/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>, 2012-2013 RealBadAngel, Maciej Kasatkin <mk@realbadangel.pl> This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "irr_v3d.h" #include <stack> #include "util/pointer.h" #include "util/numeric.h" #include "util/mathconstants.h" #include "map.h" #include "environment.h" #include "nodedef.h" #include "treegen.h" namespace treegen { void make_tree(ManualMapVoxelManipulator &vmanip, v3s16 p0, bool is_apple_tree, INodeDefManager *ndef, int seed) { /* NOTE: Tree-placing code is currently duplicated in the engine and in games that have saplings; both are deprecated but not replaced yet */ MapNode treenode(ndef->getId("mapgen_tree")); MapNode leavesnode(ndef->getId("mapgen_leaves")); MapNode applenode(ndef->getId("mapgen_apple")); PseudoRandom pr(seed); s16 trunk_h = pr.range(4, 5); v3s16 p1 = p0; for(s16 ii=0; ii<trunk_h; ii++) { if(vmanip.m_area.contains(p1)) if(ii == 0 || vmanip.getNodeNoExNoEmerge(p1).getContent() == CONTENT_AIR) vmanip.m_data[vmanip.m_area.index(p1)] = treenode; p1.Y++; } // p1 is now the last piece of the trunk p1.Y -= 1; VoxelArea leaves_a(v3s16(-2,-1,-2), v3s16(2,2,2)); //SharedPtr<u8> leaves_d(new u8[leaves_a.getVolume()]); Buffer<u8> leaves_d(leaves_a.getVolume()); for(s32 i=0; i<leaves_a.getVolume(); i++) leaves_d[i] = 0; // Force leaves at near the end of the trunk { s16 d = 1; for(s16 z=-d; z<=d; z++) for(s16 y=-d; y<=d; y++) for(s16 x=-d; x<=d; x++) { leaves_d[leaves_a.index(v3s16(x,y,z))] = 1; } } // Add leaves randomly for(u32 iii=0; iii<7; iii++) { s16 d = 1; v3s16 p( pr.range(leaves_a.MinEdge.X, leaves_a.MaxEdge.X-d), pr.range(leaves_a.MinEdge.Y, leaves_a.MaxEdge.Y-d), pr.range(leaves_a.MinEdge.Z, leaves_a.MaxEdge.Z-d) ); for(s16 z=0; z<=d; z++) for(s16 y=0; y<=d; y++) for(s16 x=0; x<=d; x++) { leaves_d[leaves_a.index(p+v3s16(x,y,z))] = 1; } } // Blit leaves to vmanip for(s16 z=leaves_a.MinEdge.Z; z<=leaves_a.MaxEdge.Z; z++) for(s16 y=leaves_a.MinEdge.Y; y<=leaves_a.MaxEdge.Y; y++) for(s16 x=leaves_a.MinEdge.X; x<=leaves_a.MaxEdge.X; x++) { v3s16 p(x,y,z); p += p1; if(vmanip.m_area.contains(p) == false) continue; u32 vi = vmanip.m_area.index(p); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) continue; u32 i = leaves_a.index(x,y,z); if(leaves_d[i] == 1) { bool is_apple = pr.range(0,99) < 10; if(is_apple_tree && is_apple) { vmanip.m_data[vi] = applenode; } else { vmanip.m_data[vi] = leavesnode; } } } } // L-System tree LUA spawner void spawn_ltree(ServerEnvironment *env, v3s16 p0, INodeDefManager *ndef, TreeDef tree_definition) { ServerMap *map = &env->getServerMap(); std::map<v3s16, MapBlock*> modified_blocks; ManualMapVoxelManipulator vmanip(map); v3s16 tree_blockp = getNodeBlockPos(p0); vmanip.initialEmerge(tree_blockp - v3s16(1,1,1), tree_blockp + v3s16(1,3,1)); make_ltree (vmanip, p0, ndef, tree_definition); vmanip.blitBackAll(&modified_blocks); // update lighting std::map<v3s16, MapBlock*> lighting_modified_blocks; lighting_modified_blocks.insert(modified_blocks.begin(), modified_blocks.end()); map->updateLighting(lighting_modified_blocks, modified_blocks); // Send a MEET_OTHER event MapEditEvent event; event.type = MEET_OTHER; for(std::map<v3s16, MapBlock*>::iterator i = modified_blocks.begin(); i != modified_blocks.end(); ++i) { event.modified_blocks.insert(i->first); } map->dispatchEvent(&event); } //L-System tree generator void make_ltree(ManualMapVoxelManipulator &vmanip, v3s16 p0, INodeDefManager *ndef, TreeDef tree_definition) { MapNode dirtnode(ndef->getId("mapgen_dirt")); PseudoRandom ps(tree_definition.seed+14002); // chance of inserting abcd rules double prop_a = 9; double prop_b = 8; double prop_c = 7; double prop_d = 6; //randomize tree growth level, minimum=2 s16 iterations = tree_definition.iterations; if (tree_definition.iterations_random_level>0) iterations -= ps.range(0,tree_definition.iterations_random_level); if (iterations<2) iterations=2; s16 MAX_ANGLE_OFFSET = 5; double angle_in_radians = (double)tree_definition.angle*M_PI/180; double angleOffset_in_radians = (s16)(ps.range(0,1)%MAX_ANGLE_OFFSET)*M_PI/180; //initialize rotation matrix, position and stacks for branches core::matrix4 rotation; rotation = setRotationAxisRadians(rotation, M_PI/2,v3f(0,0,1)); v3f position; position.X = p0.X; position.Y = p0.Y; position.Z = p0.Z; std::stack <core::matrix4> stack_orientation; std::stack <v3f> stack_position; //generate axiom std::string axiom = tree_definition.initial_axiom; for(s16 i=0; i<iterations; i++) { std::string temp = ""; for(s16 j=0; j<(s16)axiom.size(); j++) { char axiom_char = axiom.at(j); switch (axiom_char) { case 'A': temp+=tree_definition.rules_a; break; case 'B': temp+=tree_definition.rules_b; break; case 'C': temp+=tree_definition.rules_c; break; case 'D': temp+=tree_definition.rules_d; break; case 'a': if (prop_a >= ps.range(1,10)) temp+=tree_definition.rules_a; break; case 'b': if (prop_b >= ps.range(1,10)) temp+=tree_definition.rules_b; break; case 'c': if (prop_c >= ps.range(1,10)) temp+=tree_definition.rules_c; break; case 'd': if (prop_d >= ps.range(1,10)) temp+=tree_definition.rules_d; break; default: temp+=axiom_char; break; } } axiom=temp; } //make sure tree is not floating in the air if (tree_definition.trunk_type == "double") { tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z),dirtnode); tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z+1),dirtnode); tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z+1),dirtnode); } if (tree_definition.trunk_type == "crossed") { tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z),dirtnode); tree_node_placement(vmanip,v3f(position.X-1,position.Y-1,position.Z),dirtnode); tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z+1),dirtnode); tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z-1),dirtnode); } /* build tree out of generated axiom Key for Special L-System Symbols used in Axioms G - move forward one unit with the pen up F - move forward one unit with the pen down drawing trunks and branches f - move forward one unit with the pen down drawing leaves (100% chance) T - move forward one unit with the pen down drawing trunks only R - move forward one unit with the pen down placing fruit A - replace with rules set A B - replace with rules set B C - replace with rules set C D - replace with rules set D a - replace with rules set A, chance 90% b - replace with rules set B, chance 80% c - replace with rules set C, chance 70% d - replace with rules set D, chance 60% + - yaw the turtle right by angle degrees - - yaw the turtle left by angle degrees & - pitch the turtle down by angle degrees ^ - pitch the turtle up by angle degrees / - roll the turtle to the right by angle degrees * - roll the turtle to the left by angle degrees [ - save in stack current state info ] - recover from stack state info */ s16 x,y,z; for(s16 i=0; i<(s16)axiom.size(); i++) { char axiom_char = axiom.at(i); core::matrix4 temp_rotation; temp_rotation.makeIdentity(); v3f dir; switch (axiom_char) { case 'G': dir = v3f(1,0,0); dir = transposeMatrix(rotation,dir); position+=dir; break; case 'T': tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition); if (tree_definition.trunk_type == "double" && !tree_definition.thin_branches) { tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition); tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z+1),tree_definition); } if (tree_definition.trunk_type == "crossed" && !tree_definition.thin_branches) { tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X-1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z-1),tree_definition); } dir = v3f(1,0,0); dir = transposeMatrix(rotation,dir); position+=dir; break; case 'F': tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition); if ((stack_orientation.empty() && tree_definition.trunk_type == "double") || (!stack_orientation.empty() && tree_definition.trunk_type == "double" && !tree_definition.thin_branches)) { tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition); tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z+1),tree_definition); } if ((stack_orientation.empty() && tree_definition.trunk_type == "crossed") || (!stack_orientation.empty() && tree_definition.trunk_type == "crossed" && !tree_definition.thin_branches)) { tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X-1,position.Y,position.Z),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition); tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z-1),tree_definition); } if (stack_orientation.empty() == false) { s16 size = 1; for(x=-size; x<=size; x++) for(y=-size; y<=size; y++) for(z=-size; z<=size; z++) if (abs(x) == size && abs(y) == size && abs(z) == size) { tree_leaves_placement(vmanip,v3f(position.X+x+1,position.Y+y,position.Z+z),ps.next(), tree_definition); tree_leaves_placement(vmanip,v3f(position.X+x-1,position.Y+y,position.Z+z),ps.next(), tree_definition); tree_leaves_placement(vmanip,v3f(position.X+x,position.Y+y,position.Z+z+1),ps.next(), tree_definition); tree_leaves_placement(vmanip,v3f(position.X+x,position.Y+y,position.Z+z-1),ps.next(), tree_definition); } } dir = v3f(1,0,0); dir = transposeMatrix(rotation,dir); position+=dir; break; case 'f': tree_single_leaves_placement(vmanip,v3f(position.X,position.Y,position.Z),ps.next() ,tree_definition); dir = v3f(1,0,0); dir = transposeMatrix(rotation,dir); position+=dir; break; case 'R': tree_fruit_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition); dir = v3f(1,0,0); dir = transposeMatrix(rotation,dir); position+=dir; break; // turtle orientation commands case '[': stack_orientation.push(rotation); stack_position.push(position); break; case ']': rotation=stack_orientation.top(); stack_orientation.pop(); position=stack_position.top(); stack_position.pop(); break; case '+': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,0,1)); rotation*=temp_rotation; break; case '-': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,0,-1)); rotation*=temp_rotation; break; case '&': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,1,0)); rotation*=temp_rotation; break; case '^': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,-1,0)); rotation*=temp_rotation; break; case '*': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians,v3f(1,0,0)); rotation*=temp_rotation; break; case '/': temp_rotation.makeIdentity(); temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians,v3f(-1,0,0)); rotation*=temp_rotation; break; default: break; } } } void tree_node_placement(ManualMapVoxelManipulator &vmanip, v3f p0, MapNode node) { v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z)); if(vmanip.m_area.contains(p1) == false) return; u32 vi = vmanip.m_area.index(p1); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) return; vmanip.m_data[vmanip.m_area.index(p1)] = node; } void tree_trunk_placement(ManualMapVoxelManipulator &vmanip, v3f p0, TreeDef &tree_definition) { v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z)); if(vmanip.m_area.contains(p1) == false) return; u32 vi = vmanip.m_area.index(p1); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) return; vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.trunknode; } void tree_leaves_placement(ManualMapVoxelManipulator &vmanip, v3f p0, PseudoRandom ps ,TreeDef &tree_definition) { MapNode leavesnode=tree_definition.leavesnode; if (ps.range(1,100) > 100-tree_definition.leaves2_chance) leavesnode=tree_definition.leaves2node; v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z)); if(vmanip.m_area.contains(p1) == false) return; u32 vi = vmanip.m_area.index(p1); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) return; if (tree_definition.fruit_chance>0) { if (ps.range(1,100) > 100-tree_definition.fruit_chance) vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.fruitnode; else vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode; } else if (ps.range(1,100) > 20) vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode; } void tree_single_leaves_placement(ManualMapVoxelManipulator &vmanip, v3f p0, PseudoRandom ps, TreeDef &tree_definition) { MapNode leavesnode=tree_definition.leavesnode; if (ps.range(1,100) > 100-tree_definition.leaves2_chance) leavesnode=tree_definition.leaves2node; v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z)); if(vmanip.m_area.contains(p1) == false) return; u32 