mpn_div_qr_1 (qp, n->_mp_d, qn, d);
  assert (rl < d);

  rs = rl > 0;
  rs = (ns < 0) ? -rs : rs;

  if (rl > 0 && ( (mode == GMP_DIV_FLOOR && ns < 0)
		  || (mode == GMP_DIV_CEIL && ns >= 0)))
    {
      if (q)
	gmp_assert_nocarry (mpn_add_1 (qp, qp, qn, 1));
      rl = d - rl;
      rs = -rs;
    }

  if (r)
    {
      r->_mp_d[0] = rl;
      r->_mp_size = rs;
    }
  if (q)
    {
      qn -= (qp[qn-1] == 0);
      assert (qn == 0 || qp[qn-1] > 0);

      q->_mp_size = (ns < 0) ? - qn : qn;
    }

  return rl;
}

unsigned long
mpz_cdiv_qr_ui (mpz_t q, mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, r, n, d, GMP_DIV_CEIL);
}

unsigned long
mpz_fdiv_qr_ui (mpz_t q, mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, r, n, d, GMP_DIV_FLOOR);
}

unsigned long
mpz_tdiv_qr_ui (mpz_t q, mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, r, n, d, GMP_DIV_TRUNC);
}

unsigned long
mpz_cdiv_q_ui (mpz_t q, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, NULL, n, d, GMP_DIV_CEIL);
}

unsigned long
mpz_fdiv_q_ui (mpz_t q, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, NULL, n, d, GMP_DIV_FLOOR);
}

unsigned long
mpz_tdiv_q_ui (mpz_t q, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (q, NULL, n, d, GMP_DIV_TRUNC);
}

unsigned long
mpz_cdiv_r_ui (mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, r, n, d, GMP_DIV_CEIL);
}
unsigned long
mpz_fdiv_r_ui (mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, r, n, d, GMP_DIV_FLOOR);
}
unsigned long
mpz_tdiv_r_ui (mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, r, n, d, GMP_DIV_TRUNC);
}

unsigned long
mpz_cdiv_ui (const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, NULL, n, d, GMP_DIV_CEIL);
}

unsigned long
mpz_fdiv_ui (const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, NULL, n, d, GMP_DIV_FLOOR);
}

unsigned long
mpz_tdiv_ui (const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, NULL, n, d, GMP_DIV_TRUNC);
}

unsigned long
mpz_mod_ui (mpz_t r, const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, r, n, d, GMP_DIV_FLOOR);
}

void
mpz_divexact_ui (mpz_t q, const mpz_t n, unsigned long d)
{
  gmp_assert_nocarry (mpz_div_qr_ui (q, NULL, n, d, GMP_DIV_TRUNC));
}

int
mpz_divisible_ui_p (const mpz_t n, unsigned long d)
{
  return mpz_div_qr_ui (NULL, NULL, n, d, GMP_DIV_TRUNC) == 0;
}


/* GCD */
static mp_limb_t
mpn_gcd_11 (mp_limb_t u, mp_limb_t v)
{
  unsigned shift;

  assert ( (u | v) > 0);

  if (u == 0)
    return v;
  else if (v == 0)
    return u;

  gmp_ctz (shift, u | v);

  u >>= shift;
  v >>= shift;

  if ( (u & 1) == 0)
    MP_LIMB_T_SWAP (u, v);

  while ( (v & 1) == 0)
    v >>= 1;

  while (u != v)
    {
      if (u > v)
	{
	  u -= v;
	  do
	    u >>= 1;
	  while ( (u & 1) == 0);
	}
      else
	{
	  v -= u;
	  do
	    v >>= 1;
	  while ( (v & 1) == 0);
	}
    }
  return u << shift;
}

unsigned long
mpz_gcd_ui (mpz_t g, const mpz_t u, unsigned long v)
{
  mp_size_t un;

  if (v == 0)
    {
      if (g)
	mpz_abs (g, u);
    }
  else
    {
      un = GMP_ABS (u->_mp_size);
      if (un != 0)
	v = mpn_gcd_11 (mpn_div_qr_1 (NULL, u->_mp_d, un, v), v);

      if (g)
	mpz_set_ui (g, v);
    }

  return v;
}

static mp_bitcnt_t
mpz_make_odd (mpz_t r, const mpz_t u)
{
  mp_size_t un, rn, i;
  mp_ptr rp;
  unsigned shift;

  un = GMP_ABS (u->_mp_size);
  assert (un > 0);

  for (i = 0; u->_mp_d[i] == 0; i++)
    ;

  gmp_ctz (shift, u->_mp_d[i]);

  rn = un - i;
  rp = MPZ_REALLOC (r, rn);
  if (shift > 0)
    {
      mpn_rshift (rp, u->_mp_d + i, rn, shift);
      rn -= (rp[rn-1] == 0);
    }
  else
    mpn_copyi (rp, u->_mp_d + i, rn);

