aboutsummaryrefslogtreecommitdiff
path: root/src/voxel.cpp
blob: 1f1d253731c558fdc8d8d586f3c4f7d12184756e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "voxel.h"
#include "map.h"
#include "gettime.h"
#include "nodedef.h"
#include "util/directiontables.h"
#include "util/timetaker.h"
#include <cstring>  // memcpy, memset

/*
	Debug stuff
*/
u64 addarea_time = 0;
u64 emerge_time = 0;
u64 emerge_load_time = 0;
u64 clearflag_time = 0;

VoxelManipulator::~VoxelManipulator()
{
	clear();
}

void VoxelManipulator::clear()
{
	// Reset area to volume=0
	m_area = VoxelArea();
	delete[] m_data;
	m_data = nullptr;
	delete[] m_flags;
	m_flags = nullptr;
}

void VoxelManipulator::print(std::ostream &o, const NodeDefManager *ndef,
	VoxelPrintMode mode)
{
	const v3s16 &em = m_area.getExtent();
	v3s16 of = m_area.MinEdge;
	o<<"size: "<<em.X<<"x"<<em.Y<<"x"<<em.Z
	 <<" offset: ("<<of.X<<","<<of.Y<<","<<of.Z<<")"<<std::endl;

	for(s32 y=m_area.MaxEdge.Y; y>=m_area.MinEdge.Y; y--)
	{
		if(em.X >= 3 && em.Y >= 3)
		{
			if     (y==m_area.MinEdge.Y+2) o<<"^     ";
			else if(y==m_area.MinEdge.Y+1) o<<"|     ";
			else if(y==m_area.MinEdge.Y+0) o<<"y x-> ";
			else                           o<<"      ";
		}

		for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
		{
			for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
			{
				u8 f = m_flags[m_area.index(x,y,z)];
				char c;
				if(f & VOXELFLAG_NO_DATA)
					c = 'N';
				else
				{
					c = 'X';
					MapNode n = m_data[m_area.index(x,y,z)];
					content_t m = n.getContent();
					u8 pr = n.param2;
					if(mode == VOXELPRINT_MATERIAL)
					{
						if(m <= 9)
							c = m + '0';
					}
					else if(mode == VOXELPRINT_WATERPRESSURE)
					{
						if(ndef->get(m).isLiquid())
						{
							c = 'w';
							if(pr <= 9)
								c = pr + '0';
						}
						else if(m == CONTENT_AIR)
						{
							c = ' ';
						}
						else
						{
							c = '#';
						}
					}
					else if(mode == VOXELPRINT_LIGHT_DAY)
					{
						if(ndef->get(m).light_source != 0)
							c = 'S';
						else if(!ndef->get(m).light_propagates)
							c = 'X';
						else
						{
							u8 light = n.getLight(LIGHTBANK_DAY, ndef);
							if(light < 10)
								c = '0' + light;
							else
								c = 'a' + (light-10);
						}
					}
				}
				o<<c;
			}
			o<<' ';
		}
		o<<std::endl;
	}
}

void VoxelManipulator::addArea(const VoxelArea &area)
{
	// Cancel if requested area has zero volume
	if (area.hasEmptyExtent())
		return;

	// Cancel if m_area already contains the requested area
	if(m_area.contains(area))
		return;

	TimeTaker timer("addArea", &addarea_time);

	// Calculate new area
	VoxelArea new_area;
	// New area is the requested area if m_area has zero volume
	if(m_area.hasEmptyExtent())
	{
		new_area = area;
	}
	// Else add requested area to m_area
	else
	{
		new_area = m_area;
		new_area.addArea(area);
	}

	s32 new_size = new_area.getVolume();

	/*dstream<<"adding area ";
	area.print(dstream);
	dstream<<", old area ";
	m_area.print(dstream);
	dstream<<", new area ";
	new_area.print(dstream);
	dstream<<", new_size="<<new_size;
	dstream<<std::endl;*/

	// Allocate new data and clear flags
	MapNode *new_data = new MapNode[new_size];
	assert(new_data);
	u8 *new_flags = new u8[new_size];
	assert(new_flags);
	memset(new_flags, VOXELFLAG_NO_DATA, new_size);

