/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "client/renderingengine.h" #include "clouds.h" #include "noise.h" #include "constants.h" #include "debug.h" #include "profiler.h" #include "settings.h" #include <cmath> // Menu clouds are created later class Clouds; Clouds *g_menuclouds = NULL; scene::ISceneManager *g_menucloudsmgr = NULL; // Constant for now static constexpr const float cloud_size = BS * 64.0f; static void cloud_3d_setting_changed(const std::string &settingname, void *data) { ((Clouds *)data)->readSettings(); } Clouds::Clouds(scene::ISceneManager* mgr, s32 id, u32 seed ): scene::ISceneNode(mgr->getRootSceneNode(), mgr, id), m_seed(seed) { m_material.setFlag(video::EMF_LIGHTING, false); //m_material.setFlag(video::EMF_BACK_FACE_CULLING, false); m_material.setFlag(video::EMF_BACK_FACE_CULLING, true); m_material.setFlag(video::EMF_BILINEAR_FILTER, false); m_material.setFlag(video::EMF_FOG_ENABLE, true); m_material.setFlag(video::EMF_ANTI_ALIASING, true); //m_material.MaterialType = video::EMT_TRANSPARENT_VERTEX_ALPHA; m_material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL; m_params.height = 120; m_params.density = 0.4f; m_params.thickness = 16.0f; m_params.color_bright = video::SColor(229, 240, 240, 255); m_params.color_ambient = video::SColor(255, 0, 0, 0); m_params.speed = v2f(0.0f, -2.0f); readSettings(); g_settings->registerChangedCallback("enable_3d_clouds", &cloud_3d_setting_changed, this); updateBox(); } Clouds::~Clouds() { g_settings->deregisterChangedCallback("enable_3d_clouds", &cloud_3d_setting_changed, this); } void Clouds::OnRegisterSceneNode() { if(IsVisible) { SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT); //SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID); } ISceneNode::OnRegisterSceneNode(); } void Clouds::render() { if (m_params.density <= 0.0f) return; // no need to do anything video::IVideoDriver* driver = SceneManager->getVideoDriver(); if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT) //if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID) return; ScopeProfiler sp(g_profiler, "Clouds::render()", SPT_AVG); int num_faces_to_draw = m_enable_3d ? 6 : 1; m_material.setFlag(video::EMF_BACK_FACE_CULLING, m_enable_3d); driver->setTransform(video::ETS_WORLD, AbsoluteTransformation); driver->setMaterial(m_material); /* Clouds move from Z+ towards Z- */ const float cloud_full_radius = cloud_size * m_cloud_radius_i; v2f camera_pos_2d(m_camera_pos.X, m_camera_pos.Z); // Position of cloud noise origin from the camera v2f cloud_origin_from_camera_f = m_origin - camera_pos_2d; // The center point of drawing in the noise v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f; // The integer center point of drawing in the noise v2s16 center_of_drawing_in_noise_i( std::floor(center_of_drawing_in_noise_f.X / cloud_size), std::floor(center_of_drawing_in_noise_f.Y / cloud_size) ); // The world position of the integer center point of drawing in the noise v2f world_center_of_drawing_in_noise_f = v2f( center_of_drawing_in_noise_i.X * cloud_size, center_of_drawing_in_noise_i.Y * cloud_size ) + m_origin; /*video::SColor c_top(128,b*240,b*240,b*255); video::SColor c_side_1(128,b*230,b*230,b*255); video::SColor c_side_2(128,b*220,b*220,b*245); video::SColor c_bottom(128,b*205,b*205,b*230);*/ video::SColorf c_top_f(m_color); video::SColorf c_side_1_f(m_color); video::SColorf c_side_2_f(m_color); video::SColorf c_bottom_f(m_color); c_side_1_f.r *= 0.95; c_side_1_f.g *= 0.95; c_side_1_f.b *= 0.95; c_side_2_f.r *= 0.90; c_side_2_f.g *= 0.90; c_side_2_f.b *= 0.90; c_bottom_f.r *= 0.80; c_bottom_f.g *= 0.80; c_bottom_f.b *= 0.80; video::SColor c_top = c_top_f.toSColor(); video::SColor c_side_1 = c_side_1_f.toSColor(); video::SColor c_side_2 = c_side_2_f.toSColor(); video::SColor c_bottom = c_bottom_f.toSColor(); // Get fog parameters for setting them back later video::SColor fog_color(0,0,0,0); video::E_FOG_TYPE fog_type = video::EFT_FOG_LINEAR; f32 fog_start = 0; f32 fog_end = 0; f32 fog_density = 0; bool fog_pixelfog = false; bool fog_rangefog = false; driver->getFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); // Set our own fog driver->setFog(fog_color, fog_type, cloud_full_radius * 0.5, cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog); // Read noise std::vector<bool> grid(m_cloud_radius_i * 2 * m_cloud_radius_i * 2); std::vector<video::S3DVertex> vertices; vertices.reserve(16 * m_cloud_radius_i * m_cloud_radius_i); for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) { u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i; for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) { u32 