-- Signal API implementation local F = advtrains.formspec local signal = {} signal.MASP_HALT = { name = "halt", description = "HALT", halt = true, } signal.ASPI_HALT = { main = 0, shunt = false, } signal.ASPI_FREE = { main = -1, shunt = false, proceed_as_main = true, } --[[ Implementation plan orwell 2024-01-28: Most parts of ywang's implementation are fine, especially I like the formspecs. But I would like to change a few aspects (no pun intended) of this. - Signal gets distant assigned via field in signal aspect table (instead of explicitly) - Signal speed/shunt are no longer free-text but rather they need to be predefined in the node definition To do this: Differentiation between: == Main Aspect == This is what a signal is assigned by either the route system or the user. It is a string key which has an appropriate entry in the node definition (where it has a description assigned) The signal mod defines a function to set a signal to the most appropriate aspect. This function gets a) the main aspect table (straight from node def) b) the distant signal's aspect group name & aspect table == Aspect == One concrete combination of lights/shapes that a signal signal shows. Handling these is at the discretion of the signal mod defining the signal, and they are typically combinations of main aspect and distant aspect Example: - A Ks signal has the aspect_group="proceed_12" set for a route - The signal at the end of the route shows aspect_group="proceed_8", advtrains also passes on that this means {main=8, shunt=false} - The ndef.advtrains.apply_aspect(pos, asp_group, dst_aspgrp, dst_aspinfo) determines that the signal should now show blinking green with main indicator 12 and dst indicator 8, and sets the nodes accordingly. This function can now return the Aspect Info table, which will be cached by advtrains until the aspect changes again and will be used when a train approaches the signal. If nil is returned, then the aspect will be queried next time by calling ndef.advtrains.get_aspect_info(pos) Note that once apply_aspect returns, there is no need for advtrains anymore to query the aspect info. When the signal, for any reason, wants to change its aspect by itself *without* going through the signal API then it should update the aspect info cache by calling advtrains.interlocking.signal.update_aspect_info(pos) Note that the apply_aspect function MUST accept the following main aspect, even if it is not defined in the main_aspects table: { name = "halt", halt = true } It should cause the signal to show its most restrictive aspect. Typically it is a halt aspect, but e.g. for distant-only signals this would be "expect stop". == Aspect Info == The actual signal aspect in the already-known format. This is what the trains use to determine halt/proceed and speed. asp = { main = 0 (halt) / -1 (max speed) / false (no info) / (speed limit) shunt = true (shunt free) / false (shunt not free) proceed_as_main = true (shunt move can proceed and become train move when main!=0) / false (no) dst = speed of the remote signal (like main, informative character, not actually used) } Node definition of signals: - The signal needs some logic to figure out, for each combination of its own aspect group and the distant signal's aspect, what aspect info it can/will show. ndef.advtrains = { main_aspects = { { name = "proceed" description = "Proceed at full speed", } { name = "reduced" description = "Proceed at reduced speed", } } -- This list is mainly for the selection dialog. Order of entries determines list order in the dropdown. -- Some fields have special meaning: -- name: A unique key to identify the main aspect. Only this key is saved, but APIs always receive the whole table -- description: Text shown in UI dropdown -- speed: a number. When present, a speed field is shown in the UI next to the dropdown (prefilled with the value). -- When user selects a different speed there, this different speed replaces the value in the table whenever the main_aspect is applied. -- Node can set any other fields at its discretion. They are not touched. -- Note: On first call advtrains automatically inserts into the ndef.advtrains table a main_aspects_lookup hashtable -- Note: Pure distant signals (that cannot show halt) should NOT have a main_aspects table apply_aspect = function(pos, main_aspect, rem_aspect, rem_aspinfo) -- set the node to show the desired aspect -- called by advtrains when this signal's aspect group or the remote signal's aspect changes -- MAY return the aspect_info. If it returns nil then get_aspect_info will be queried at a later point. get_aspect_info(pos, main_aspect) -- Returns the aspect info table (main, shunt, dst etc.) distant_support = true or false -- If true, signal is considered in distant signalling. If false or nil, rem_aspect and rem_aspinfo are never set. route_role = one of "main", "shunt", "distant", "distant_repeater", "end" -- Determines how the signal behaves