	// Copy old data
	s32 old_x_width = m_area.MaxEdge.X - m_area.MinEdge.X + 1;
	for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
	for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
	{
		unsigned int old_index = m_area.index(m_area.MinEdge.X,y,z);
		unsigned int new_index = new_area.index(m_area.MinEdge.X,y,z);

		memcpy(&new_data[new_index], &m_data[old_index],
				old_x_width * sizeof(MapNode));
		memcpy(&new_flags[new_index], &m_flags[old_index],
				old_x_width * sizeof(u8));
	}

	// Replace area, data and flags

	m_area = new_area;

	MapNode *old_data = m_data;
	u8 *old_flags = m_flags;

	/*dstream<<"old_data="<<(int)old_data<<", new_data="<<(int)new_data
	<<", old_flags="<<(int)m_flags<<", new_flags="<<(int)new_flags<<std::endl;*/

	m_data = new_data;
	m_flags = new_flags;

	delete[] old_data;
	delete[] old_flags;

	//dstream<<"addArea done"<<std::endl;
}

void VoxelManipulator::copyFrom(MapNode *src, const VoxelArea& src_area,
		v3s16 from_pos, v3s16 to_pos, const v3s16 &size)
{
	/* The reason for this optimised code is that we're a member function
	 * and the data type/layout of m_data is know to us: it's stored as
	 * [z*h*w + y*h + x]. Therefore we can take the calls to m_area index
	 * (which performs the preceding mapping/indexing of m_data) out of the
	 * inner loop and calculate the next index as we're iterating to gain
	 * performance.
	 *
	 * src_step and dest_step is the amount required to be added to our index
	 * every time y increments. Because the destination area may be larger
	 * than the source area we need one additional variable (otherwise we could
	 * just continue adding dest_step as is done for the source data): dest_mod.
	 * dest_mod is the difference in size between a "row" in the source data
	 * and a "row" in the destination data (I am using the term row loosely
	 * and for illustrative purposes). E.g.
	 *
	 * src       <-------------------->|'''''' dest mod ''''''''
	 * dest      <--------------------------------------------->
	 *
	 * dest_mod (it's essentially a modulus) is added to the destination index
	 * after every full iteration of the y span.
	 *
	 * This method falls under the category "linear array and incrementing
	 * index".
	 */

	s32 src_step = src_area.getExtent().X;
	s32 dest_step = m_area.getExtent().X;
	s32 dest_mod = m_area.index(to_pos.X, to_pos.Y, to_pos.Z + 1)
			- m_area.index(to_pos.X, to_pos.Y, to_pos.Z)
			- dest_step * size.Y;

	s32 i_src = src_area.index(from_pos.X, from_pos.Y, from_pos.Z);
	s32 i_local = m_area.index(to_pos.X, to_pos.Y, to_pos.Z);

	for (s16 z = 0; z < size.Z; z++) {
		for (s16 y = 0; y < size.Y; y++) {
			memcpy(&m_data[i_local], &src[i_src], size.X * sizeof(*m_data));
			memset(&m_flags[i_local], 0, size.X);
			i_src += src_step;
			i_local += dest_step;
		}
		i_local += dest_mod;
	}
}

void VoxelManipulator::copyTo(MapNode *dst, const VoxelArea& dst_area,
		v3s16 dst_pos, v3s16 from_pos, const v3s16 &size)
{
	for(s16 z=0; z<size.Z; z++)
	for(s16 y=0; y<size.Y; y++)
	{
		s32 i_dst = dst_area.index(dst_pos.X, dst_pos.Y+y, dst_pos.Z+z);
		s32 i_local = m_area.index(from_pos.X, from_pos.Y+y, from_pos.Z+z);
		for (s16 x = 0; x < size.X; x++) {
			if (m_data[i_local].getContent() != CONTENT_IGNORE)
				dst[i_dst] = m_data[i_local];
			i_dst++;
			i_local++;
		}
	}
}

/*
	Algorithms
	-----------------------------------------------------
*/

void VoxelManipulator::clearFlag(u8 flags)
{
	// 0-1ms on moderate area
	TimeTaker timer("clearFlag", &clearflag_time);

	//v3s16 s = m_area.getExtent();

	/*dstream<<"clearFlag clearing area of size "
			<<""<<s.X<<"x"<<s.Y<<"x"<<s.Z<<""
			<<std::endl;*/

	//s32 count = 0;

	/*for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
	for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
	for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
	{
		u8 f = m_flags[m_area.index(x,y,z)];
		m_flags[m_area.index(x,y,z)] &= ~flags;
		if(m_flags[m_area.index(x,y,z)] != f)
			count++;
	}*/

	s32 volume = m_area.getVolume();
	for(s32 i=0; i<volume; i++)
	{
		m_flags[i] &= ~flags;
	}

