/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #pragma once #include "irrlichttypes.h" #include "exceptions.h" #include "threading/mutex_auto_lock.h" #include "threading/semaphore.h" #include <list> #include <vector> #include <map> #include <set> #include <queue> /* Queue with unique values with fast checking of value existence */ template<typename Value> class UniqueQueue { public: /* Does nothing if value is already queued. Return value: true: value added false: value already exists */ bool push_back(const Value& value) { if (m_set.insert(value).second) { m_queue.push(value); return true; } return false; } void pop_front() { m_set.erase(m_queue.front()); m_queue.pop(); } const Value& front() const { return m_queue.front(); } u32 size() const { return m_queue.size(); } private: std::set<Value> m_set; std::queue<Value> m_queue; }; template<typename Key, typename Value> class MutexedMap { public: MutexedMap() = default; void set(const Key &name, const Value &value) { MutexAutoLock lock(m_mutex); m_values[name] = value; } bool get(const Key &name, Value *result) const { MutexAutoLock lock(m_mutex); typename std::map<Key, Value>::const_iterator n = m_values.find(name); if (n == m_values.end()) return false; if (result) *result = n->second; return true; } std::vector<Value> getValues() const { MutexAutoLock lock(m_mutex); std::vector<Value> result; for (typename std::map<Key, Value>::const_iterator it = m_values.begin(); it != m_values.end(); ++it){ result.push_back(it->second); } return result; } void clear() { m_values.clear(); } private: std::map<Key, Value> m_values; mutable std::mutex m_mutex; }; // Thread-safe Double-ended queue template<typename T> class MutexedQueue { public: template<typename Key, typename U, typename Caller, typename CallerData> friend class RequestQueue; MutexedQueue() = default; bool empty() const { MutexAutoLock lock(m_mutex); return m_queue.empty(); } void push_back(T t) { MutexAutoLock lock(m_mutex); m_queue.push_back(t); m_signal.post(); } /* this version of pop_front returns a empty element of T on timeout. * Make sure default constructor of T creates a recognizable "empty" element */ T pop_frontNoEx(u32 wait_time_max_ms) { if (m_signal.wait(wait_time_max_ms)) { MutexAutoLock lock(m_mutex); T t = m_queue.front(); m_queue.pop_front(); return t; } return T(); } T pop_front(u32 wait_time_max_ms) { if (m_signal.wait(wait_time_max_ms)) { MutexAutoLock lock(m_mutex); T t = m_queue.front(); m_queue.pop_front(); return t; } throw ItemNotFoundException("MutexedQueue: queue is empty"); } T pop_frontNoEx() { m_signal.wait(); MutexAutoLock lock(m_mutex); T t = m_queue.front(); m_queue.pop_front(); return t; } T pop_back(u32 wait_time_max_ms=0) { if (m_signal.wait(wait_time_max_ms)) { MutexAutoLock lock(m_mutex); T t = m_queue.back(); m_queue.pop_back(); return t; } throw ItemNotFoundException("MutexedQueue: queue is empty"); } /* this version of pop_back returns a empty element of T on timeout. * Make sure default constructor of T creates a recognizable "empty" element */ T pop_backNoEx(u32 wait_time_max_ms) { if (m_signal.wait(wait_time_max_ms)) { MutexAutoLock lock(m_mutex); T t = m_queue.back(); m_queue.pop_back(); return t; } return T(); } T pop_backNoEx() { m_signal.wait(); MutexAutoLock lock(m_mutex); T t = m_queue.back(); m_queue.pop_back(); return t; } protected: std::mutex &getMutex() { return m_mutex; } std::deque<T> &getQueue() { return m_queue; } std::deque<T> m_queue; mutable std::mutex m_mutex; Semaphore m_signal; }; template<typename K, typename V> class LRUCache { public: LRUCache(size_t limit, void (*cache_miss)(void *data, const K &key, V *dest), void *data) { m_limit = limit; m_cache_miss = cache_miss; m_cache_miss_data = data; } void setLimit(size_t limit) { m_limit = limit; invalidate(); } void invalidate() { m_map.clear(); m_queue.clear(); } const V *lookupCache(K key) { typename cache_type::iterator it = m_map.find(key); V *ret; if (it != m_map.end()) { // found! cache_entry_t &entry = it->second; ret = &entry.second; // update the usage information m_queue.erase(entry.first); m_queue.push_front(key); entry.first = m_queue.begin(); } else { // cache miss -- enter into cache cache_entry_t &entry = m_map[key]; ret = &entry.second; m_cache_miss(m_cache_miss_data, key, &entry.second); // delete old entries if (m_queue.size() == m_limit) { const K &id = m_queue.back(); m_map.erase(id); m_queue.pop_back(); } m_queue.push_front(key); entry.first = m_queue.begin(); } return ret; } private: void (*m_cache_miss)(void *data, const K &key, V *dest); void *m_cache_miss_data; size_t m_limit; typedef typename std::template pair<typename std::template list<K>::iterator, V> cache_entry_t; typedef std::template map<K, cache_entry_t> cache_type; cache_type m_map; // we can't use std::deque here, because its iterators get invalidated std::list<K> m_queue; };