when routes are set. Only in effect when signal is assigned to a TCB. -- main: The signal is a possible endpoint for a train move route. Distant signals before it refer to it. -- shunt: The signal is a possible endpoint for a shunt move route. Ignored for distant signals. -- distant, distant_repeater: When route is set, signal is always assigned its first main aspect. The next signal with role="main" is set as the remote signal. (currently no further distinction) -- end: like main, but signifies that it marks an end of track and trains cannot continue further. (currently no practical implications above main) } == Nomenclature == The distant/main relation is named as follows: V M =====>====> Main signal (main) always refers to the signal that is in focus right now (even if that is a distant-only signal) From the standpoint of M, V is the distant (dst) signal. M does not need to concern itself with V's aspect but needs to notify V when it changes From the standpoint of V, M is the remote (rem) signal. V needs to show an aspect that matches its remote signal M == Criteria for which signals are eligible for routes == All signals must define: - get_aspect_info() Signals that can be assigned to a TCB must satisfy: - apply_aspect() defined Signals that are possible start and end points for a route must satisfy: - main_aspects defined (note, pure distant signals should therefore not define main_aspects) ]] -- Database -- Signal Aspect store -- Stores for each signal the main aspect and other info, like the assigned remote signal -- [signal encodePos] = { main_aspect = "proceed", [speed = 12], [remote = encodedPos] } signal.aspects = {} -- Distant signal notification. Records for each signal the distant signals that refer to it -- Note: this mapping is weak. Needs always backreference check. -- [signal encodePos] = { [distant signal encodePos] = true } signal.distant_refs = {} function signal.load(data) signal.aspects = data.aspects or {} -- rebuild distant_refs after load signal.distant_refs = {} for main, aspt in pairs(signal.aspects) do if aspt.remote then if not signal.distant_refs[aspt.remote] then signal.distant_refs[aspt.remote] = {} end signal.distant_refs[aspt.remote][main] = true end end end function signal.save(data) data.aspects = signal.aspects end -- Set a signal's aspect. -- Signal aspects should only be set through this function. It takes care of: -- - Storing the main aspect and dst pos for this signal permanently (until next change) -- - Assigning the distant signal for this signal -- - Calling apply_aspect() in the signal's node definition to make the signal show the aspect -- - Calling apply_aspect() again whenever the distant signal changes its aspect -- - Notifying this signal's distant signals about changes to this signal (unless skip_dst_notify is specified) function signal.set_aspect(pos, main_asp_name, main_asp_speed, rem_pos, skip_dst_notify) local main_pts = advtrains.encode_pos(pos) local old_tbl = signal.aspects[main_pts] local old_remote = old_tbl and old_tbl.remote local new_remote = rem_pos and advtrains.encode_pos(rem_pos) -- if remote has changed, unregister from old remote if old_remote and old_remote~=new_remote and signal.distant_refs[old_remote] then signal.distant_refs[old_remote][main_pts] = nil end signal.aspects[main_pts] = { main_aspect = main_asp_name, speed = main_asp_speed, remote = new_remote } -- apply aspect on main signal, this also checks new_remote signal.reapply_aspect(main_pts) -- notify my distants about this change (with limit 2) if not skip_dst_notify then signal.notify_distants_of(main_pts, 2) end end function signal.clear_aspect(pos, skip_dst_notify) local main_pts = advtrains.encode_pos(pos) local old_tbl = signal.aspects[main_pts] local old_remote = old_tbl and old_tbl.remote -- unregister from old remote if old_remote then signal.distant_refs[old_remote][main_pts] = nil end signal.aspects[main_pts] = nil -- apply aspect on main signal, this also checks new_remote signal.reapply_aspect(main_pts) -- notify my distants about this change (with limit 2) if not skip_dst_notify then signal.notify_distants_of(main_pts, 2) end end -- Notify distant signals of main_pts of a change in the aspect of this signal -- function signal.notify_distants_of(main_pts, limit) if limit <= 0 then return end local dstrefs = signal.distant_refs[main_pts] if dstrefs then for dst,_ in pairs(dstrefs) do -- ensure that the backref is still valid local dst_asp = signal.aspects[dst] if dst_asp and dst_asp.remote == main_pts then signal.reapply_aspect(dst) signal.notify_distants_of(dst, limit - 1) else atwarn("Distant signal backref is not purged: main =",main_pts,", distant =",dst,", remote =",dst_asp.remote,"") end end end end function signal.notify_trains(pos) local ipts, iconn = advtrains.interlocking.db.get_ip_by_signalpos(pos) if not ipts then return end local ipos = minetest.string_to_pos(ipts) -- FIXME: invalidate_all_paths_ahead