aboutsummaryrefslogtreecommitdiff
path: root/src/util/areastore.h
blob: bebecfd78d4d332967b7f98bf69c658455bd4c14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
Minetest
Copyright (C) 2015 est31 <mtest31@outlook.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#ifndef AREA_STORE_H_
#define AREA_STORE_H_

#include "irr_v3d.h"
#include "noise.h" // for PcgRandom
#include <map>
#include <list>
#include <vector>
#include <istream>
#include "util/container.h"
#include "util/numeric.h"
#ifndef ANDROID
	#include "cmake_config.h"
#endif
#if USE_SPATIAL
	#include <spatialindex/SpatialIndex.h>
	#include "util/serialize.h"
#endif


struct Area {
	Area() : id(U32_MAX) {}
	Area(const v3s16 &mine, const v3s16 &maxe) :
		id(U32_MAX), minedge(mine), maxedge(maxe)
	{
		sortBoxVerticies(minedge, maxedge);
	}

	u32 id;
	v3s16 minedge, maxedge;
	std::string data;
};


class AreaStore {
public:
	AreaStore() :
		m_cache_enabled(true),
		m_cacheblock_radius(64),
		m_res_cache(1000, &cacheMiss, this),
		m_next_id(0)
	{}

	virtual ~AreaStore() {}

	static AreaStore *getOptimalImplementation();

	virtual void reserve(size_t count) {};
	size_t size() const { return areas_map.size(); }

	/// Add an area to the store.
	/// Updates the area's ID if it hasn't already been set.
	/// @return Whether the area insertion was successful.
	virtual bool insertArea(Area *a) = 0;

	/// Removes an area from the store by ID.
	/// @return Whether the area was in the store and removed.
	virtual bool removeArea(u32 id) = 0;

	/// Finds areas that the passed position is contained in.
	/// Stores output in passed vector.
	void getAreasForPos(std::vector<Area *> *result, v3s16 pos);

	/// Finds areas that are completely contained inside the area defined
	/// by the passed edges.  If @p accept_overlap is true this finds any
	/// areas that intersect with the passed area at any point.
	virtual void getAreasInArea(std::vector<Area *> *result,
		v3s16 minedge, v3s16 maxedge, bool accept_overlap) = 0;

	/// Sets cache parameters.
	void setCacheParams(bool enabled, u8 block_radius, size_t limit);

	/// Returns a pointer to the area coresponding to the passed ID,
	/// or NULL if it doesn't exist.
	const Area *getArea(u32 id) const;

	/// Serializes the store's areas to a binary ostream.
	void serialize(std::ostream &is) const;

	/// Deserializes the Areas from a binary istream.
	/// This does not currently clear the AreaStore before adding the
	/// areas, making it possible to deserialize multiple serialized
	/// AreaStores.
	void deserialize(std::istream &is);

protected:
	/// Invalidates the getAreasForPos cache.
	/// Call after adding or removing an area.
	void invalidateCache();

	/// Implementation of getAreasForPos.
	/// getAreasForPos calls this if the cache is disabled.
	virtual void getAreasForPosImpl(std::vector<Area *> *result, v3s16 pos) = 0;

	/// Returns the next area ID and increments it.
	u32 getNextId() { return m_next_id++; }

	// Note: This can't be an unordered_map, since all
	// references would be invalidated on rehash.
	typedef std::map<u32, Area> AreaMap;
	AreaMap areas_map;

private:
	/// Called by the cache when a value isn't found in the cache.
	static void cacheMiss(void *data, const v3s16 &mpos, std::vector<Area *> *dest);

	bool m_cache_enabled;
	/// Range, in nodes, of the getAreasForPos cache.
	/// If you modify this, call invalidateCache()
	u8 m_cacheblock_radius;
	LRUCache<v3s16, std::vector<Area *> > m_res_cache;

	u32 m_next_id;
};


class VectorAreaStore : public AreaStore {
public:
	virtual void reserve(size_t count) { m_areas.reserve(count); }
	virtual bool insertArea(Area *a);
	virtual bool removeArea(u32 id);
	virtual void getAreasInArea(std::vector<Area *> *result,
		v3s16 minedge, v3s16 maxedge, bool accept_overlap);

protected:
	virtual void getAreasForPosImpl(std::vector<Area *> *result, v3s16 pos);

private:
	std::vector<Area *> m_areas;
};


