/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifndef UTIL_SERIALIZE_HEADER #define UTIL_SERIALIZE_HEADER #include "../irrlichttypes_bloated.h" #include "../exceptions.h" // for SerializationError #include "../debug.h" // for assert #include "config.h" #if HAVE_ENDIAN_H #ifdef _WIN32 #define __BYTE_ORDER 0 #define __LITTLE_ENDIAN 0 #define __BIG_ENDIAN 1 #elif defined(__MACH__) && defined(__APPLE__) #include <machine/endian.h> #elif defined(__FreeBSD__) #include <sys/endian.h> #else #include <endian.h> #endif #endif #include <string.h> // for memcpy #include <iostream> #include <string> #include <vector> #define FIXEDPOINT_FACTOR 1000.0f // 0x7FFFFFFF / 1000.0f is not serializable. // The limited float precision at this magnitude may cause the result to round // to a greater value than can be represented by a 32 bit integer when increased // by a factor of FIXEDPOINT_FACTOR. As a result, [F1000_MIN..F1000_MAX] does // not represent the full range, but rather the largest safe range, of values on // all supported architectures. Note: This definition makes assumptions on // platform float-to-int conversion behavior. #define F1000_MIN ((float)(s32)((-0x7FFFFFFF - 1) / FIXEDPOINT_FACTOR)) #define F1000_MAX ((float)(s32)((0x7FFFFFFF) / FIXEDPOINT_FACTOR)) #define STRING_MAX_LEN 0xFFFF #define WIDE_STRING_MAX_LEN 0xFFFF // 64 MB ought to be enough for anybody - Billy G. #define LONG_STRING_MAX_LEN (64 * 1024 * 1024) #if HAVE_ENDIAN_H // use machine native byte swapping routines // Note: memcpy below is optimized out by modern compilers inline u16 readU16(const u8 *data) { u16 val; memcpy(&val, data, 2); return be16toh(val); } inline u32 readU32(const u8 *data) { u32 val; memcpy(&val, data, 4); return be32toh(val); } inline u64 readU64(const u8 *data) { u64 val; memcpy(&val, data, 8); return be64toh(val); } inline void writeU16(u8 *data, u16 i) { u16 val = htobe16(i); memcpy(data, &val, 2); } inline void writeU32(u8 *data, u32 i) { u32 val = htobe32(i); memcpy(data, &val, 4); } inline void writeU64(u8 *data, u64 i) { u64 val = htobe64(i); memcpy(data, &val, 8); } #else // generic byte-swapping implementation inline u16 readU16(const u8 *data) { return ((u16)data[0] << 8) | ((u16)data[1] << 0); } inline u32 readU32(const u8 *data) { return ((u32)data[0] << 24) | ((u32)data[1] << 16) | ((u32)data[2] << 8) | ((u32)data[3] << 0); } inline u64 readU64(const u8 *data) { return ((u64)data[0] << 56) | ((u64)data[1] << 48) | ((u64)data[2] << 40) | ((u64)data[3] << 32) | ((u64)data[4] << 24) | ((u64)data[5] << 16) | ((u64)data[6] << 8) | ((u64)data[7] << 0); } inline void writeU16(u8 *data, u16 i) { data[0] = (i >> 8) & 0xFF; data[1] = (i >> 0) & 0xFF; } inline void writeU32(u8 *data, u32 i) { data[0] = (i >> 24) & 0xFF; data[1] = (i >> 16) & 0xFF; data[2] = (i >> 8) & 0xFF; data[3] = (i >> 0) & 0xFF; } inline void writeU64(u8 *data, u64 i) { data[0] = (i >> 56) & 0xFF; data[1] = (i >> 48) & 0xFF; data[2] = (i >> 40) & 0xFF; data[3] = (i >> 32) & 0xFF; data[4] = (i >> 24) & 0xFF; data[5] = (i >> 16) & 0xFF; data[6] = (i >> 8) & 0xFF; data[7] = (i >> 0) & 0xFF; } #endif // HAVE_ENDIAN_H //////////////// read routines //////////////// inline u8 readU8(const u8 *data) { return ((u8)data[0] << 0); } inline s8 readS8(const u8 *data) { return (s8)readU8(data); } inline s16 readS16(const u8 *data) { return (s16)readU16(data); } inline s32 readS32(const u8 *data) { return (s32)readU32(data); } inline s64 readS64(const u8 *data) { return (s64)readU64(data); } inline