  r->_mp_size = rn;
  return i * GMP_LIMB_BITS + shift;
}

void
mpz_gcd (mpz_t g, const mpz_t u, const mpz_t v)
{
  mpz_t tu, tv;
  mp_bitcnt_t uz, vz, gz;

  if (u->_mp_size == 0)
    {
      mpz_abs (g, v);
      return;
    }
  if (v->_mp_size == 0)
    {
      mpz_abs (g, u);
      return;
    }

  mpz_init (tu);
  mpz_init (tv);

  uz = mpz_make_odd (tu, u);
  vz = mpz_make_odd (tv, v);
  gz = GMP_MIN (uz, vz);

  if (tu->_mp_size < tv->_mp_size)
    mpz_swap (tu, tv);

  mpz_tdiv_r (tu, tu, tv);
  if (tu->_mp_size == 0)
    {
      mpz_swap (g, tv);
    }
  else
    for (;;)
      {
	int c;

	mpz_make_odd (tu, tu);
	c = mpz_cmp (tu, tv);
	if (c == 0)
	  {
	    mpz_swap (g, tu);
	    break;
	  }
	if (c < 0)
	  mpz_swap (tu, tv);

	if (tv->_mp_size == 1)
	  {
	    mp_limb_t vl = tv->_mp_d[0];
	    mp_limb_t ul = mpz_tdiv_ui (tu, vl);
	    mpz_set_ui (g, mpn_gcd_11 (ul, vl));
	    break;
	  }
	mpz_sub (tu, tu, tv);
      }
  mpz_clear (tu);
  mpz_clear (tv);
  mpz_mul_2exp (g, g, gz);
}

void
mpz_gcdext (mpz_t g, mpz_t s, mpz_t t, const mpz_t u, const mpz_t v)
{
  mpz_t tu, tv, s0, s1, t0, t1;
  mp_bitcnt_t uz, vz, gz;
  mp_bitcnt_t power;

  if (u->_mp_size == 0)
    {
      /* g = 0 u + sgn(v) v */
      signed long sign = mpz_sgn (v);
      mpz_abs (g, v);
      if (s)
	mpz_set_ui (s, 0);
      if (t)
	mpz_set_si (t, sign);
      return;
    }

  if (v->_mp_size == 0)
    {
      /* g = sgn(u) u + 0 v */
      signed long sign = mpz_sgn (u);
      mpz_abs (g, u);
      if (s)
	mpz_set_si (s, sign);
      if (t)
	mpz_set_ui (t, 0);
      return;
    }

  mpz_init (tu);
  mpz_init (tv);
  mpz_init (s0);
  mpz_init (s1);
  mpz_init (t0);
  mpz_init (t1);

  uz = mpz_make_odd (tu, u);
  vz = mpz_make_odd (tv, v);
  gz = GMP_MIN (uz, vz);

  uz -= gz;
  vz -= gz;

  /* Cofactors corresponding to odd gcd. gz handled later. */
  if (tu->_mp_size < tv->_mp_size)
    {
      mpz_swap (tu, tv);
      MPZ_SRCPTR_SWAP (u, v);
      MPZ_PTR_SWAP (s, t);
      MP_BITCNT_T_SWAP (uz, vz);
    }

  /* Maintain
   *
   * u = t0 tu + t1 tv
   * v = s0 tu + s1 tv
   *
   * where u and v denote the inputs with common factors of two
   * eliminated, and det (s0, t0; s1, t1) = 2^p. Then
   *
   * 2^p tu =  s1 u - t1 v
   * 2^p tv = -s0 u + t0 v
   */

  /* After initial division, tu = q tv + tu', we have
   *
   * u = 2^uz (tu' + q tv)
   * v = 2^vz tv
   *
   * or
   *
   * t0 = 2^uz, t1 = 2^uz q
   * s0 = 0,    s1 = 2^vz
   */

  mpz_setbit (t0, uz);
  mpz_tdiv_qr (t1, tu, tu, tv);
  mpz_mul_2exp (t1, t1, uz);

  mpz_setbit (s1, vz);
  power = uz + vz;

  if (tu->_mp_size > 0)
    {
      mp_bitcnt_t shift;
      shift = mpz_make_odd (tu, tu);
      mpz_mul_2exp (t0, t0, shift);
      mpz_mul_2exp (s0, s0, shift);
      power += shift;

      for (;;)
	{
	  int c;
	  c = mpz_cmp (tu, tv);
	  if (c == 0)
	    break;

	  if (c < 0)
	    {
	      /* tv = tv' + tu
	       *
	       * u = t0 tu + t1 (tv' + tu) = (t0 + t1) tu + t1 tv'
	       * v = s0 tu + s1 (tv' + tu) = (s0 + s1) tu + s1 tv' */

	      mpz_sub (tv, tv, tu);
	      mpz_add (t0, t0, t1);
	      mpz_add (s0, s0, s1);

	      shift = mpz_make_odd (tv, tv);
	      mpz_mul_2exp (t1, t1, shift);
	      mpz_mul_2exp (s1, s1, shift);
	    }
	  else
	    {
	      mpz_sub (tu, tu, tv);
	      mpz_add (t1, t0, t1);
	      mpz_add (s1, s0, s1);

	      shift = mpz_make_odd (tu, tu);
	      mpz_mul_2exp (t0, t0, shift);
	      mpz_mul_2exp (s0, s0, shift);
	    }
	  power += shift;
	}
    }

