/* Minetest-c55 Copyright (C) 2010 celeron55, Perttu Ahola <celeron55@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "collision.h" #include "mapblock.h" #include "map.h" #include "nodedef.h" #include "gamedef.h" #include "log.h" #include <vector> #include "util/timetaker.h" #include "main.h" // g_profiler #include "profiler.h" // Helper function: // Checks for collision of a moving aabbox with a static aabbox // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision // The time after which the collision occurs is stored in dtime. int axisAlignedCollision( const aabb3f &staticbox, const aabb3f &movingbox, const v3f &speed, f32 d, f32 &dtime) { //TimeTaker tt("axisAlignedCollision"); f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X); f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z); aabb3f relbox( movingbox.MinEdge.X - staticbox.MinEdge.X, movingbox.MinEdge.Y - staticbox.MinEdge.Y, movingbox.MinEdge.Z - staticbox.MinEdge.Z, movingbox.MaxEdge.X - staticbox.MinEdge.X, movingbox.MaxEdge.Y - staticbox.MinEdge.Y, movingbox.MaxEdge.Z - staticbox.MinEdge.Z ); if(speed.X > 0) // Check for collision with X- plane { if(relbox.MaxEdge.X <= d) { dtime = - relbox.MaxEdge.X / speed.X; if((relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > 0) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > 0)) return 0; } else if(relbox.MinEdge.X > xsize) { return -1; } } else if(speed.X < 0) // Check for collision with X+ plane { if(relbox.MinEdge.X >= xsize - d) { dtime = (xsize - relbox.MinEdge.X) / speed.X; if((relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > 0) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > 0)) return 0; } else if(relbox.MaxEdge.X < 0) { return -1; } } // NO else if here if(speed.Y > 0) // Check for collision with Y- plane { if(relbox.MaxEdge.Y <= d) { dtime = - relbox.MaxEdge.Y / speed.Y; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > 0) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > 0)) return 1; } else if(relbox.MinEdge.Y > ysize) { return -1; } } else if(speed.Y < 0) // Check for collision with Y+ plane { if(relbox.MinEdge.Y >= ysize - d) { dtime = (ysize - relbox.MinEdge.Y) / speed.Y; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > 0) && (relbox.MinEdge.Z + speed.Z * dtime < zsize) && (relbox.MaxEdge.Z + speed.Z * dtime > 0)) return 1; } else if(relbox.MaxEdge.Y < 0) { return -1; } } // NO else if here if(speed.Z > 0) // Check for collision with Z- plane { if(relbox.MaxEdge.Z <= d) { dtime = - relbox.MaxEdge.Z / speed.Z; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > 0) && (relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > 0)) return 2; } //else if(relbox.MinEdge.Z > zsize) //{ // return -1; //} } else if(speed.Z < 0) // Check for collision with Z+ plane { if(relbox.MinEdge.Z >= zsize - d) { dtime = (zsize - relbox.MinEdge.Z) / speed.Z; if((relbox.MinEdge.X + speed.X * dtime < xsize) && (relbox.MaxEdge.X + speed.X * dtime > 0) && (relbox.MinEdge.Y + speed.Y * dtime < ysize) && (relbox.MaxEdge.Y + speed.Y * dtime > 0)) return 2; } //else if(relbox.MaxEdge.Z < 0) //{ // return -1; //} } return -1; } // Helper function: // Checks if moving the movingbox up by the given distance would hit a ceiling. bool wouldCollideWithCeiling( const std::vector<aabb3f> &staticboxes, const aabb3f &movingbox, f32 y_increase, f32 d) { //TimeTaker tt("wouldCollideWithCeiling"); assert(y_increase >= 0); for(std::vector<aabb3f>::const_iterator i = staticboxes.begin(); i != staticboxes.end(); i++) { const aabb3f& staticbox = *i; if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) && (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) && (movingbox.MinEdge.X < staticbox.MaxEdge.X) && (movingbox.MaxEdge.X > staticbox.MinEdge.X) && (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) && (movingbox.MaxEdge.Z > staticbox.MinEdge.Z)) return true; } return false; } collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f) { //TimeTaker