/src/unittest/

ef='#n117'>117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
Copyright (C) 2010-2013 kwolekr, Ryan Kwolek <kwolekr@minetest.net>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <math.h>
#include "noise.h"
#include <iostream>
#include <string.h> // memset
#include "debug.h"
#include "util/numeric.h"

#define NOISE_MAGIC_X    1619
#define NOISE_MAGIC_Y    31337
#define NOISE_MAGIC_Z    52591
#define NOISE_MAGIC_SEED 1013

float cos_lookup[16] = {
	1.0,  0.9238,  0.7071,  0.3826, 0, -0.3826, -0.7071, -0.9238,
	1.0, -0.9238, -0.7071, -0.3826, 0,  0.3826,  0.7071,  0.9238
};


///////////////////////////////////////////////////////////////////////////////


//noise poly:  p(n) = 60493n^3 + 19990303n + 137612589
float noise2d(int x, int y, int seed) {
	int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)n / 0x40000000;
}


float noise3d(int x, int y, int z, int seed) {
	int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)n / 0x40000000;
}


float dotProduct(float vx, float vy, float wx, float wy) {
	return vx * wx + vy * wy;
}


inline float linearInterpolation(float v0, float v1, float t) {
    return v0 + (v1 - v0) * t;
}


float biLinearInterpolation(float v00, float v10,
							float v01, float v11,
							float x, float y) {
    float tx = easeCurve(x);
    float ty = easeCurve(y);
    float u = linearInterpolation(v00, v10, tx);
    float v = linearInterpolation(v01, v11, tx);
    return linearInterpolation(u, v, ty);
}


float biLinearInterpolationNoEase(float x0y0, float x1y0,
								  float x0y1, float x1y1,
								  float x, float y) {
    float u = linearInterpolation(x0y0, x1y0, x);
    float v = linearInterpolation(x0y1, x1y1, x);
    return linearInterpolation(u, v, y);
}


float triLinearInterpolation(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z) {
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
	return linearInterpolation(u, v, z);
}


#if 0
float triLinearInterpolation(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z)
{
	/*float tx = easeCurve(x);
	float ty = easeCurve(y);
	float tz = easeCurve(z);*/
	float tx = x;
	float ty = y;
	float tz = z;
	return(
		v000 * (1 - tx) * (1 - ty) * (1 - tz) +
		v100 * tx * (1 - ty) * (1 - tz) +
		v010 * (1 - tx) * ty * (1 - tz) +
		v110 * tx * ty * (1 - tz) +
		v001 * (1 - tx) * (1 - ty) * tz +
		v101 * tx * (1 - ty) * tz +
		v011 * (1 - tx) * ty * tz +
		v111 * tx * ty * tz
	);
}
#endif


#if 0
float noise2d_gradient(float x, float y, int seed)
{
	// Calculate the integer coordinates
	int x0 = (x > 0.0 ? (int)x : (int)x - 1);
	int y0 = (y > 0.0 ? (int)y : (int)y - 1);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Calculate random cosine lookup table indices for the integer corners.
	// They are looked up as unit vector gradients from the lookup table.
	int n00 = (int)((noise2d(x0, y0, seed)+1)*8);
	int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8);
	int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8);
	int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8);
	// Make a dot product for the gradients and the positions, to get the values
	float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
	float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
	float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
	float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
	// Interpolate between the values
	return biLinearInterpolation(s,u,v,w,xl,yl);
}
#endif


float noise2d_gradient(float x, float y, int seed)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Get values for corners of square
	float v00 = noise2d(x0, y0, seed);
	float v10 = noise2d(x0+1, y0, seed);
	float v01 = noise2d(x0, y0+1, seed);
	float v11 = noise2d(x0+1, y0+1, seed);
	// Interpolate
	return biLinearInterpolation(v00,v10,v01,v11,xl,yl);
}


float noise3d_gradient(float x, float y, float z, int seed)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	int z0 = myfloor(z);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	float zl = z - (float)z0;
	// Get values for corners of cube
	float v000 = noise3d(x0,     y0,     z0,     seed);
	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
	// Interpolate
	return triLinearInterpolation(v000, v100, v010, v110,
								  v001, v101, v011, v111,
								  xl, yl, zl);
}


float noise2d_perlin(float x, float y, int seed,
		int octaves, float persistence)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise2d_gradient(x * f, y * f, seed + i);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise2d_perlin_abs(float x, float y, int seed,
		int octaves, float persistence)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * fabs(noise2d_gradient(x * f, y * f, seed + i));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin(float x, float y, float z, int seed,
		int octaves, float persistence)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin_abs(float x, float y, float z, int seed,
		int octaves, float persistence)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


// -1->0, 0->1, 1->0
float contour(float v)
{
	v = fabs(v);
	if(v >= 1.0)
		return 0.0;
	return (1.0-v);
}


///////////////////////// [ New perlin stuff ] ////////////////////////////


Noise::Noise(NoiseParams *np, int seed, int sx, int sy) {
	init(np, seed, sx, sy, 1);
}


Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz) {
	init(np, seed, sx, sy, sz);
}


void Noise::init(NoiseParams *np, int seed, int sx, int sy, int sz) {
	this->np   = np;
	this->seed = seed;
	this->sx   = sx;
	this->sy   = sy;
	this->sz   = sz;

	this->noisebuf = NULL;
	resizeNoiseBuf(sz > 1);

	this->buf    = new float[sx * sy * sz];
	this->result = new float[sx * sy * sz];
}


Noise::~Noise() {
	delete[] buf;
	delete[] result;
	delete[] noisebuf;
}


void Noise::setSize(int sx, int sy) {
	setSize(sx, sy, 1);
}


void Noise::setSize(int sx, int sy, int sz) {
	this->sx = sx;
	this->sy = sy;
	this->sz = sz;

	this->noisebuf = NULL;
	resizeNoiseBuf(sz > 1);

	delete[] buf;
	delete[] result;
	this->buf    = new float[sx * sy * sz];
	this->result = new float[sx * sy * sz];
}


void Noise::setSpreadFactor(v3f spread) {
	this->np->spread = spread;

	resizeNoiseBuf(sz > 1);
}


void Noise::setOctaves(int octaves) {
	this->np->octaves = octaves;

	resizeNoiseBuf(sz > 1);
}


void Noise::resizeNoiseBuf(bool is3d) {
	int nlx, nly, nlz;
	float ofactor;

	//maximum possible spread value factor
	ofactor = (float)(1 << (np->octaves - 1));

	//noise lattice point count
	//(int)(sz * spread * ofactor) is # of lattice points crossed due to length
	// + 2 for the two initial endpoints
	// + 1 for potentially crossing a boundary due to offset
	nlx = (int)(sx * ofactor / np->spread.X) + 3;
	nly = (int)(sy * ofactor / np->spread.Y) + 3;
	nlz = is3d ? (int)(sz * ofactor / np->spread.Z) + 3 : 1;

	if (noisebuf)
		delete[] noisebuf;
	noisebuf = new float[nlx * nly * nlz];
}


/*
 * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 * 2 lines + 2 planes.
 * However, this would require the noise calls to be interposed with the
 * interpolation loops, which may trash the icache, leading to lower overall
 * performance.
 * Another optimization that could save half as many noise calls is to carry over
 * values from the previous noise lattice as midpoints in the new lattice for the
 * next octave.
 */
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(float x, float y, float step_x, float step_y, int seed) {
	float v00, v01, v10, v11, u, v, orig_u;