f32 readF1000(const u8 *data) { return (f32)readS32(data) / FIXEDPOINT_FACTOR; } inline video::SColor readARGB8(const u8 *data) { video::SColor p(readU32(data)); return p; } inline v2s16 readV2S16(const u8 *data) { v2s16 p; p.X = readS16(&data[0]); p.Y = readS16(&data[2]); return p; } inline v3s16 readV3S16(const u8 *data) { v3s16 p; p.X = readS16(&data[0]); p.Y = readS16(&data[2]); p.Z = readS16(&data[4]); return p; } inline v2s32 readV2S32(const u8 *data) { v2s32 p; p.X = readS32(&data[0]); p.Y = readS32(&data[4]); return p; } inline v3s32 readV3S32(const u8 *data) { v3s32 p; p.X = readS32(&data[0]); p.Y = readS32(&data[4]); p.Z = readS32(&data[8]); return p; } inline v2f readV2F1000(const u8 *data) { v2f p; p.X = (float)readF1000(&data[0]); p.Y = (float)readF1000(&data[4]); return p; } inline v3f readV3F1000(const u8 *data) { v3f p; p.X = (float)readF1000(&data[0]); p.Y = (float)readF1000(&data[4]); p.Z = (float)readF1000(&data[8]); return p; } /////////////// write routines //////////////// inline void writeU8(u8 *data, u8 i) { data[0] = (i >> 0) & 0xFF; } inline void writeS8(u8 *data, s8 i) { writeU8(data, (u8)i); } inline void writeS16(u8 *data, s16 i) { writeU16(data, (u16)i); } inline void writeS32(u8 *data, s32 i) { writeU32(data, (u32)i); } inline void writeS64(u8 *data, s64 i) { writeU64(data, (u64)i); } inline void writeF1000(u8 *data, f32 i) { assert(i >= F1000_MIN && i <= F1000_MAX); writeS32(data, i * FIXEDPOINT_FACTOR); } inline void writeARGB8(u8 *data, video::SColor p) { writeU32(data, p.color); } inline void writeV2S16(u8 *data, v2s16 p) { writeS16(&data[0], p.X); writeS16(&data[2], p.Y); } inline void writeV3S16(u8 *data, v3s16 p) { writeS16(&data[0], p.X); writeS16(&data[2], p.Y); writeS16(&data[4], p.Z); } inline void writeV2S32(u8 *data, v2s32 p) { writeS32(&data[0], p.X); writeS32(&data[4], p.Y); } inline void writeV3S32(u8 *data, v3s32 p) { writeS32(&data[0], p.X); writeS32(&data[4], p.Y); writeS32(&data[8], p.Z); } inline void writeV2F1000(u8 *data, v2f p) { writeF1000(&data[0], p.X); writeF1000(&data[4], p.Y); } inline void writeV3F1000(u8 *data, v3f p) { writeF1000(&data[0], p.X); writeF1000(&data[4], p.Y); writeF1000(&data[8], p.Z); } //// //// Iostream wrapper for data read/write //// #define MAKE_STREAM_READ_FXN(T, N, S) \ inline T read ## N(std::istream &is) \ { \ char buf[S] = {0}; \ is.read(buf, sizeof(buf)); \ return read ## N((u8 *)buf); \ } #define MAKE_STREAM_WRITE_FXN(T, N, S) \ inline void write ## N(std::ostream &os, T val) \ { \ char buf[S]; \ write ## N((u8 *)buf, val); \ os.write(buf, sizeof(buf)); \ } MAKE_STREAM_READ_FXN(u8, U8, 1); MAKE_STREAM_READ_FXN(u16, U16, 2); MAKE_STREAM_READ_FXN(u32, U32, 4); MAKE_STREAM_READ_FXN(u64, U64, 8); MAKE_STREAM_READ_FXN(s8, S8, 1); MAKE_STREAM_READ_FXN(s16, S16, 2); MAKE_STREAM_READ_FXN(s32, S32, 4); MAKE_STREAM_READ_FXN(s64, S64, 8); MAKE_STREAM_READ_FXN(f32, F1000, 4); MAKE_STREAM_READ_FXN(v2s16, V2S16, 4); MAKE_STREAM_READ_FXN(v3s16, V3S16, 6); MAKE_STREAM_READ_FXN(v2s32, V2S32, 8); MAKE_STREAM_READ_FXN(v3s32, V3S32, 12); MAKE_STREAM_READ_FXN(v2f, V2F1000, 8); MAKE_STREAM_READ_FXN(v3f, V3F1000, 12); MAKE_STREAM_READ_FXN(video::SColor, ARGB8, 4); MAKE_STREAM_WRITE_FXN(u8, U8, 1); MAKE_STREAM_WRITE_FXN(u16, U16, 2); MAKE_STREAM_WRITE_FXN(u32, U32, 4); MAKE_STREAM_WRITE_FXN(u64, U64, 8); MAKE_STREAM_WRITE_FXN(s8, S8, 1); MAKE_STREAM_WRITE_FXN(s16, S16, 2); MAKE_STREAM_WRITE_FXN(s32, S32, 4); MAKE_STREAM_WRITE_FXN(s64, S64, 8); MAKE_STREAM_WRITE_FXN(f32, F1000, 