#if USE_SPATIAL

class SpatialAreaStore : public AreaStore {
public:
	SpatialAreaStore();
	virtual ~SpatialAreaStore();

	virtual bool insertArea(Area *a);
	virtual bool removeArea(u32 id);
	virtual void getAreasInArea(std::vector<Area *> *result,
		v3s16 minedge, v3s16 maxedge, bool accept_overlap);

protected:
	virtual void getAreasForPosImpl(std::vector<Area *> *result, v3s16 pos);

private:
	SpatialIndex::ISpatialIndex *m_tree;
	SpatialIndex::IStorageManager *m_storagemanager;

	class VectorResultVisitor : public SpatialIndex::IVisitor {
	public:
		VectorResultVisitor(std::vector<Area *> *result, SpatialAreaStore *store) :
			m_store(store),
			m_result(result)
		{}
		~VectorResultVisitor() {}

		virtual void visitNode(const SpatialIndex::INode &in) {}

		virtual void visitData(const SpatialIndex::IData &in)
		{
			u32 id = in.getIdentifier();

			std::map<u32, Area>::iterator itr = m_store->areas_map.find(id);
			assert(itr != m_store->areas_map.end());
			m_result->push_back(&itr->second);
		}

		virtual void visitData(std::vector<const SpatialIndex::IData *> &v)
		{
			for (size_t i = 0; i < v.size(); i++)
				visitData(*(v[i]));
		}

	private:
		SpatialAreaStore *m_store;
		std::vector<Area *> *m_result;
	};
};