  /* Now tv = odd part of gcd, and -s0 and t0 are corresponding
     cofactors. */

  mpz_mul_2exp (tv, tv, gz);
  mpz_neg (s0, s0);

  /* 2^p g = s0 u + t0 v. Eliminate one factor of two at a time. To
     adjust cofactors, we need u / g and v / g */

  mpz_divexact (s1, v, tv);
  mpz_abs (s1, s1);
  mpz_divexact (t1, u, tv);
  mpz_abs (t1, t1);

  while (power-- > 0)
    {
      /* s0 u + t0 v = (s0 - v/g) u - (t0 + u/g) v */
      if (mpz_odd_p (s0) || mpz_odd_p (t0))
	{
	  mpz_sub (s0, s0, s1);
	  mpz_add (t0, t0, t1);
	}
      mpz_divexact_ui (s0, s0, 2);
      mpz_divexact_ui (t0, t0, 2);
    }

  /* Arrange so that |s| < |u| / 2g */
  mpz_add (s1, s0, s1);
  if (mpz_cmpabs (s0, s1) > 0)
    {
      mpz_swap (s0, s1);
      mpz_sub (t0, t0, t1);
    }
  if (u->_mp_size < 0)
    mpz_neg (s0, s0);
  if (v->_mp_size < 0)
    mpz_neg (t0, t0);

  mpz_swap (g, tv);
  if (s)
    mpz_swap (s, s0);
  if (t)
    mpz_swap (t, t0);

  mpz_clear (tu);
  mpz_clear (tv);
  mpz_clear (s0);
  mpz_clear (s1);
  mpz_clear (t0);
  mpz_clear (t1);
}

void
mpz_lcm (mpz_t r, const mpz_t u, const mpz_t v)
{
  mpz_t g;

  if (u->_mp_size == 0 || v->_mp_size == 0)
    {
      r->_mp_size = 0;
      return;
    }

  mpz_init (g);

  mpz_gcd (g, u, v);
  mpz_divexact (g, u, g);
  mpz_mul (r, g, v);

  mpz_clear (g);
  mpz_abs (r, r);
}

void
mpz_lcm_ui (mpz_t r, const mpz_t u, unsigned long v)
{
  if (v == 0 || u->_mp_size == 0)
    {
      r->_mp_size = 0;
      return;
    }

  v /= mpz_gcd_ui (NULL, u, v);
  mpz_mul_ui (r, u, v);

  mpz_abs (r, r);
}

int
mpz_invert (mpz_t r, const mpz_t u, const mpz_t m)
{
  mpz_t g, tr;
  int invertible;

  if (u->_mp_size == 0 || mpz_cmpabs_ui (m, 1) <= 0)
    return 0;

  mpz_init (g);
  mpz_init (tr);

  mpz_gcdext (g, tr, NULL, u, m);
  invertible = (mpz_cmp_ui (g, 1) == 0);

  if (invertible)
    {
      if (tr->_mp_size < 0)
	{
	  if (m->_mp_size >= 0)
	    mpz_add (tr, tr, m);
	  else
	    mpz_sub (tr, tr, m);
	}
      mpz_swap (r, tr);
    }

  mpz_clear (g);
  mpz_clear (tr);
  return invertible;
}


/* Higher level operations (sqrt, pow and root) */

void
mpz_pow_ui (mpz_t r, const mpz_t b, unsigned long e)
{
  unsigned long bit;
  mpz_t tr;
  mpz_init_set_ui (tr, 1);

  for (bit = GMP_ULONG_HIGHBIT; bit > 0; bit >>= 1)
    {
      mpz_mul (tr, tr, tr);
      if (e & bit)
	mpz_mul (tr, tr, b);
    }
  mpz_swap (r, tr);
  mpz_clear (tr);
}

void
mpz_ui_pow_ui (mpz_t r, unsigned long blimb, unsigned long e)
{
  mpz_t b;
  mpz_init_set_ui (b, blimb);
  mpz_pow_ui (r, b, e);
  mpz_clear (b);
}