does not appear to always work as expected --advtrains.invalidate_all_paths_ahead(ipos) minetest.after(0, advtrains.invalidate_all_paths, ipos) end -- Update waiting trains and distant signals about a changed signal aspect -- Must be called when a signal's aspect changes through some other means -- and not via the signal mechanism function signal.notify_on_aspect_changed(pos, skip_dst_notify) signal.notify_trains(pos) if not skip_dst_notify then signal.notify_distants_of(advtrains.encode_pos(pos), 2) end end -- Gets the stored main aspect and distant signal position for this signal -- This information equals the information last passed to set_aspect -- It does not take into consideration the actual speed signalling, please use -- get_aspect_info() for this -- pos: the position of the signal -- returns: main_aspect, dst_pos function signal.get_aspect(pos) local aspt = signal.aspects[advtrains.encode_pos(pos)] local ma,dp = signal.get_aspect_internal(pos, aspt) return ma, advtrains.decode_pos(dp) end local function cache_mainaspects(ndefat) ndefat.main_aspects_lookup = { -- always define halt aspect halt = signal.MASP_HALT } for _,ma in ipairs(ndefat.main_aspects) then ndefat.main_aspects_lookup[ma.name] = ma end end function signal.get_aspect_internal(pos, aspt) if not aspt then -- oh, no main aspect, nevermind return nil, aspt.remote, nil end -- look aspect in nodedef local node = advtrains.ndb.get_node_or_nil(pos) local ndef = node and minetest.registered_nodes[node.name] local ndefat = ndef and ndef.advtrains -- only if signal defines main aspect and its set in aspt if ndefat and ndefat.main_aspects and aspt.main_aspect then if not ndefat.main_aspects_lookup then cache_mainaspects(ndefat) end local masp = ndefat.main_aspects_lookup[aspt.name] -- if speed, then apply speed if masp.speed and aspt.speed then masp = table.copy(masp) masp.speed = aspt.speed end return masp, aspt.remote, ndef end -- invalid node or no main aspect, return nil for masp return nil, aspt.remote, ndef end -- For the signal at pos, get the "aspect info" table. This contains the speed signalling information at this location function signal.get_aspect_info(pos) -- get aspect internal local aspt = signal.aspects[advtrains.encode_pos(pos)] local masp, remote, ndef = signal.get_aspect_internal(pos, aspt) -- call into ndef if ndef.advtrains and ndef.advtrains.get_aspect_info then return ndef.advtrains.get_aspect_info(pos, masp) end end -- Called when either this signal has changed its main aspect -- or when this distant signal's currently assigned main signal has changed its aspect -- It retrieves the signal's main aspect and aspect info and calls apply_aspect of the node definition -- to update the signal's appearance and aspect info -- pts: The signal position to update as encoded_pos -- returns: the return value of the nodedef call which may be aspect_info function signal.reapply_aspect(pts) -- get aspt local aspt = signal.aspects[pts] if not aspt then return -- oop, nothing to do end -- resolve mainaspect table by name local pos = advtrains.decode_pos(pts) -- note: masp may be nil, when aspt.main_aspect was nil. Valid case for distant-only signals local masp, remote, ndef = signal.get_aspect_internal(pos, aspt) -- if we have remote, resolve remote local rem_masp, rem_aspi if remote then local rem_aspt = signal.aspects[remote] if rem_aspt and rem_aspt.name then local rem_pos = advtrains.decode_pos(remote) rem_masp, _, rem_ndef = signal.get_aspect_internal(rem_pos, rem_aspt) if rem_masp then if rem_ndef.advtrains and rem_ndef.advtrains.get_aspect_info then rem_aspi = rem_ndef.advtrains.get_aspect_info(pos, rem_masp) end end end end -- call into ndef if ndef.advtrains and ndef.advtrains.apply_aspect then return ndef.advtrains.apply_aspect(pos, masp, rem_masp, rem_aspi) end -- notify trains signal.notify_trains(pos) end -- Update this signal's aspect based on the set route -- function signal.update_route_aspect(tcbs, skip_dst_notify) if tcbs.signal then local asp = tcbs.aspect or signal.MASP_HALT signal.set_aspect(tcbs.signal, asp, skip_dst_notify) end end ---------------- function signal.can_dig(pos) return not advtrains.interlocking.db.get_sigd_for_signal(pos) end function advtrains.interlocking.signal_after_dig(pos) -- TODO clear influence point advtrains.interlocking.signal.clear_aspect(pos) end function signal.on_rightclick(pos, node, player, itemstack, pointed_thing) local pname = player:get_player_name() local control = player:get_player_control() if control.aux1 then advtrains.interlocking.show_ip_form(pos, pname) return end advtrains.interlocking.show_signal_form(pos, node, pname) end function advtrains.interlocking.show_signal_form(pos, node, pname) local sigd = advtrains.interlocking.db.get_sigd_for_signal(pos) if sigd then advtrains.interlocking.show_signalling_form(sigd, pname) else local ndef = minetest.registered_nodes[node.name] if ndef.advtrains and