summaryrefslogtreecommitdiff
path: root/src/client/shadows/dynamicshadows.cpp
blob: 9f26ba94ab8f673227def3d7520c87300071ba16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
Minetest
Copyright (C) 2021 Liso <anlismon@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <cmath>

#include "client/shadows/dynamicshadows.h"
#include "client/client.h"
#include "client/clientenvironment.h"
#include "client/clientmap.h"
#include "client/camera.h"

using m4f = core::matrix4;

static v3f quantizeDirection(v3f direction, float step)
{

	float yaw = std::atan2(direction.Z, direction.X);
	float pitch = std::asin(direction.Y); // assume look is normalized

	yaw = std::floor(yaw / step) * step;
	pitch = std::floor(pitch / step) * step;

	return v3f(std::cos(yaw)*std::cos(pitch), std::sin(pitch), std::sin(yaw)*std::cos(pitch));
}

void DirectionalLight::createSplitMatrices(const Camera *cam)
{
	const float DISTANCE_STEP = BS * 2.0; // 2 meters
	v3f newCenter;
	v3f look = cam->getDirection();
	look = quantizeDirection(look, M_PI / 12.0); // 15 degrees

	// camera view tangents
	float tanFovY = tanf(cam->getFovY() * 0.5f);
	float tanFovX = tanf(cam->getFovX() * 0.5f);

	// adjusted frustum boundaries
	float sfNear = future_frustum.zNear;
	float sfFar = adjustDist(future_frustum.zFar, cam->getFovY());

	// adjusted camera positions
	v3f cam_pos_world = cam->getPosition();
	cam_pos_world = v3f(
			floor(cam_pos_world.X / DISTANCE_STEP) * DISTANCE_STEP,
			floor(cam_pos_world.Y / DISTANCE_STEP) * DISTANCE_STEP,
			floor(cam_pos_world.Z / DISTANCE_STEP) * DISTANCE_STEP);
	v3f cam_pos_scene = v3f(cam_pos_world.X - cam->getOffset().X * BS,
			cam_pos_world.Y - cam->getOffset().Y * BS,
			cam_pos_world.Z - cam->getOffset().Z * BS);
	cam_pos_scene += look * sfNear;
	cam_pos_world += look * sfNear;

	// center point of light frustum
	v3f center_scene = cam_pos_scene + look * 0.35 * (sfFar - sfNear);
	v3f center_world = cam_pos_world + look * 0.35 * (sfFar - sfNear);

	// Create a vector to the frustum far corner
	const v3f &viewUp = cam->getCameraNode()->getUpVector();
	v3f viewRight = look.crossProduct(viewUp);

	v3f farCorner = (look + viewRight * tanFovX + viewUp * tanFovY).normalize();
	// Compute the frustumBoundingSphere radius
	v3f boundVec = (cam_pos_scene + farCorner * sfFar) - center_scene;
	float radius = boundVec.getLength();
	float length = radius * 3.0f;
	v3f eye_displacement = quantizeDirection(direction, M_PI / 2880 /*15 seconds*/) * length;

	// we must compute the viewmat with the position - the camera offset
	// but the future_frustum position must be the actual world position
	v3f eye = center_scene - eye_displacement;
	future_frustum.player = cam_pos_scene;
	future_frustum.position = center_world - eye_displacement;
	future_frustum.length = length;
	future_frustum.radius = radius;
	future_frustum.ViewMat.buildCameraLookAtMatrixLH(eye, center_scene, v3f(0.0f, 1.0f, 0.0f));
	future_frustum.ProjOrthMat.buildProjectionMatrixOrthoLH(radius, radius, 
			0.0f, length, false);
	future_frustum.camera_offset = cam->getOffset();
}

DirectionalLight::DirectionalLight(const u32 shadowMapResolution,
		const v3f &position, video::SColorf lightColor,
		f32 farValue) :
		diffuseColor(lightColor),
		farPlane(farValue), mapRes(shadowMapResolution), pos(position)
{}

void DirectionalLight::update_frustum(const Camera *cam, Client *client, bool force)
{
	if (dirty && !force)
		return;

	float zNear = cam->getCameraNode()->getNearValue();
	float zFar = getMaxFarValue();
	if (!client->getEnv().getClientMap().getControl().range_all)
		zFar = MYMIN(zFar, client->getEnv().getClientMap().getControl().wanted_range * BS);

	///////////////////////////////////
	// update splits near and fars
	future_frustum.zNear = zNear;
	future_frustum.zFar = zFar;

	// update shadow frustum
	createSplitMatrices(cam);
	// get the draw list for shadows
	client->getEnv().getClientMap().updateDrawListShadow(
			getPosition(), getDirection(), future_frustum.radius, future_frustum.length);
	should_update_map_shadow = true;
	dirty = true;

	// when camera offset changes, adjust the current frustum view matrix to avoid flicker
	v3s16 cam_offset = cam->getOffset();
	if (cam_offset != shadow_frustum.camera_offset) {
		v3f rotated_offset;
		shadow_frustum.ViewMat.rotateVect(rotated_offset, intToFloat(cam_offset - shadow_frustum.camera_offset, BS));
		shadow_frustum.ViewMat.setTranslation(shadow_frustum.ViewMat.getTranslation() + rotated_offset);
		shadow_frustum.player += intToFloat(shadow_frustum.camera_offset - cam->getOffset(), BS);
		shadow_frustum.camera_offset = cam_offset;
	}
}

void DirectionalLight::commitFrustum()
{
	if (!dirty)
		return;

	shadow_frustum = future_frustum;
	dirty = false;
}

void DirectionalLight::setDirection(v3f dir)
{
	direction = -dir;
	direction.normalize();
}

v3f DirectionalLight::getPosition() const
{
	return shadow_frustum.position;
}

v3f DirectionalLight::getPlayerPos() const
{
	return shadow_frustum.player;
}

v3f DirectionalLight::getFuturePlayerPos() const
{
	return future_frustum.player;
}

const m4f &DirectionalLight::getViewMatrix() const
{
	return shadow_frustum.ViewMat;
}

const m4f &DirectionalLight::getProjectionMatrix() const
{
	return shadow_frustum.ProjOrthMat;
}

const m4f &DirectionalLight::getFutureViewMatrix() const
{
	return future_frustum.ViewMat;
}

const m4f &DirectionalLight::getFutureProjectionMatrix() const
{
	return future_frustum.ProjOrthMat;
}

m4f DirectionalLight::getViewProjMatrix()
{
	return shadow_frustum.ProjOrthMat * shadow_frustum.ViewMat;
}