void
mpz_powm (mpz_t r, const mpz_t b, const mpz_t e, const mpz_t m)
{
  mpz_t tr;
  mpz_t base;
  mp_size_t en, mn;
  mp_srcptr mp;
  struct gmp_div_inverse minv;
  unsigned shift;
  mp_ptr tp = NULL;

  en = GMP_ABS (e->_mp_size);
  mn = GMP_ABS (m->_mp_size);
  if (mn == 0)
    gmp_die ("mpz_powm: Zero modulo.");

  if (en == 0)
    {
      mpz_set_ui (r, 1);
      return;
    }

  mp = m->_mp_d;
  mpn_div_qr_invert (&minv, mp, mn);
  shift = minv.shift;

  if (shift > 0)
    {
      /* To avoid shifts, we do all our reductions, except the final
	 one, using a *normalized* m. */
      minv.shift = 0;

      tp = gmp_xalloc_limbs (mn);
      gmp_assert_nocarry (mpn_lshift (tp, mp, mn, shift));
      mp = tp;
    }

  mpz_init (base);

  if (e->_mp_size < 0)
    {
      if (!mpz_invert (base, b, m))
	gmp_die ("mpz_powm: Negative exponent and non-invertibe base.");
    }
  else
    {
      mp_size_t bn;
      mpz_abs (base, b);

      bn = base->_mp_size;
      if (bn >= mn)
	{
	  mpn_div_qr_preinv (NULL, base->_mp_d, base->_mp_size, mp, mn, &minv);
	  bn = mn;
	}

      /* We have reduced the absolute value. Now take care of the
	 sign. Note that we get zero represented non-canonically as
	 m. */
      if (b->_mp_size < 0)
	{
	  mp_ptr bp = MPZ_REALLOC (base, mn);
	  gmp_assert_nocarry (mpn_sub (bp, mp, mn, bp, bn));
	  bn = mn;
	}
      base->_mp_size = mpn_normalized_size (base->_mp_d, bn);
    }
  mpz_init_set_ui (tr, 1);

  while (en-- > 0)
    {
      mp_limb_t w = e->_mp_d[en];
      mp_limb_t bit;

      for (bit = GMP_LIMB_HIGHBIT; bit > 0; bit >>= 1)
	{
	  mpz_mul (tr, tr, tr);
	  if (w & bit)
	    mpz_mul (tr, tr, base);
	  if (tr->_mp_size > mn)
	    {
	      mpn_div_qr_preinv (NULL, tr->_mp_d, tr->_mp_size, mp, mn, &minv);
	      tr->_mp_size = mpn_normalized_size (tr->_mp_d, mn);
	    }
	}
    }

  /* Final reduction */
  if (tr->_mp_size >= mn)
    {
      minv.shift = shift;
      mpn_div_qr_preinv (NULL, tr->_mp_d, tr->_mp_size, mp, mn, &minv);
      tr->_mp_size = mpn_normalized_size (tr->_mp_d, mn);
    }
  if (tp)
    gmp_free (tp);

  mpz_swap (r, tr);
  mpz_clear (tr);
  mpz_clear (base);
}

void
mpz_powm_ui (mpz_t r, const mpz_t b, unsigned long elimb, const mpz_t m)
{
  mpz_t e;
  mpz_init_set_ui (e, elimb);
  mpz_powm (r, b, e, m);
  mpz_clear (e);
}

/* x=trunc(y^(1/z)), r=y-x^z */
void
mpz_rootrem (mpz_t x, mpz_t r, const mpz_t y, unsigned long z)
{
  int sgn;
  mpz_t t, u;

  sgn = y->_mp_size < 0;
  if (sgn && (z & 1) == 0)
    gmp_die ("mpz_rootrem: Negative argument, with even root.");
  if (z == 0)
    gmp_die ("mpz_rootrem: Zeroth root.");

  if (mpz_cmpabs_ui (y, 1) <= 0) {
    mpz_set (x, y);
    if (r)
      r->_mp_size = 0;
    return;
  }

  mpz_init (t);
  mpz_init (u);
  mpz_setbit (t, mpz_sizeinbase (y, 2) / z + 1);

  if (z == 2) /* simplify sqrt loop: z-1 == 1 */
    do {
      mpz_swap (u, t);			/* u = x */
      mpz_tdiv_q (t, y, u);		/* t = y/x */
      mpz_add (t, t, u);		/* t = y/x + x */
      mpz_tdiv_q_2exp (t, t, 1);	/* x'= (y/x + x)/2 */
    } while (mpz_cmpabs (t, u) < 0);	/* |x'| < |x| */
  else /* z != 2 */ {
    mpz_t v;

    mpz_init (v);
    if (sgn)
      mpz_neg (t, t);