ndef.advtrains.set_aspect then -- permit to set aspect manually local function callback(pname, aspect) signal.set_aspect(pos, aspect) end local isasp = advtrains.interlocking.signal_get_aspect(pos, node) advtrains.interlocking.show_signal_aspect_selector( pname, ndef.advtrains.supported_aspects, pos, callback, isasp) else --static signal - only IP advtrains.interlocking.show_ip_form(pos, pname) end end end local players_assign_ip = {} local function ipmarker(ipos, connid) local node_ok, conns, rhe = advtrains.get_rail_info_at(ipos, advtrains.all_tracktypes) if not node_ok then return end local yaw = advtrains.dir_to_angle(conns[connid].c) -- using tcbmarker here local obj = minetest.add_entity(vector.add(ipos, {x=0, y=0.2, z=0}), "advtrains_interlocking:tcbmarker") if not obj then return end obj:set_yaw(yaw) obj:set_properties({ textures = { "at_il_signal_ip.png" }, }) end function advtrains.interlocking.make_ip_formspec_component(pos, x, y, w) advtrains.interlocking.db.check_for_duplicate_ip(pos) local pts, connid = advtrains.interlocking.db.get_ip_by_signalpos(pos) if pts then return table.concat { F.S_label(x, y, "Influence point is set at @1.", string.format("%s/%s", pts, connid)), F.S_button_exit(x, y+0.5, w/2-0.125, "ip_set", "Modify"), F.S_button_exit(x+w/2+0.125, y+0.5, w/2-0.125, "ip_clear", "Clear"), }, pts, connid else return table.concat { F.S_label(x, y, "Influence point is not set."), F.S_button_exit(x, y+0.5, w, "ip_set", "Set influence point"), } end end -- shows small info form for signal properties -- This function is named show_ip_form because it was originally only intended -- for assigning/changing the influence point. -- only_notset: show only if it is not set yet (used by signal tcb assignment) function advtrains.interlocking.show_ip_form(pos, pname, only_notset) if not minetest.check_player_privs(pname, "interlocking") then return end local ipform, pts, connid = advtrains.interlocking.make_ip_formspec_component(pos, 0.5, 0.5, 7) local form = { "formspec_version[4]", "size[8,2.25]", ipform, } if pts then local ipos = minetest.string_to_pos(pts) ipmarker(ipos, connid) end if advtrains.distant.appropriate_signal(pos) then form[#form+1] = advtrains.interlocking.make_dst_formspec_component(pos, 0.5, 2, 7, 4.25) form[2] = "size[8,6.75]" end form = table.concat(form) if not only_notset or not pts then minetest.show_formspec(pname, "at_il_propassign_"..minetest.pos_to_string(pos), form) end end function advtrains.interlocking.handle_ip_formspec_fields(pname, pos, fields) if not (pos and minetest.check_player_privs(pname, {train_operator=true, interlocking=true})) then return end if fields.ip_set then advtrains.interlocking.signal_init_ip_assign(pos, pname) elseif fields.ip_clear then advtrains.interlocking.db.clear_ip_by_signalpos(pos) end end minetest.register_on_player_receive_fields(function(player, formname, fields) local pname = player:get_player_name() local pts = string.match(formname, "^at_il_propassign_([^_]+)$") local pos if pts then pos = minetest.string_to_pos(pts) end if pos then advtrains.interlocking.handle_ip_formspec_fields(pname, pos, fields) advtrains.interlocking.handle_dst_formspec_fields(pname, pos, fields) end end) -- inits the signal IP assignment process function signal.init_ip_assign(pos, pname) if not minetest.check_player_privs(pname, "interlocking") then minetest.chat_send_player(pname, "Insufficient privileges to use this!") return end --remove old IP --advtrains.interlocking.db.clear_ip_by_signalpos(pos) minetest.chat_send_player(pname, "Configuring Signal: Please look in train's driving direction and punch rail to set influence point.") players_assign_ip[pname] = pos end minetest.register_on_punchnode(function(pos, node, player, pointed_thing) local pname = player:get_player_name() if not minetest.check_player_privs(pname, "interlocking") then return end -- IP assignment local signalpos = players_assign_ip[pname] if signalpos then if vector.distance(pos, signalpos)<=50 then local node_ok, conns, rhe = advtrains.get_rail_info_at(pos, advtrains.all_tracktypes) if node_ok and #conns == 2 then local yaw = player:get_look_horizontal() local plconnid = advtrains.yawToClosestConn(yaw, conns) -- add assignment if not already present. local pts = advtrains.roundfloorpts(pos) if not advtrains.interlocking.db.get_ip_signal_asp(pts, plconnid) then advtrains.interlocking.db.set_ip_signal(pts, plconnid, signalpos) ipmarker(pos, plconnid) minetest.chat_send_player(pname, "Configuring Signal: Successfully set influence point") else minetest.chat_send_player(pname, "Configuring Signal: Influence point of another signal is already present!") end else minetest.chat_send_player(pname, "Configuring Signal: This is not a normal two-connection rail! Aborted.") end else minetest.chat_send_player(pname, "Configuring Signal: Node is too far away. Aborted.") end players_assign_ip[pname] = nil end end) advtrains.interlocking.signal = signal