/* Minetest Copyright (C) 2015 est31 This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "util/areastore.h" #include "util/serialize.h" #include "util/container.h" #if USE_SPATIAL #include #include #include #endif #define AST_SMALLER_EQ_AS(p, q) (((p).X <= (q).X) && ((p).Y <= (q).Y) && ((p).Z <= (q).Z)) #define AST_OVERLAPS_IN_DIMENSION(amine, amaxe, b, d) \ (!(((amine).d > (b)->maxedge.d) || ((amaxe).d < (b)->minedge.d))) #define AST_CONTAINS_PT(a, p) (AST_SMALLER_EQ_AS((a)->minedge, (p)) && \ AST_SMALLER_EQ_AS((p), (a)->maxedge)) #define AST_CONTAINS_AREA(amine, amaxe, b) \ (AST_SMALLER_EQ_AS((amine), (b)->minedge) \ && AST_SMALLER_EQ_AS((b)->maxedge, (amaxe))) #define AST_AREAS_OVERLAP(amine, amaxe, b) \ (AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), X) && \ AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), Y) && \ AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), Z)) AreaStore *AreaStore::getOptimalImplementation() { #if USE_SPATIAL return new SpatialAreaStore(); #else return new VectorAreaStore(); #endif } const Area *AreaStore::getArea(u32 id) const { AreaMap::const_iterator it = areas_map.find(id); if (it == areas_map.end()) return NULL; return &it->second; } #if 0 Currently, serialisation is commented out. This is because of multiple reasons: 1. Why do we store the areastore into a file, why not into the database? 2. We don't use libspatial's serialisation, but we should, or perhaps not, because it would remove the ability to switch. Perhaps write migration routines? 3. Various things need fixing, e.g. the size is serialized as c++ implementation defined size_t bool AreaStore::deserialize(std::istream &is) { u8 ver = readU8(is); if (ver != 1) return false; u16 count_areas = readU16(is); for (u16 i = 0; i < count_areas; i++) { // deserialize an area Area a; a.id = readU32(is); a.minedge = readV3S16(is); a.maxedge = readV3S16(is); a.datalen = readU16(is); a.data = new char[a.datalen]; is.read((char *) a.data, a.datalen); insertArea(a); } return true; } static bool serialize_area(void *ostr, Area *a) { std::ostream &os = *((std::ostream *) ostr); writeU32(os, a->id); writeV3S16(os, a->minedge); writeV3S16(os, a->maxedge); writeU16(os, a->datalen); os.write(a->data, a->datalen); return false; } void AreaStore::serialize(std::ostream &os) const { // write initial data writeU8(os, 1); // serialisation version writeU16(os, areas_map.size()); //DANGER: not platform independent forEach(&serialize_area, &os); } #endif void AreaStore::invalidateCache() { if (m_cache_enabled) { m_res_cache.invalidate(); } } void AreaStore::setCacheParams(bool enabled, u8 block_radius, size_t limit) { m_cache_enabled = enabled; m_cacheblock_radius = MYMAX(block_radius, 16); m_res_cache.setLimit(MYMAX(limit, 20)); invalidateCache(); } void AreaStore::cacheMiss(void *data, const v3s16 &mpos, std::vector *dest) { AreaStore *as = (AreaStore *)data; u8 r = as->m_cacheblock_radius; // get the points at the edges of the mapblock v3s16 minedge(mpos.X * r, mpos.Y * r, mpos.Z * r); v3s16 maxedge( minedge.X + r - 1, minedge.Y + r - 1, minedge.Z + r - 1); as->getAreasInArea(dest, minedge, maxedge, true); /* infostream << "Cache miss with " << dest->size() << " areas, between (" << minedge.X << ", " << minedge.Y << ", " << minedge.Z << ") and (" << maxedge.X << ", " << maxedge.Y << ", " << maxedge.Z << ")" << std::endl; // */ } void AreaStore::getAreasForPos(std::vector *result, v3s16 pos) { if (m_cache_enabled) { v3s16 mblock = getContainerPos(pos, m_cacheblock_radius); const std::vector *pre_list = m_res_cache.lookupCache(mblock); size_t s_p_l = pre_list->size(); for (size_t i = 0; i < s_p_l; i++) { Area *b = (*pre_list)[i]; if (AST_CONTAINS_PT(b, pos)) { result->push_back(b); } } } else { return getAreasForPosImpl(result, pos); } } //// // VectorAreaStore //// bool VectorAreaStore::insertArea(Area *a) { a->id = getNextId(); std::pair res = areas_map.insert(std::make_pair(a->id, *a)); if (!res.second) // ID is not unique return false; m_areas.push_back(&res.first->second); invalidateCache(); return true; } bool VectorAreaStore::removeArea(u32 id) { AreaMap::iterator it = areas_map.find(id); if (it == areas_map.end()) return false; Area *a = &it->second; for (std::vector::iterator v_it = m_areas.begin(); v_it != m_areas.end(); ++v_it) { if (*v_it == a) { m_areas.erase(v_it); break; } } areas_map.erase(it); invalidateCache(); return true; } void VectorAreaStore::getAreasForPosImpl(std::vector *result, v3s16 pos) { for (size_t i = 0; i < m_areas.size(); ++i) { Area *b = m_areas[i]; if (AST_CONTAINS_PT(b, pos)) { result->push_back(b); } } } void VectorAreaStore::getAreasInArea(std::vector *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { for (size_t i = 0; i < m_areas.size(); ++i) { Area *b = m_areas[i]; if (accept_overlap ? AST_AREAS_OVERLAP(minedge, maxedge, b) : AST_CONTAINS_AREA(minedge, maxedge, b)) { result->push_back(b); } } } #if 0 bool SimpleAreaStore::forEach(ForEachCallback callback, void *arg) const { for (size_t i = 0; i < m_areas.size(); ++i) { if (callback(m_areas[i], arg)) { return true; } } return false; } #endif #if USE_SPATIAL static inline SpatialIndex::Region get_spatial_region(const v3s16 minedge, const v3s16 maxedge) { const double p_low[] = {(double)minedge.X, (double)minedge.Y, (double)minedge.Z}; const double p_high[] = {(double)maxedge.X, (double)maxedge.Y, (double)maxedge.Z}; return SpatialIndex::Region(p_low, p_high, 3); } static inline SpatialIndex::Point get_spatial_point(const v3s16 pos) { const double p[] = {(double)pos.X, (double)pos.Y, (double)pos.Z}; return SpatialIndex::Point(p, 3); } bool SpatialAreaStore::insertArea(Area *a) { a->id = getNextId(); if (!areas_map.insert(std::make_pair(a->id, *a)).second) // ID is not unique return false; m_tree->insertData(0, NULL, get_spatial_region(a->minedge, a->maxedge), a->id); invalidateCache(); return true; } bool SpatialAreaStore::removeArea(u32 id) { std::map::iterator itr = areas_map.find(id); if (itr != areas_map.end()) { Area *a = &itr->second; bool result = m_tree->deleteData(get_spatial_region(a->minedge, a->maxedge), id); areas_map.erase(itr); invalidateCache(); return result; } else { return false; } } void SpatialAreaStore::getAreasForPosImpl(std::vector *result, v3s16 pos) { VectorResultVisitor visitor(result, this); m_tree->pointLocationQuery(get_spatial_point(pos), visitor); } void SpatialAreaStore::getAreasInArea(std::vector *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { VectorResultVisitor visitor(result, this); if (accept_overlap) { m_tree->intersectsWithQuery(get_spatial_region(minedge, maxedge), visitor); } else { m_tree->containsWhatQuery(get_spatial_region(minedge, maxedge), visitor); } } #if 0 bool SpatialAreaStore::forEach(ForEachCallback callback, void *arg) const { // TODO ?? (this is only needed for serialisation, but libspatial has its own serialisation) return false; } #endif SpatialAreaStore::~SpatialAreaStore() { delete m_tree; } SpatialAreaStore::SpatialAreaStore() { m_storagemanager = SpatialIndex::StorageManager::createNewMemoryStorageManager(); SpatialIndex::id_type id; m_tree = SpatialIndex::RTree::createNewRTree( *m_storagemanager, .7, // Fill factor 100, // Index capacity 100, // Leaf capacity 3, // dimension :) SpatialIndex::RTree::RV_RSTAR, id); } #endif