    do {
      mpz_swap (u, t);			/* u = x */
      mpz_pow_ui (t, u, z - 1);		/* t = x^(z-1) */
      mpz_tdiv_q (t, y, t);		/* t = y/x^(z-1) */
      mpz_mul_ui (v, u, z - 1);		/* v = x*(z-1) */
      mpz_add (t, t, v);		/* t = y/x^(z-1) + x*(z-1) */
      mpz_tdiv_q_ui (t, t, z);		/* x'=(y/x^(z-1) + x*(z-1))/z */
    } while (mpz_cmpabs (t, u) < 0);	/* |x'| < |x| */

    mpz_clear (v);
  }

  if (r) {
    mpz_pow_ui (t, u, z);
    mpz_sub (r, y, t);
  }
  mpz_swap (x, u);
  mpz_clear (u);
  mpz_clear (t);
}

int
mpz_root (mpz_t x, const mpz_t y, unsigned long z)
{
  int res;
  mpz_t r;

  mpz_init (r);
  mpz_rootrem (x, r, y, z);
  res = r->_mp_size == 0;
  mpz_clear (r);

  return res;
}

/* Compute s = floor(sqrt(u)) and r = u - s^2. Allows r == NULL */
void
mpz_sqrtrem (mpz_t s, mpz_t r, const mpz_t u)
{
  mpz_rootrem (s, r, u, 2);
}

void
mpz_sqrt (mpz_t s, const mpz_t u)
{
  mpz_rootrem (s, NULL, u, 2);
}


/* Combinatorics */

void
mpz_fac_ui (mpz_t x, unsigned long n)
{
  if (n < 2) {
    mpz_set_ui (x, 1);
    return;
  }
  mpz_set_ui (x, n);
  for (;--n > 1;)
    mpz_mul_ui (x, x, n);
}

void
mpz_bin_uiui (mpz_t r, unsigned long n, unsigned long k)
{
  mpz_t t;

  if (k > n) {
    r->_mp_size = 0;
    return;
  }
  mpz_fac_ui (r, n);
  mpz_init (t);
  mpz_fac_ui (t, k);
  mpz_divexact (r, r, t);
  mpz_fac_ui (t, n - k);
  mpz_divexact (r, r, t);
  mpz_clear (t);
}


/* Logical operations and bit manipulation. */

/* Numbers are treated as if represented in two's complement (and
   infinitely sign extended). For a negative values we get the two's
   complement from -x = ~x + 1, where ~ is bitwise complementt.
   Negation transforms

     xxxx10...0

   into

     yyyy10...0

   where yyyy is the bitwise complement of xxxx. So least significant
   bits, up to and including the first one bit, are unchanged, and
   the more significant bits are all complemented.

   To change a bit from zero to one in a negative number, subtract the
   corresponding power of two from the absolute value. This can never
   underflow. To change a bit from one to zero, add the corresponding
   power of two, and this might overflow. E.g., if x = -001111, the
   two's complement is 110001. Clearing the least significant bit, we
   get two's complement 110000, and -010000. */

int
mpz_tstbit (const mpz_t d, mp_bitcnt_t bit_index)
{
  mp_size_t limb_index;
  unsigned shift;
  mp_size_t ds;
  mp_size_t dn;
  mp_limb_t w;
  int bit;

  ds = d->_mp_size;
  dn = GMP_ABS (ds);
  limb_index = bit_index / GMP_LIMB_BITS;
  if (limb_index >= dn)
    return ds < 0;

  shift = bit_index % GMP_LIMB_BITS;
  w = d->_mp_d[limb_index];
  bit = (w >> shift) & 1;

  if (ds < 0)
    {
      /* d < 0. Check if any of the bits below is set: If so, our bit
	 must be complemented. */
      if (shift > 0 && (w << (GMP_LIMB_BITS - shift)) > 0)
	return bit ^ 1;
      while (limb_index-- > 0)
	if (d->_mp_d[limb_index] > 0)
	  return bit ^ 1;
    }
  return bit;
}

static void
mpz_abs_add_bit (mpz_t d, mp_bitcnt_t bit_index)
{
  mp_size_t dn, limb_index;
  mp_limb_t bit;
  mp_ptr dp;

  dn = GMP_ABS (d->_mp_size);

  limb_index = bit_index / GMP_LIMB_BITS;
  bit = (mp_limb_t) 1 << (bit_index % GMP_LIMB_BITS);

  if (limb_index >= dn)
    {
      mp_size_t i;
      /* The bit should be set outside of the end of the number.
	 We have to increase the size of the number. */
      dp = MPZ_REALLOC (d, limb_index + 1);

      dp[limb_index] = bit;
      for (i = dn; i < limb_index; i++)
	dp[i] = 0;
      dn = limb_index + 1;
    }
  else
    {
      mp_limb_t cy;

      dp = d->_mp_d;

      cy = mpn_add_1 (dp + limb_index, dp + limb_index, dn - limb_index, bit);
      if (cy > 0)
	{
	  dp = MPZ_REALLOC (d, dn + 1);
	  dp[dn++] = cy;
	}
    }