	/*s32 volume = m_area.getVolume();
	for(s32 i=0; i<volume; i++)
	{
		u8 f = m_flags[i];
		m_flags[i] &= ~flags;
		if(m_flags[i] != f)
			count++;
	}

	dstream<<"clearFlag changed "<<count<<" flags out of "
			<<volume<<" nodes"<<std::endl;*/
}

const MapNode VoxelManipulator::ContentIgnoreNode = MapNode(CONTENT_IGNORE);

//END
">) { /* for each slice */ int lc = 0; /* counter */ int lim = ttlg; if (lim > t->sizearray) { lim = t->sizearray; /* adjust upper limit */ if (i > lim) break; /* no more elements to count */ } /* count elements in range (2^(lg-1), 2^lg] */ for (; i <= lim; i++) { if (!ttisnil(&t->array[i-1])) lc++; } nums[lg] += lc; ause += lc; } return ause; } static int numusehash (const Table *t, int *nums, int *pnasize) { int totaluse = 0; /* total number of elements */ int ause = 0; /* summation of `nums' */ int i = sizenode(t); while (i--) { Node *n = &t->node[i]; if (!ttisnil(gval(n))) { ause += countint(key2tval(n), nums); totaluse++; } } *pnasize += ause; return totaluse; } static void setarrayvector (lua_State *L, Table *t, int size) { int i; luaM_reallocvector(L, t->array, t->sizearray, size, TValue); for (i=t->sizearray; i<size; i++) setnilvalue(&t->array[i]); t->sizearray = size; } static void setnodevector (lua_State *L, Table *t, int size) { int lsize; if (size == 0) { /* no elements to hash part? */ t->node = cast(Node *, dummynode); /* use common `dummynode' */ lsize = 0; } else { int i; lsize = ceillog2(size); if (lsize > MAXBITS) luaG_runerror(L, "table overflow"); size = twoto(lsize); t->node = luaM_newvector(L, size, Node); for (i=0; i<size; i++) { Node *n = gnode(t, i); gnext(n) = NULL; setnilvalue(gkey(n)); setnilvalue(gval(n)); } } t->lsizenode = cast_byte(lsize); t->lastfree = gnode(t, size); /* all positions are free */ } static void resize (lua_State *L, Table *t, int nasize, int nhsize) { int i; int oldasize = t->sizearray; int oldhsize = t->lsizenode; Node *nold = t->node; /* save old hash ... */ if (nasize > oldasize) /* array part must grow? */ setarrayvector(L, t, nasize); /* create new hash part with appropriate size */ setnodevector(L, t, nhsize); if (nasize < oldasize) { /* array part must shrink? */ t->sizearray = nasize; /* re-insert elements from vanishing slice */ for (i=nasize; i<oldasize; i++) { if (!ttisnil(&t->array[i])) setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]); } /* shrink array */ luaM_reallocvector(L, t->array, oldasize, nasize, TValue); } /* re-insert elements from hash part */ for (i = twoto(oldhsize) - 1; i >= 0; i--) { Node *old = nold+i; if (!ttisnil(gval(old))) setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old)); } if (nold != dummynode) luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */ } void luaH_resizearray (lua_State *L, Table *t, int nasize) { int nsize = (t->node == dummynode) ? 0 : sizenode(t); resize(L, t, nasize, nsize); } static void rehash (lua_State *L, Table *t, const TValue *ek) { int nasize, na; int nums[MAXBITS+1]; /* nums[i] = number of keys between 2^(i-1) and 2^i */ int i; int totaluse; for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ nasize = numusearray(t, nums); /* count keys in array part */ totaluse = nasize; /* all those keys are integer keys */ totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ /* count extra key */ nasize += countint(ek, nums); totaluse++; /* compute new size for array part */ na = computesizes(nums, &nasize); /* resize the table to new computed sizes */ resize(L, t, nasize, totaluse - na); } /* ** }============================================================= */ Table *luaH_new (lua_State *L, int narray, int nhash) { Table *t = luaM_new(L, Table); luaC_link(L, obj2gco(t), LUA_TTABLE); t->metatable = NULL; t->flags = cast_byte(~0); /* temporary values (kept only if some malloc fails) */ t->array = NULL; t->sizearray = 0; t->lsizenode = 0; t->node = cast(Node *, dummynode); setarrayvector(L, t, narray); setnodevector(L, t, nhash); return t; } void luaH_free (lua_State *L, Table *t) { if (t->node != dummynode) luaM_freearray(L, t->node, sizenode(t), Node); luaM_freearray(L, t->array, t->sizearray, TValue); luaM_free(L, t); } static Node *getfreepos (Table *t) { while (t->lastfree-- > t->node) { if (ttisnil(gkey(t->lastfree))) return t->lastfree; } return NULL; /* could not find a free place */ } /* ** inserts a new key into a hash table; first, check whether key's main ** position is free. If not, check whether colliding node is in its main ** position or not: if it is not, move colliding node to an empty place and ** put new key in its main position; otherwise (colliding node is in its main ** position), new key goes to an empty position. */ static TValue *newkey (lua_State *L, Table *t, const TValue *key) { Node *mp = mainposition(t, key); if (!ttisnil(gval(mp)) || mp == dummynode) { Node *othern; Node *n = getfreepos(t); /* get a free place */ if (n == NULL) { /* cannot find a free place? */ rehash(L, t, key); /* grow table */ return luaH_set(L, t, key); /* re-insert key into grown table */ } lua_assert(n != dummynode); othern = mainposition(t, key2tval(mp)); if (othern != mp) { /* is colliding node out of its main position? */ /* yes; move colliding node into free position */ while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ gnext(mp) = NULL; /* now `mp' is free */ setnilvalue(gval(mp)); } else { /* colliding node is in its own main position */ /* new node will go into free position */ gnext(n) = gnext(mp); /* chain new position */ gnext(mp) = n; mp = n; } } gkey(mp)->value = key->value; gkey(mp)->tt = key->tt; luaC_barriert(L, t, key); lua_assert(ttisnil(gval(mp))); return gval(mp); } /* ** search function for integers */ const TValue *luaH_getnum (Table *t, int key) { /* (1 <= key && key <= t->sizearray) */ if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) return &t->array[key-1]; else { lua_Number nk = cast_num(key); Node *n = hashnum(t, nk); do { /* check whether `key' is somewhere in the chain */ if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } } /* ** search function for strings */ const TValue *luaH_getstr (Table *t, TString *key) { Node *n = hashstr(t, key); do { /* check whether `key' is somewhere in the chain */ if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } /* ** main search function */ const TValue *luaH_get (Table *t, const TValue *key) { switch (ttype(key)) { case LUA_TNIL: return luaO_nilobject; case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key)); case LUA_TNUMBER: { int k; lua_Number n = nvalue(key); lua_number2int(k, n); if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */ return luaH_getnum(t, k); /* use specialized version */ /* else go through */ } default: { Node *n = mainposition(t, key); do { /* check whether `key' is somewhere in the chain */ if (luaO_rawequalObj(key2tval(n), key)) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } } } TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { const TValue *p = luaH_get(t, key); t->flags = 0; if (p != luaO_nilobject) return cast(TValue *, p); else { if (ttisnil(key)) luaG_runerror(L, "table index is nil"); else if (ttisnumber(key) && luai_numisnan(nvalue(key))) luaG_runerror(L, "table index is NaN"); return newkey(L, t, key); } } TValue *luaH_setnum (lua_State *L, Table *t, int key) { const TValue *p = luaH_getnum(t, key); if (p != luaO_nilobject) return cast(TValue *, p); else { TValue k; setnvalue(&k, cast_num(key)); return newkey(L, t, &k); } } TValue *luaH_setstr (lua_State *L, Table *t, TString *key) { const TValue *p = luaH_getstr(t, key); if (p != luaO_nilobject) return cast(TValue *, p); else { TValue k; setsvalue(L, &k, key); return newkey(L, t, &k); } } static int unbound_search (Table *t, unsigned int j) { unsigned int i = j; /* i is zero or a present index */ j++; /* find `i' and `j' such that i is present and j is not */ while (!ttisnil(luaH_getnum(t, j))) { i = j; j *= 2; if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ /* table was built with bad purposes: resort to linear search */ i = 1; while (!ttisnil(luaH_getnum(t, i))) i++; return i - 1; } } /* now do a binary search between them */ while (j - i > 1) { unsigned int m = (i+j)/2; if (ttisnil(luaH_getnum(t, m))) j = m; else i = m; } return i; } /* ** Try to find a boundary in table `t'. A `boundary' is an integer index ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). */ int luaH_getn (Table *t) {