#endif // USE_SPATIAL

#endif // AREA_STORE_H_
area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++) { for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++) { u8 f = m_flags[m_area.index(x,y,z)]; char c; if(f & VOXELFLAG_NO_DATA) c = 'N'; else { c = 'X'; MapNode n = m_data[m_area.index(x,y,z)]; content_t m = n.getContent(); u8 pr = n.param2; if(mode == VOXELPRINT_MATERIAL) { if(m <= 9) c = m + '0'; } else if(mode == VOXELPRINT_WATERPRESSURE) { if(ndef->get(m).isLiquid()) { c = 'w'; if(pr <= 9) c = pr + '0'; } else if(m == CONTENT_AIR) { c = ' '; } else { c = '#'; } } else if(mode == VOXELPRINT_LIGHT_DAY) { if(ndef->get(m).light_source != 0) c = 'S'; else if(ndef->get(m).light_propagates == false) c = 'X'; else { u8 light = n.getLight(LIGHTBANK_DAY, ndef); if(light < 10) c = '0' + light; else c = 'a' + (light-10); } } } o<<c; } o<<' '; } o<<std::endl; } } void VoxelManipulator::addArea(const VoxelArea &area) { // Cancel if requested area has zero volume if (area.hasEmptyExtent()) return; // Cancel if m_area already contains the requested area if(m_area.contains(area)) return; TimeTaker timer("addArea", &addarea_time); // Calculate new area VoxelArea new_area; // New area is the requested area if m_area has zero volume if(m_area.hasEmptyExtent()) { new_area = area; } // Else add requested area to m_area else { new_area = m_area; new_area.addArea(area); } s32 new_size = new_area.getVolume(); /*dstream<<"adding area "; area.print(dstream); dstream<<", old area "; m_area.print(dstream); dstream<<", new area "; new_area.print(dstream); dstream<<", new_size="<<new_size; dstream<<std::endl;*/ // Allocate new data and clear flags MapNode *new_data = new MapNode[new_size]; assert(new_data); u8 *new_flags = new u8[new_size]; assert(new_flags); memset(new_flags, VOXELFLAG_NO_DATA, new_size); // Copy old data s32 old_x_width = m_area.MaxEdge.X - m_area.MinEdge.X + 1; for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++) for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++) { unsigned int old_index = m_area.index(m_area.MinEdge.X,y,z); unsigned int new_index = new_area.index(m_area.MinEdge.X,y,z); memcpy(&new_data[new_index], &m_data[old_index], old_x_width * sizeof(MapNode)); memcpy(&new_flags[new_index], &m_flags[old_index], old_x_width * sizeof(u8)); } // Replace area, data and flags m_area = new_area; MapNode *old_data = m_data; u8 *old_flags = m_flags; /*dstream<<"old_data="<<(int)old_data<<", new_data="<<(int)new_data <<", old_flags="<<(int)m_flags<<", new_flags="<<(int)new_flags<<std::endl;*/ m_data = new_data; m_flags = new_flags; delete[] old_data; delete[] old_flags; //dstream<<"addArea done"<<std::endl; } void VoxelManipulator::copyFrom(MapNode *src, const VoxelArea& src_area, v3s16 from_pos, v3s16 to_pos, v3s16 size) { /* The reason for this optimised code is that we're a member function * and the data type/layout of m_data is know to us: it's stored as * [z*h*w + y*h + x]. Therefore we can take the calls to m_area index * (which performs the preceding mapping/indexing of m_data) out of the * inner loop and calculate the next index as we're iterating to gain * performance. * * src_step and dest_step is the amount required to be added to our index * every time y increments. Because the destination area may be larger * than the source area we need one additional variable (otherwise we could * just continue adding dest_step as is done for the source data): dest_mod. * dest_mod is the difference in size between a "row" in the source data * and a "row" in the destination data (I am using the term row loosely * and for illustrative purposes). E.g. * * src <-------------------->|'''''' dest mod '''''''' * dest <---------------------------------------------> * * dest_mod (it's essentially a modulus) is added to the destination index * after every full iteration of the y span. * * This method falls under the category "linear array and incrementing * index". */ s32 src_step = src_area.getExtent().X; s32 dest_step = m_area.getExtent().X; s32 dest_mod = m_area.index(to_pos.X, to_pos.Y, to_pos.Z + 1) - m_area.index(to_pos.X, to_pos.Y, to_pos.Z) - dest_step * size.Y; s32 i_src = src_area.index(from_pos.X, from_pos.Y, from_pos.Z); s32 i_local = m_area.index(to_pos.X, to_pos.Y, to_pos.Z); for (s16 z = 0; z < size.Z; z++) { for (s16 y = 0; y < size.Y; y++) { memcpy(&m_data[i_local], &src[i_src], size.X * sizeof(*m_data)); memset(&m_flags[i_local], 0, size.X); i_src += src_step; i_local += dest_step; } i_local += dest_mod; } } void VoxelManipulator::copyTo(MapNode *dst, const VoxelArea& dst_area, v3s16 dst_pos, v3s16 from_pos, v3s16 size) { for(s16 z=0; z<size.Z; z++) for(s16 