  d->_mp_size = (d->_mp_size < 0) ? - dn : dn;
}

static void
mpz_abs_sub_bit (mpz_t d, mp_bitcnt_t bit_index)
{
  mp_size_t dn, limb_index;
  mp_ptr dp;
  mp_limb_t bit;

  dn = GMP_ABS (d->_mp_size);
  dp = d->_mp_d;

  limb_index = bit_index / GMP_LIMB_BITS;
  bit = (mp_limb_t) 1 << (bit_index % GMP_LIMB_BITS);

  assert (limb_index < dn);

  gmp_assert_nocarry (mpn_sub_1 (dp + limb_index, dp + limb_index,
				 dn - limb_index, bit));
  dn -= (dp[dn-1] == 0);
  d->_mp_size = (d->_mp_size < 0) ? - dn : dn;
}

void
mpz_setbit (mpz_t d, mp_bitcnt_t bit_index)
{
  if (!mpz_tstbit (d, bit_index))
    {
      if (d->_mp_size >= 0)
	mpz_abs_add_bit (d, bit_index);
      else
	mpz_abs_sub_bit (d, bit_index);
    }
}

void
mpz_clrbit (mpz_t d, mp_bitcnt_t bit_index)
{
  if (mpz_tstbit (d, bit_index))
    {
      if (d->_mp_size >= 0)
	mpz_abs_sub_bit (d, bit_index);
      else
	mpz_abs_add_bit (d, bit_index);
    }
}

void
mpz_combit (mpz_t d, mp_bitcnt_t bit_index)
{
  if (mpz_tstbit (d, bit_index) ^ (d->_mp_size < 0))
    mpz_abs_sub_bit (d, bit_index);
  else
    mpz_abs_add_bit (d, bit_index);
}

void
mpz_com (mpz_t r, const mpz_t u)
{
  mpz_neg (r, u);
  mpz_sub_ui (r, r, 1);
}

void
mpz_and (mpz_t r, const mpz_t u, const mpz_t v)
{
  mp_size_t un, vn, rn, i;
  mp_ptr up, vp, rp;

  mp_limb_t ux, vx, rx;
  mp_limb_t uc, vc, rc;
  mp_limb_t ul, vl, rl;

  un = GMP_ABS (u->_mp_size);
  vn = GMP_ABS (v->_mp_size);
  if (un < vn)
    {
      MPZ_SRCPTR_SWAP (u, v);
      MP_SIZE_T_SWAP (un, vn);
    }
  if (vn == 0)
    {
      r->_mp_size = 0;
      return;
    }

  uc = u->_mp_size < 0;
  vc = v->_mp_size < 0;
  rc = uc & vc;

  ux = -uc;
  vx = -vc;
  rx = -rc;

  /* If the smaller input is positive, higher limbs don't matter. */
  rn = vx ? un : vn;

  rp = MPZ_REALLOC (r, rn + rc);

  up = u->_mp_d;
  vp = v->_mp_d;

  for (i = 0; i < vn; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      vl = (vp[i] ^ vx) + vc;
      vc = vl < vc;

      rl = ( (ul & vl) ^ rx) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  assert (vc == 0);

  for (; i < rn; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      rl = ( (ul & vx) ^ rx) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  if (rc)
    rp[rn++] = rc;
  else
    rn = mpn_normalized_size (rp, rn);

  r->_mp_size = rx ? -rn : rn;
}

void
mpz_ior (mpz_t r, const mpz_t u, const mpz_t v)
{
  mp_size_t un, vn, rn, i;
  mp_ptr up, vp, rp;

  mp_limb_t ux, vx, rx;
  mp_limb_t uc, vc, rc;
  mp_limb_t ul, vl, rl;

  un = GMP_ABS (u->_mp_size);
  vn = GMP_ABS (v->_mp_size);
  if (un < vn)
    {
      MPZ_SRCPTR_SWAP (u, v);
      MP_SIZE_T_SWAP (un, vn);
    }
  if (vn == 0)
    {
      mpz_set (r, u);
      return;
    }

  uc = u->_mp_size < 0;
  vc = v->_mp_size < 0;
  rc = uc | vc;

  ux = -uc;
  vx = -vc;
  rx = -rc;