4); MAKE_STREAM_WRITE_FXN(v2s16, V2S16, 4); MAKE_STREAM_WRITE_FXN(v3s16, V3S16, 6); MAKE_STREAM_WRITE_FXN(v2s32, V2S32, 8); MAKE_STREAM_WRITE_FXN(v3s32, V3S32, 12); MAKE_STREAM_WRITE_FXN(v2f, V2F1000, 8); MAKE_STREAM_WRITE_FXN(v3f, V3F1000, 12); MAKE_STREAM_WRITE_FXN(video::SColor, ARGB8, 4); //// //// More serialization stuff //// // Creates a string with the length as the first two bytes std::string serializeString(const std::string &plain); // Creates a string with the length as the first two bytes from wide string std::string serializeWideString(const std::wstring &plain); // Reads a string with the length as the first two bytes std::string deSerializeString(std::istream &is); // Reads a wide string with the length as the first two bytes std::wstring deSerializeWideString(std::istream &is); // Creates a string with the length as the first four bytes std::string serializeLongString(const std::string &plain); // Reads a string with the length as the first four bytes std::string deSerializeLongString(std::istream &is); // Creates a string encoded in JSON format (almost equivalent to a C string literal) std::string serializeJsonString(const std::string &plain); // Reads a string encoded in JSON format std::string deSerializeJsonString(std::istream &is); // Creates a string consisting of the hexadecimal representation of `data` std::string serializeHexString(const std::string &data, bool insert_spaces=false); // Creates a string containing comma delimited values of a struct whose layout is // described by the parameter format bool serializeStructToString(std::string *out, std::string format, void *value); // Reads a comma delimited string of values into a struct whose layout is // decribed by the parameter format bool deSerializeStringToStruct(std::string valstr, std::string format, void *out, size_t olen); //// //// BufReader //// extern SerializationError eof_ser_err; #define MAKE_BUFREADER_GETNOEX_FXN(T, N, S) \ inline bool get ## N ## NoEx(T *val) \ { \ if (pos + S > size) \ return false; \ *val = read ## N(data + pos); \ pos += S; \ return true; \ } #define MAKE_BUFREADER_GET_FXN(T, N) \ inline T get ## N() \ { \ T val; \ if (!get ## N ## NoEx(&val)) \ throw eof_ser_err; \ return val; \ } class BufReader { public: BufReader(const u8 *data_, size_t size_) : data(data_), size(size_), pos(0) { } MAKE_BUFREADER_GETNOEX_FXN(u8, U8, 1); MAKE_BUFREADER_GETNOEX_FXN(u16, U16, 2); MAKE_BUFREADER_GETNOEX_FXN(u32, U32, 4); MAKE_BUFREADER_GETNOEX_FXN(u64, U64, 8); MAKE_BUFREADER_GETNOEX_FXN(s8, S8, 1); MAKE_BUFREADER_GETNOEX_FXN(s16, S16, 2); MAKE_BUFREADER_GETNOEX_FXN(s32, S32, 4); MAKE_BUFREADER_GETNOEX_FXN(s64, S64, 8); MAKE_BUFREADER_GETNOEX_FXN(f32, F1000, 4); MAKE_BUFREADER_GETNOEX_FXN(v2s16, V2S16, 4); MAKE_BUFREADER_GETNOEX_FXN(v3s16, V3S16, 6); MAKE_BUFREADER_GETNOEX_FXN(v2s32, V2S32, 8); MAKE_BUFREADER_GETNOEX_FXN(v3s32, V3S32, 12); MAKE_BUFREADER_GETNOEX_FXN(v2f, V2F1000, 8); MAKE_BUFREADER_GETNOEX_FXN(v3f, V3F1000, 12); MAKE_BUFREADER_GETNOEX_FXN(video::SColor, ARGB8, 4); bool getStringNoEx(std::string *val); bool getWideStringNoEx(std::wstring *val); bool getLongStringNoEx(std::string *val); bool getRawDataNoEx(void *data, size_t