tt("collisionMoveSimple"); ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG); collisionMoveResult result; /* Calculate new velocity */ speed_f += accel_f * dtime; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return result; /* Collect node boxes in movement range */ std::vector<aabb3f> cboxes; std::vector<bool> is_unloaded; std::vector<bool> is_step_up; std::vector<int> bouncy_values; std::vector<v3s16> node_positions; { //TimeTaker tt2("collisionMoveSimple collect boxes"); ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG); v3s16 oldpos_i = floatToInt(pos_f, BS); v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS); s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1; s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1; s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1; s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1; s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1; s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1; for(s16 x = min_x; x <= max_x; x++) for(s16 y = min_y; y <= max_y; y++) for(s16 z = min_z; z <= max_z; z++) { v3s16 p(x,y,z); try{ // Object collides into walkable nodes MapNode n = map->getNode(p); const ContentFeatures &f = gamedef->getNodeDefManager()->get(n); if(f.walkable == false) continue; int n_bouncy_value = itemgroup_get(f.groups, "bouncy"); std::vector<aabb3f> nodeboxes = n.getNodeBoxes(gamedef->ndef()); for(std::vector<aabb3f>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); i++) { aabb3f box = *i; box.MinEdge += v3f(x, y, z)*BS; box.MaxEdge += v3f(x, y, z)*BS; cboxes.push_back(box); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(n_bouncy_value); node_positions.push_back(p); } } catch(InvalidPositionException &e) { // Collide with unloaded nodes aabb3f box = getNodeBox(p, BS); cboxes.push_back(box); is_unloaded.push_back(true); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(p); } } } // tt2 assert(cboxes.size() == is_unloaded.size()); assert(cboxes.size() == is_step_up.size()); assert(cboxes.size() == bouncy_values.size()); assert(cboxes.size() == node_positions.size()); /* Collision detection */ /* Collision uncertainty radius Make it a bit larger than the maximum distance of movement */ f32 d = pos_max_d * 1.1; // A fairly large value in here makes moving smoother //f32 d = 0.15*BS; // This should always apply, otherwise there are glitches assert(d > pos_max_d); int loopcount = 0; while(dtime > BS*1e-10) { //TimeTaker tt3("collisionMoveSimple dtime loop"); ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG); // Avoid infinite loop loopcount++; if(loopcount >= 100) { infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl; dtime = 0; break; } aabb3f movingbox = box_0; movingbox.MinEdge += pos_f; movingbox.MaxEdge += pos_f; int nearest_collided = -1; f32 nearest_dtime = dtime; u32 nearest_boxindex = -1; /* Go through every nodebox, find nearest collision */ for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { // Ignore if already stepped up this nodebox. if(is_step_up[boxindex]) continue; // Find nearest collision of the two boxes (raytracing-like) f32 dtime_tmp; int collided = axisAlignedCollision( cboxes[boxindex], movingbox, speed_f, d, dtime_tmp); if(collided == -1 || dtime_tmp >= nearest_dtime) continue; nearest_dtime = dtime_tmp; nearest_collided = collided; nearest_boxindex = boxindex; } if(nearest_collided == -1) { // No collision with any collision box. pos_f += speed_f * dtime; dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers } else { // Otherwise, a collision occurred. const aabb3f& cbox = cboxes[nearest_boxindex]; // Check for stairs. bool step_up = (nearest_collided != 1) && // must not be Y direction (movingbox.MinEdge.Y < cbox.MaxEdge.Y) && (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) && (!wouldCollideWithCeiling(cboxes, movingbox, cbox.MaxEdge.Y - movingbox.MinEdge.Y, d)); // Get bounce multiplier