  /* If the smaller input is negative, by sign extension higher limbs
     don't matter. */
  rn = vx ? vn : un;

  rp = MPZ_REALLOC (r, rn + rc);

  up = u->_mp_d;
  vp = v->_mp_d;

  for (i = 0; i < vn; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      vl = (vp[i] ^ vx) + vc;
      vc = vl < vc;

      rl = ( (ul | vl) ^ rx) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  assert (vc == 0);

  for (; i < rn; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      rl = ( (ul | vx) ^ rx) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  if (rc)
    rp[rn++] = rc;
  else
    rn = mpn_normalized_size (rp, rn);

  r->_mp_size = rx ? -rn : rn;
}

void
mpz_xor (mpz_t r, const mpz_t u, const mpz_t v)
{
  mp_size_t un, vn, i;
  mp_ptr up, vp, rp;

  mp_limb_t ux, vx, rx;
  mp_limb_t uc, vc, rc;
  mp_limb_t ul, vl, rl;

  un = GMP_ABS (u->_mp_size);
  vn = GMP_ABS (v->_mp_size);
  if (un < vn)
    {
      MPZ_SRCPTR_SWAP (u, v);
      MP_SIZE_T_SWAP (un, vn);
    }
  if (vn == 0)
    {
      mpz_set (r, u);
      return;
    }

  uc = u->_mp_size < 0;
  vc = v->_mp_size < 0;
  rc = uc ^ vc;

  ux = -uc;
  vx = -vc;
  rx = -rc;

  rp = MPZ_REALLOC (r, un + rc);

  up = u->_mp_d;
  vp = v->_mp_d;

  for (i = 0; i < vn; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      vl = (vp[i] ^ vx) + vc;
      vc = vl < vc;

      rl = (ul ^ vl ^ rx) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  assert (vc == 0);

  for (; i < un; i++)
    {
      ul = (up[i] ^ ux) + uc;
      uc = ul < uc;

      rl = (ul ^ ux) + rc;
      rc = rl < rc;
      rp[i] = rl;
    }
  if (rc)
    rp[un++] = rc;
  else
    un = mpn_normalized_size (rp, un);

  r->_mp_size = rx ? -un : un;
}

static unsigned
gmp_popcount_limb (mp_limb_t x)
{
  unsigned c;

  /* Do 16 bits at a time, to avoid limb-sized constants. */
  for (c = 0; x > 0; x >>= 16)
    {
      unsigned w = ((x >> 1) & 0x5555) + (x & 0x5555);
      w = ((w >> 2) & 0x3333) + (w & 0x3333);
      w = ((w >> 4) & 0x0f0f) + (w & 0x0f0f);
      w = (w >> 8) + (w & 0x00ff);
      c += w;
    }
  return c;
}

mp_bitcnt_t
mpz_popcount (const mpz_t u)
{
  mp_size_t un, i;
  mp_bitcnt_t c;

  un = u->_mp_size;

  if (un < 0)
    return ~(mp_bitcnt_t) 0;

  for (c = 0, i = 0; i < un; i++)
    c += gmp_popcount_limb (u->_mp_d[i]);

  return c;
}

mp_bitcnt_t
mpz_hamdist (const mpz_t u, const mpz_t v)
{
  mp_size_t un, vn, i;
  mp_limb_t uc, vc, ul, vl, comp;
  mp_srcptr up, vp;
  mp_bitcnt_t c;

  un = u->_mp_size;
  vn = v->_mp_size;

  if ( (un ^ vn) < 0)
    return ~(mp_bitcnt_t) 0;

  if (un < 0)
    {
      assert (vn < 0);
      un = -un;
      vn = -vn;
      uc = vc = 1;
      comp = - (mp_limb_t) 1;
    }
  else
    uc = vc = comp = 0;

  up = u->_mp_d;
  vp = v->_mp_d;

  if (un < vn)
    MPN_SRCPTR_SWAP (up, un, vp, vn);

  for (i = 0, c = 0; i < vn; i++)
    {
      ul = (up[i] ^ comp) + uc;
      uc = ul < uc;

      vl = (vp[i] ^ comp) + vc;
      vc = vl < vc;

      c += gmp_popcount_limb (ul ^ vl);
    }
  assert (vc == 0);

  for (; i < un; i++)
    {
      ul = (up[i] ^ comp) + uc;
      uc = ul < uc;

      c += gmp_popcount_limb (ul ^ comp);
    }

  return c;
}

mp_bitcnt_t
mpz_scan1 (const mpz_t u, mp_bitcnt_t starting_bit)
{
  mp_ptr up;
  mp_size_t us, un, i;
  mp_limb_t limb, ux, uc;
  unsigned cnt;

  up = u->_mp_d;
  us = u->_mp_size;
  un = GMP_ABS (us);
  i = starting_bit / GMP_LIMB_BITS;

  /* Past the end there's no 1 bits for u>=0, or an immediate 1 bit
     for u<0. Notice this test picks up any u==0 too. */
  if (i >= un)
    return (us >= 0 ? ~(mp_bitcnt_t) 0 : starting_bit);

  if (us < 0)
    {
      ux = GMP_LIMB_MAX;
      uc = mpn_zero_p (up, i);
    }
  else
    ux = uc = 0;

  limb = (ux ^ up[i]) + uc;
  uc = limb < uc;