i = si + xi; grid[i] = gridFilled( xi + center_of_drawing_in_noise_i.X, zi + center_of_drawing_in_noise_i.Y ); } } #define GETINDEX(x, z, radius) (((z)+(radius))*(radius)*2 + (x)+(radius)) #define INAREA(x, z, radius) \ ((x) >= -(radius) && (x) < (radius) && (z) >= -(radius) && (z) < (radius)) for (s16 zi0= -m_cloud_radius_i; zi0 < m_cloud_radius_i; zi0++) for (s16 xi0= -m_cloud_radius_i; xi0 < m_cloud_radius_i; xi0++) { s16 zi = zi0; s16 xi = xi0; // Draw from back to front for proper transparency if(zi >= 0) zi = m_cloud_radius_i - zi - 1; if(xi >= 0) xi = m_cloud_radius_i - xi - 1; u32 i = GETINDEX(xi, zi, m_cloud_radius_i); if (!grid[i]) continue; v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f; video::S3DVertex v[4] = { video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0), video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0) }; const f32 rx = cloud_size / 2.0f; // if clouds are flat, the top layer should be at the given height const f32 ry = m_enable_3d ? m_params.thickness * BS : 0.0f; const f32 rz = cloud_size / 2; for(int i=0; i<num_faces_to_draw; i++) { switch(i) { case 0: // top for (video::S3DVertex &vertex : v) { vertex.Normal.set(0,1,0); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set( rx, ry, rz); v[3].Pos.set( rx, ry,-rz); break; case 1: // back if (INAREA(xi, zi - 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set( rx, ry,-rz); v[2].Pos.set( rx, 0,-rz); v[3].Pos.set(-rx, 0,-rz); break; case 2: //right if (INAREA(xi + 1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(1,0,0); } v[0].Pos.set( rx, ry,-rz); v[1].Pos.set( rx, ry, rz); v[2].Pos.set( rx, 0, rz); v[3].Pos.set( rx, 0,-rz); break; case 3: // front if (INAREA(xi, zi + 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set( rx, ry, rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set(-rx, 0, rz); v[3].Pos.set( rx, 0, rz); break; case 4: // left if (INAREA(xi-1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(-1,0,0); } v[0].Pos.set(-rx, ry, rz); v[1].Pos.set(-rx, ry,-rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set(-rx, 0, rz); break; case 5: // bottom for (video::S3DVertex &vertex : v) { vertex.Color = c_bottom; vertex.Normal.set(0,-1,0); } v[0].Pos.set( rx, 0, rz); v[1].Pos.set(-rx, 0, rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set( rx, 0,-rz); break; } v3f pos(p0.X, m_params.height * BS, p0.Y); pos -= intToFloat(m_camera_offset, BS); for (video::S3DVertex &vertex : v) { vertex.Pos += pos; vertices.push_back(vertex); } } } int quad_count = vertices.size() / 4; std::vector<u16> indices; indices.reserve(quad_count * 6); for (int k = 0; k < quad_count; k++) { indices.push_back(4 * k + 0); indices.push_back(4 * k + 1); indices.push_back(4 * k + 2); indices.push_back(4 * k + 2); indices.push_back(4 * k + 3); indices.push_back(4 * k + 0); } driver->drawVertexPrimitiveList(vertices.data(), vertices.size(), indices.data(), 2 * quad_count, video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT); // Restore fog settings driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); } void Clouds::step(float dtime) { m_origin = m_origin + dtime * BS * m_params.speed; } void Clouds::update(const v3f &camera_p, const video::SColorf &color_diffuse) { video::SColorf ambient(m_params.color_ambient); video::SColorf bright(m_params.color_bright); m_camera_pos = camera_p; m_color.r = core::clamp(color_diffuse.r * bright.r, ambient.r, 1.0f); m_color.g = core::clamp(color_diffuse.g * bright.g, ambient.g, 1.0f); m_color.b = core::clamp(color_diffuse.b * bright.b, ambient.b, 1.0f); m_color.a = bright.a; // is the camera inside the cloud mesh? m_camera_inside_cloud = false; // default if (m_enable_3d) { float camera_height = camera_p.Y - BS * m_camera_offset.Y; if (camera_height >= m_box.MinEdge.Y && camera_height <= m_box.MaxEdge.Y) { v2f camera_in_noise; camera_in_noise.X = floor((camera_p.X - m_origin.X) / cloud_size + 0.5); camera_in_noise.Y = floor((camera_p.Z - m_origin.Y) / cloud_size + 0.5); bool filled = gridFilled(camera_in_noise.X, camera_in_noise.Y); m_camera_inside_cloud = filled; } } } void Clouds::readSettings() { m_cloud_radius_i = g_settings->getU16("cloud_radius"); m_enable_3d = g_settings->getBool("enable_3d_clouds"); } bool Clouds::gridFilled(int x, int y) const { float cloud_size_noise = cloud_size / (BS * 200.f); float noise = noise2d_perlin( (float)x * cloud_size_noise, (float)y * cloud_size_noise, m_seed, 3, 0.5); // normalize to 0..1 (given 3 octaves) static constexpr const float noise_bound = 1.0f + 0.5f + 0.25f; float density = noise / noise_bound * 0.5f + 0.5f; return (density < m_params.density); }