y=0; y<size.Y; y++) { s32 i_dst = dst_area.index(dst_pos.X, dst_pos.Y+y, dst_pos.Z+z); s32 i_local = m_area.index(from_pos.X, from_pos.Y+y, from_pos.Z+z); for (s16 x = 0; x < size.X; x++) { if (m_data[i_local].getContent() != CONTENT_IGNORE) dst[i_dst] = m_data[i_local]; i_dst++; i_local++; } } } /* Algorithms ----------------------------------------------------- */ void VoxelManipulator::clearFlag(u8 flags) { // 0-1ms on moderate area TimeTaker timer("clearFlag", &clearflag_time); //v3s16 s = m_area.getExtent(); /*dstream<<"clearFlag clearing area of size " <<""<<s.X<<"x"<<s.Y<<"x"<<s.Z<<"" <<std::endl;*/ //s32 count = 0; /*for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++) for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++) for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++) { u8 f = m_flags[m_area.index(x,y,z)]; m_flags[m_area.index(x,y,z)] &= ~flags; if(m_flags[m_area.index(x,y,z)] != f) count++; }*/ s32 volume = m_area.getVolume(); for(s32 i=0; i<volume; i++) { m_flags[i] &= ~flags; } /*s32 volume = m_area.getVolume(); for(s32 i=0; i<volume; i++) { u8 f = m_flags[i]; m_flags[i] &= ~flags; if(m_flags[i] != f) count++; } dstream<<"clearFlag changed "<<count<<" flags out of " <<volume<<" nodes"<<std::endl;*/ } void VoxelManipulator::unspreadLight(enum LightBank bank, v3s16 p, u8 oldlight, std::set<v3s16> & light_sources, INodeDefManager *nodemgr) { v3s16 dirs[6] = { v3s16(0,0,1), // back v3s16(0,1,0), // top v3s16(1,0,0), // right v3s16(0,0,-1), // front v3s16(0,-1,0), // bottom v3s16(-1,0,0), // left }; VoxelArea voxel_area(p - v3s16(1,1,1), p + v3s16(1,1,1)); addArea(voxel_area); // Loop through 6 neighbors for(u16 i=0; i<6; i++) { // Get the position of the neighbor node v3s16 n2pos = p + dirs[i]; u32 n2i = m_area.index(n2pos); if(m_flags[n2i] & VOXELFLAG_NO_DATA) continue; MapNode &n2 = m_data[n2i]; /* If the neighbor is dimmer than what was specified as oldlight (the light of the previous node) */ u8 light2 = n2.getLight(bank, nodemgr); if(light2 < oldlight) { /* And the neighbor is transparent and it has some light */ if(nodemgr->get(n2).light_propagates && light2 != 0) { /* Set light to 0 and add to queue */ n2.setLight(bank, 0, nodemgr); unspreadLight(bank, n2pos, light2, light_sources, nodemgr); /* Remove from light_sources if it is there NOTE: This doesn't happen nearly at all */ /*if(light_sources.find(n2pos)) { std::cout<<"Removed from light_sources"<<std::endl; light_sources.remove(n2pos); }*/ } } else{ light_sources.insert(n2pos); } } } /* Goes recursively through the neighbours of the node. Alters only transparent nodes. If the lighting of the neighbour is lower than the lighting of the node was (before changing it to 0 at the step before), the lighting of the neighbour is set to 0 and then the same stuff repeats for the neighbour. The ending nodes of the routine are stored in light_sources. This is useful when a light is removed. In such case, this routine can be called for the light node and then again for light_sources to re-light the area without the removed light. values of from_nodes are lighting values. */ void VoxelManipulator::unspreadLight(enum LightBank bank, std::map<v3s16, u8> & from_nodes, std::set<v3s16> & light_sources, INodeDefManager *nodemgr) { if(from_nodes.empty()) return; for(std::map<v3s16, u8>::iterator j = from_nodes.begin(); j != from_nodes.end(); ++j) { unspreadLight(bank, j->first, j->second, light_sources, nodemgr); } } void VoxelManipulator::spreadLight(enum LightBank bank, v3s16 p, INodeDefManager *nodemgr) { const v3s16 dirs[6] = { v3s16(0,0,1), // back v3s16(0,1,0), // top v3s16(1,0,0), // right v3s16(0,0,-1), // front v3s16(0,-1,0), // bottom v3s16(-1,0,0), // left }; VoxelArea voxel_area(p - v3s16(1,1,1), p + v3s16(1,1,1)); addArea(voxel_area); u32 i = m_area.index(p); if(m_flags[i] & VOXELFLAG_NO_DATA) return; MapNode &n = m_data[i]; u8 oldlight = n.getLight(bank, nodemgr); u8 newlight = diminish_light(oldlight); // Loop through 6 neighbors for(u16 i=0; i<6; i++) { // Get the position of the neighbor node v3s16 n2pos = p + dirs[i]; u32 n2i = m_area.index(n2pos); if(m_flags[n2i] & VOXELFLAG_NO_DATA) continue; MapNode &n2 = m_data[n2i]; u8 light2 = n2.getLight(bank, nodemgr); /* If the neighbor is brighter than the current node, add to list (it will light up this node on its turn) */ if(light2 > undiminish_light(oldlight)) { spreadLight(bank, n2pos, nodemgr); } /* If the neighbor is dimmer than how much light this node would spread on it, add to list */ if(light2 < newlight) { if(nodemgr->get(n2).light_propagates) { n2.setLight(bank, newlight, nodemgr); spreadLight(bank, n2pos, nodemgr); } } } }