  /* Mask to 0 all bits before starting_bit, thus ignoring them. */
  limb &= (GMP_LIMB_MAX << (starting_bit % GMP_LIMB_BITS));

  while (limb == 0)
    {
      i++;
      if (i == un)
	{
	  assert (uc == 0);
	  /* For the u > 0 case, this can happen only for the first
	     masked limb. For the u < 0 case, it happens when the
	     highest limbs of the absolute value are all ones. */
	  return (us >= 0 ? ~(mp_bitcnt_t) 0 : un * GMP_LIMB_BITS);
	}
      limb = (ux ^ up[i]) + uc;
      uc = limb < uc;
    }
  gmp_ctz (cnt, limb);
  return (mp_bitcnt_t) i * GMP_LIMB_BITS + cnt;
}

mp_bitcnt_t
mpz_scan0 (const mpz_t u, mp_bitcnt_t starting_bit)
{
  mp_ptr up;
  mp_size_t us, un, i;
  mp_limb_t limb, ux, uc;
  unsigned cnt;

  up = u->_mp_d;
  us = u->_mp_size;
  un = GMP_ABS (us);
  i = starting_bit / GMP_LIMB_BITS;

  /* When past end, there's an immediate 0 bit for u>=0, or no 0 bits for
     u<0.  Notice this test picks up all cases of u==0 too. */
  if (i >= un)
    return (us >= 0 ? starting_bit : ~(mp_bitcnt_t) 0);

  if (us < 0)
    {
      ux = GMP_LIMB_MAX;
      uc = mpn_zero_p (up, i);
    }
  else
    ux = uc = 0;

  limb = (ux ^ up[i]) + uc;
  uc = limb < uc;

  /* Mask to 1 all bits before starting_bit, thus ignoring them. */
  limb |= ((mp_limb_t) 1 << (starting_bit % GMP_LIMB_BITS)) - 1;

  while (limb == GMP_LIMB_MAX)
    {
      i++;
      if (i == un)
	{
	  assert (uc == 0);
	  return (us >= 0 ? un * GMP_LIMB_BITS : ~(mp_bitcnt_t) 0);
	}
      limb = (ux ^ up[i]) + uc;
      uc = limb < uc;
    }
  gmp_ctz (cnt, ~limb);
  return (mp_bitcnt_t) i * GMP_LIMB_BITS + cnt;
}


/* MPZ base conversion. */

size_t
mpz_sizeinbase (const mpz_t u, int base)
{
  mp_size_t un;
  mp_srcptr up;
  mp_ptr tp;
  mp_bitcnt_t bits;
  struct gmp_div_inverse bi;
  size_t ndigits;

  assert (base >= 2);
  assert (base <= 36);

  un = GMP_ABS (u->_mp_size);
  if (un == 0)
    return 1;

  up = u->_mp_d;

  bits = (un - 1) * GMP_LIMB_BITS + mpn_limb_size_in_base_2 (up[un-1]);
  switch (base)
    {
    case 2:
      return bits;
    case 4:
      return (bits + 1) / 2;
    case 8:
      return (bits + 2) / 3;
    case 16:
      return (bits + 3) / 4;
    case 32:
      return (bits + 4) / 5;
      /* FIXME: Do something more clever for the common case of base
	 10. */
    }

  tp = gmp_xalloc_limbs (un);
  mpn_copyi (tp, up, un);
  mpn_div_qr_1_invert (&bi, base);

  for (ndigits = 0; un > 0; ndigits++)
    {
      mpn_div_qr_1_preinv (tp, tp, un, &bi);
      un -= (tp[un-1] == 0);
    }
  gmp_free (tp);
  return ndigits;
}

char *
mpz_get_str (char *sp, int base, const mpz_t u)
{
  unsigned bits;
  const char *digits;
  mp_size_t un;
  size_t i, sn;

  if (base >= 0)
    {
      digits = "0123456789abcdefghijklmnopqrstuvwxyz";
    }
  else
    {
      base = -base;
      digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
    }
  if (base <= 1)
    base = 10;
  if (base > 36)
    return NULL;

  sn = 1 + mpz_sizeinbase (u, base);
  if (!sp)
    sp = gmp_xalloc (1 + sn);

  un = GMP_ABS (u->_mp_size);

  if (un == 0)
    {
      sp[0] = '0';
      sp[1] = '\0';
      return sp;
    }

  i = 0;

  if (u->_mp_size < 0)
    sp[i++] = '-';

  bits = mpn_base_power_of_two_p (base);

  if (bits)
    /* Not modified in this case. */
    sn = i + mpn_get_str_bits ((unsigned char *) sp + i, bits, u->_mp_d, un);
  else
    {
      struct mpn_base_info info;
      mp_ptr tp;

      mpn_get_base_info (&info, base);
      tp = gmp_xalloc_limbs (un);