/* * Secure Remote Password 6a implementation * https://github.com/est31/csrp-gmp * * The MIT License (MIT) * * Copyright (c) 2010, 2013 Tom Cocagne, 2015 est31 <MTest31@outlook.com> * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* * * Purpose: This is a direct implementation of the Secure Remote Password * Protocol version 6a as described by * http://srp.stanford.edu/design.html * * Author: tom.cocagne@gmail.com (Tom Cocagne) * * Dependencies: LibGMP * * Usage: Refer to test_srp.c for a demonstration * * Notes: * This library allows multiple combinations of hashing algorithms and * prime number constants. For authentication to succeed, the hash and * prime number constants must match between * srp_create_salted_verification_key(), srp_user_new(), * and srp_verifier_new(). A recommended approach is to determine the * desired level of security for an application and globally define the * hash and prime number constants to the predetermined values. * * As one might suspect, more bits means more security. As one might also * suspect, more bits also means more processing time. The test_srp.c * program can be easily modified to profile various combinations of * hash & prime number pairings. */ #ifndef SRP_H #define SRP_H struct SRPVerifier; struct SRPUser; typedef enum { SRP_NG_1024, SRP_NG_2048, SRP_NG_4096, SRP_NG_8192, SRP_NG_CUSTOM } SRP_NGType; typedef enum { /*SRP_SHA1,*/ /*SRP_SHA224,*/ SRP_SHA256, /*SRP_SHA384, SRP_SHA512*/ } SRP_HashAlgorithm; /* Out: bytes_v, len_v * * The caller is responsible for freeing the memory allocated for bytes_v * * The n_hex and g_hex parameters should be 0 unless SRP_NG_CUSTOM is used for ng_type. * If provided, they must contain ASCII text of the hexidecimal notation. * * If bytes_s == NULL, it is filled with random data. The caller is responsible for freeing. */ void srp_create_salted_verification_key( SRP_HashAlgorithm alg, SRP_NGType ng_type, const char *username_for_verifier, const unsigned char *password, size_t len_password, unsigned char **bytes_s, size_t *len_s, unsigned char **bytes_v, size_t *len_v, const char * n_hex, const char *g_hex ); /* Out: bytes_B, len_B. * * On failure, bytes_B will be set to NULL and len_B will be set to 0 * * The n_hex and g_hex parameters should be 0 unless SRP_NG_CUSTOM is used for ng_type * * If bytes_b == NULL, random data is used for b. */ struct SRPVerifier* srp_verifier_new(SRP_HashAlgorithm alg, SRP_NGType ng_type, const char *username, const unsigned char *bytes_s, size_t len_s, const unsigned char *bytes_v, size_t len_v, const unsigned char *bytes_A, size_t len_A, const unsigned char *bytes_b, size_t len_b, unsigned char** bytes_B, size_t *len_B, const char* n_hex, const char* g_hex); void srp_verifier_delete( struct SRPVerifier* ver ); int srp_verifier_is_authenticated( struct SRPVerifier* ver ); const char * srp_verifier_get_username( struct SRPVerifier* ver ); /* key_length may be null */ const unsigned char* srp_verifier_get_session_key( struct SRPVerifier* ver, size_t *key_length ); size_t srp_verifier_get_session_key_length(struct SRPVerifier* ver); /* user_M must be exactly srp_verifier_get_session_key_length() bytes in size */ void srp_verifier_verify_session( struct SRPVerifier* ver, const unsigned char* user_M, unsigned char** bytes_HAMK ); /*******************************************************************************/ /* The n_hex and g_hex parameters should be 0 unless SRP_NG_CUSTOM is used for ng_type */ struct SRPUser *srp_user_new(SRP_HashAlgorithm alg, SRP_NGType ng_type, const char *username, const char *username_for_verifier, const unsigned char *bytes_password, size_t len_password, const char *n_hex, const char *g_hex); void srp_user_delete(struct SRPUser * usr); int srp_user_is_authenticated(struct SRPUser * usr); const char* srp_user_get_username(struct SRPUser * usr); /* key_length may be null */ const unsigned char* srp_user_get_session_key(struct SRPUser* usr, size_t* key_length); size_t srp_user_get_session_key_length(struct SRPUser* usr); /* Output: username, bytes_A, len_A. If you don't want it get written, set username to NULL. * If bytes_a == NULL, random data is used for a. */ void srp_user_start_authentication(struct SRPUser* usr, char** username, const unsigned char* bytes_a, size_t len_a, unsigned char** bytes_A, size_t* len_A); /* Output: bytes_M, len_M (len_M may be null and will always be * srp_user_get_session_key_length() bytes in size) */ void srp_user_process_challenge(struct SRPUser *usr, const unsigned char *bytes_s, size_t len_s, const unsigned char *bytes_B, size_t len_B, unsigned char **bytes_M, size_t *len_M); /* bytes_HAMK must be exactly srp_user_get_session_key_length() bytes in size */ void srp_user_verify_session(struct SRPUser* usr, const unsigned char* bytes_HAMK); #endif /* Include Guard */