bool bouncy = (bouncy_values[nearest_boxindex] >= 1); float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0; // Move to the point of collision and reduce dtime by nearest_dtime if(nearest_dtime < 0) { // Handle negative nearest_dtime (can be caused by the d allowance) if(!step_up) { if(nearest_collided == 0) pos_f.X += speed_f.X * nearest_dtime; if(nearest_collided == 1) pos_f.Y += speed_f.Y * nearest_dtime; if(nearest_collided == 2) pos_f.Z += speed_f.Z * nearest_dtime; } } else { pos_f += speed_f * nearest_dtime; dtime -= nearest_dtime; } bool is_collision = true; if(is_unloaded[nearest_boxindex]) is_collision = false; CollisionInfo info; info.type = COLLISION_NODE; info.node_p = node_positions[nearest_boxindex]; info.bouncy = bouncy; info.old_speed = speed_f; // Set the speed component that caused the collision to zero if(step_up) { // Special case: Handle stairs is_step_up[nearest_boxindex] = true; is_collision = false; } else if(nearest_collided == 0) // X { if(fabs(speed_f.X) > BS*3) speed_f.X *= bounce; else speed_f.X = 0; result.collides = true; result.collides_xz = true; } else if(nearest_collided == 1) // Y { if(fabs(speed_f.Y) > BS*3) speed_f.Y *= bounce; else speed_f.Y = 0; result.collides = true; } else if(nearest_collided == 2) // Z { if(fabs(speed_f.Z) > BS*3) speed_f.Z *= bounce; else speed_f.Z = 0; result.collides = true; result.collides_xz = true; } info.new_speed = speed_f; if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS) is_collision = false; if(is_collision){ result.collisions.push_back(info); } } } /* Final touches: Check if standing on ground, step up stairs. */ aabb3f box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { const aabb3f& cbox = cboxes[boxindex]; /* See if the object is touching ground. Object touches ground if object's minimum Y is near node's maximum Y and object's X-Z-area overlaps with the node's X-Z-area. Use 0.15*BS so that it is easier to get on a node. */ if( cbox.MaxEdge.X-d > box.MinEdge.X && cbox.MinEdge.X+d < box.MaxEdge.X && cbox.MaxEdge.Z-d > box.MinEdge.Z && cbox.MinEdge.Z+d < box.MaxEdge.Z ){ if(is_step_up[boxindex]) { pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y); box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; } if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS) { result.touching_ground = true; if(is_unloaded[boxindex]) result.standing_on_unloaded = true; } } } return result; } #if 0 // This doesn't seem to work and isn't used collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f) { //TimeTaker tt("collisionMovePrecise"); ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG); collisionMoveResult final_result; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return final_result; // Don't allow overly huge dtime if(dtime > 2.0) dtime = 2.0; f32 dtime_downcount = dtime; u32 loopcount = 0; do { loopcount++; // Maximum time increment (for collision detection etc) // time = distance / speed f32 dtime_max_increment = 1.0; if(speed_f.getLength() != 0) dtime_max_increment = pos_max_d / speed_f.getLength(); // Maximum time increment is 10ms or lower if(dtime_max_increment > 0.01) dtime_max_increment = 0.01; f32 dtime_part; if(dtime_downcount > dtime_max_increment) { dtime_part = dtime_max_increment; dtime_downcount -= dtime_part; } else { dtime_part = dtime_downcount; /* Setting this to 0 (no -=dtime_part) disables an infinite loop when dtime_part is so small that dtime_downcount -= dtime_part does nothing */ dtime_downcount = 0; } collisionMoveResult result = collisionMoveSimple(map, gamedef, pos_max_d, box_0, stepheight, dtime_part, pos_f, speed_f, accel_f); if(result.touching_ground) final_result.touching_ground = true; if(result.collides) final_result.collides = true; if(result.collides_xz) final_result.collides_xz = true; if(result.standing_on_unloaded) final_result.standing_on_unloaded = true; } while(dtime_downcount > 0.001); return final_result; } #endif