len); MAKE_BUFREADER_GET_FXN(u8, U8); MAKE_BUFREADER_GET_FXN(u16, U16); MAKE_BUFREADER_GET_FXN(u32, U32); MAKE_BUFREADER_GET_FXN(u64, U64); MAKE_BUFREADER_GET_FXN(s8, S8); MAKE_BUFREADER_GET_FXN(s16, S16); MAKE_BUFREADER_GET_FXN(s32, S32); MAKE_BUFREADER_GET_FXN(s64, S64); MAKE_BUFREADER_GET_FXN(f32, F1000); MAKE_BUFREADER_GET_FXN(v2s16, V2S16); MAKE_BUFREADER_GET_FXN(v3s16, V3S16); MAKE_BUFREADER_GET_FXN(v2s32, V2S32); MAKE_BUFREADER_GET_FXN(v3s32, V3S32); MAKE_BUFREADER_GET_FXN(v2f, V2F1000); MAKE_BUFREADER_GET_FXN(v3f, V3F1000); MAKE_BUFREADER_GET_FXN(video::SColor, ARGB8); MAKE_BUFREADER_GET_FXN(std::string, String); MAKE_BUFREADER_GET_FXN(std::wstring, WideString); MAKE_BUFREADER_GET_FXN(std::string, LongString); inline void getRawData(void *val, size_t len) { if (!getRawDataNoEx(val, len)) throw eof_ser_err; } inline size_t remaining() { assert(pos <= size); return size - pos; } const u8 *data; size_t size; size_t pos; }; #undef MAKE_BUFREADER_GET_FXN #undef MAKE_BUFREADER_GETNOEX_FXN //// //// Vector-based write routines //// inline void putU8(std::vector<u8> *dest, u8 val) { dest->push_back((val >> 0) & 0xFF); } inline void putU16(std::vector<u8> *dest, u16 val) { dest->push_back((val >> 8) & 0xFF); dest->push_back((val >> 0) & 0xFF); } inline void putU32(std::vector<u8> *dest, u32 val) { dest->push_back((val >> 24) & 0xFF); dest->push_back((val >> 16) & 0xFF); dest->push_back((val >> 8) & 0xFF); dest->push_back((val >> 0) & 0xFF); } inline void putU64(std::vector<u8> *dest, u64 val) { dest->push_back((val >> 56) & 0xFF); dest->push_back((val >> 48) & 0xFF); dest->push_back((val >> 40) & 0xFF); dest->push_back((val >> 32) & 0xFF); dest->push_back((val >> 24) & 0xFF); dest->push_back((val >> 16) & 0xFF); dest->push_back((val >> 8) & 0xFF); dest->push_back((val >> 0) & 0xFF); } inline void putS8(std::vector<u8> *dest, s8 val) { putU8(dest, val); } inline void putS16(std::vector<u8> *dest, s16 val) { putU16(dest, val); } inline void putS32(std::vector<u8> *dest, s32 val) { putU32(dest, val); } inline void putS64(std::vector<u8> *dest, s64 val) { putU64(dest, val); } inline void putF1000(std::vector<u8> *dest, f32 val) { putS32(dest, val * FIXEDPOINT_FACTOR); } inline void putV2S16(std::vector<u8> *dest, v2s16 val) { putS16(dest, val.X); putS16(dest, val.Y); } inline void putV3S16(std::vector<u8> *dest, v3s16 val) { putS16(dest, val.X); putS16(dest, val.Y); putS16(dest, val.Z); } inline void putV2S32(std::vector<u8> *dest, v2s32 val) { putS32(dest, val.X); putS32(dest, val.Y); } inline void putV3S32(std::vector<u8> *dest, v3s32 val) { putS32(dest, val.X); putS32(dest, val.Y); putS32(dest, val.Z); } inline void putV2F1000(std::vector<u8> *dest, v2f val) { putF1000(dest, val.X); putF1000(dest, val.Y); } inline void putV3F1000(std::vector<u8> *dest, v3f val) { putF1000(dest, val.X); putF1000(dest, val.Y); putF1000(dest, val.Z); } inline void putARGB8(std::vector<u8> *dest, video::SColor val) { putU32(dest, val.color); } inline void putString(std::vector<u8> *dest, const std::string &val) { if (val.size() > STRING_MAX_LEN) throw SerializationError("String too long"); putU16(dest, val.size()); dest->insert(dest->end(), val.begin(), val.end()); } inline void putWideString(std::vector<u8> *dest, const std::wstring &val) { if (val.size() > WIDE_STRING_MAX_LEN) throw SerializationError("String too long"); putU16(dest, val.size()); for (size_t i = 0; i != val.size(); i++) putU16(dest, val[i]); } inline void putLongString(std::vector<u8> *dest, const std::string &val) { if (val.size() > LONG_STRING_MAX_LEN) throw SerializationError("String too long"); putU32(dest, val.size()); dest->insert(dest->end(), val.begin(), val.end()); } inline void putRawData(std::vector<u8> *dest, const void *src, size_t len) { dest->insert(dest->end(), (u8 *)src, (u8 *)src + len); } #endif