vi = vmanip.m_area.index(p1); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) return; vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode; } void tree_fruit_placement(ManualMapVoxelManipulator &vmanip, v3f p0, TreeDef &tree_definition) { v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z)); if(vmanip.m_area.contains(p1) == false) return; u32 vi = vmanip.m_area.index(p1); if(vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) return; vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.fruitnode; } irr::core::matrix4 setRotationAxisRadians(irr::core::matrix4 M, double angle, v3f axis) { double c = cos(angle); double s = sin(angle); double t = 1.0 - c; double tx = t * axis.X; double ty = t * axis.Y; double tz = t * axis.Z; double sx = s * axis.X; double sy = s * axis.Y; double sz = s * axis.Z; M[0] = tx * axis.X + c; M[1] = tx * axis.Y + sz; M[2] = tx * axis.Z - sy; M[4] = ty * axis.X - sz; M[5] = ty * axis.Y + c; M[6] = ty * axis.Z + sx; M[8] = tz * axis.X + sy; M[9] = tz * axis.Y - sx; M[10] = tz * axis.Z + c; return M; } v3f transposeMatrix(irr::core::matrix4 M, v3f v) { v3f translated; double x = M[0] * v.X + M[4] * v.Y + M[8] * v.Z +M[12]; double y = M[1] * v.X + M[5] * v.Y + M[9] * v.Z +M[13]; double z = M[2] * v.X + M[6] * v.Y + M[10] * v.Z +M[14]; translated.X=x; translated.Y=y; translated.Z=z; return translated; } void make_jungletree(VoxelManipulator &vmanip, v3s16 p0, INodeDefManager *ndef, int seed) { /* NOTE: Tree-placing code is currently duplicated in the engine and in games that have saplings; both are deprecated but not replaced yet */ content_t c_tree = ndef->getId("mapgen_jungletree"); content_t c_leaves = ndef->getId("mapgen_jungleleaves"); if (c_tree == CONTENT_IGNORE) c_tree = ndef->getId("mapgen_tree"); if (c_leaves == CONTENT_IGNORE) c_leaves = ndef->getId("mapgen_leaves"); MapNode treenode(c_tree); MapNode leavesnode(c_leaves); PseudoRandom pr(seed); for(s16 x=-1; x<=1; x++) for(s16 z=-1; z<=1; z++) { if(pr.range(0, 2) == 0) continue; v3s16 p1 = p0 + v3s16(x,0,z); v3s16 p2 = p0 + v3s16(x,-1,z); u32 vi1 = vmanip.m_area.index(p1); u32 vi2 = vmanip.m_area.index(p2); if (vmanip.m_area.contains(p2) && vmanip.m_data[vi2].getContent() == CONTENT_AIR) vmanip.m_data[vi2] = treenode; else if (vmanip.m_area.contains(p1) && vmanip.m_data[vi1].getContent() == CONTENT_AIR) vmanip.m_data[vi1] = treenode; } vmanip.m_data[vmanip.m_area.index(p0)] = treenode; s16 trunk_h = pr.range(8, 12); v3s16 p1 = p0; for (s16 ii=0; ii<trunk_h; ii++) { if (vmanip.m_area.contains(p1)) { u32 vi = vmanip.m_area.index(p1); if (vmanip.m_data[vi].getContent() == CONTENT_AIR) vmanip.m_data[vi] = treenode; } p1.Y++; } // p1 is now the last piece of the trunk p1.Y -= 1; VoxelArea leaves_a(v3s16(-3,-2,-3), v3s16(3,2,3)); //SharedPtr<u8> leaves_d(new u8[leaves_a.getVolume()]); Buffer<u8> leaves_d(leaves_a.getVolume()); for(s32 i=0; i<leaves_a.getVolume(); i++) leaves_d[i] = 0; // Force leaves at near the end of the trunk { s16 d = 1; for(s16 z=-d; z<=d; z++) for(s16 y=-d; y<=d; y++) for(s16 x=-d; x<=d; x++) { leaves_d[leaves_a.index(v3s16(x,y,z))] = 1; } } // Add leaves randomly for(u32 iii=0; iii<30; iii++) { s16 d = 1; v3s16 p( pr.range(leaves_a.MinEdge.X, leaves_a.MaxEdge.X-d), pr.range(leaves_a.MinEdge.Y, leaves_a.MaxEdge.Y-d), pr.range(leaves_a.MinEdge.Z, leaves_a.MaxEdge.Z-d) ); for(s16 z=0; z<=d; z++) for(s16 y=0; y<=d; y++) for(s16 x=0; x<=d; x++) { leaves_d[leaves_a.index(p+v3s16(x,y,z))] = 1; } } // Blit leaves to vmanip for(s16 z=leaves_a.MinEdge.Z; z<=leaves_a.MaxEdge.Z; z++) for(s16 y=leaves_a.MinEdge.Y; y<=leaves_a.MaxEdge.Y; y++) for(s16 x=leaves_a.MinEdge.X; x<=leaves_a.MaxEdge.X; x++) { v3s16 p(x,y,z); p += p1; if(vmanip.m_area.contains(p) == false) continue; u32 vi = vmanip.m_area.index(p); if (vmanip.m_data[vi].getContent() != CONTENT_AIR && vmanip.m_data[vi].getContent() != CONTENT_IGNORE) continue; u32 i = leaves_a.index(x,y,z); if(leaves_d[i] == 1) vmanip.m_data[vi] = leavesnode; } } }; // namespace treegen