aboutsummaryrefslogtreecommitdiff
path: root/advtrains/helpers.lua
blob: c91af341a91ab7a19a6834a5db0abe46ae28af04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
--advtrains by orwell96, see readme.txt

local dir_trans_tbl={
	[0]={x=0, z=1, y=0},
	[1]={x=1, z=2, y=0},
	[2]={x=1, z=1, y=0},
	[3]={x=2, z=1, y=0},
	[4]={x=1, z=0, y=0},
	[5]={x=2, z=-1, y=0},
	[6]={x=1, z=-1, y=0},
	[7]={x=1, z=-2, y=0},
	[8]={x=0, z=-1, y=0},
	[9]={x=-1, z=-2, y=0},
	[10]={x=-1, z=-1, y=0},
	[11]={x=-2, z=-1, y=0},
	[12]={x=-1, z=0, y=0},
	[13]={x=-2, z=1, y=0},
	[14]={x=-1, z=1, y=0},
	[15]={x=-1, z=2, y=0},
}

local dir_angle_tbl={}
for d,v in pairs(dir_trans_tbl) do
	local uvec = vector.normalize(v)
	dir_angle_tbl[d] = math.atan2(-uvec.x, uvec.z)
end


function advtrains.dir_to_angle(dir)
	return dir_angle_tbl[dir] or error("advtrains: in helpers.lua/dir_to_angle() given dir="..(dir or "nil"))
end

function advtrains.dirCoordSet(coord, dir)
	return vector.add(coord, advtrains.dirToCoord(dir))
end
advtrains.pos_add_dir = advtrains.dirCoordSet

function advtrains.pos_add_angle(pos, ang)
	-- 0 is +Z -> meaning of sin/cos swapped
	return vector.add(pos, {x = -math.sin(ang), y = 0, z = math.cos(ang)})
end

function advtrains.dirToCoord(dir)
	return dir_trans_tbl[dir] or error("advtrains: in helpers.lua/dir_to_vector() given dir="..(dir or "nil"))
end
advtrains.dir_to_vector = advtrains.dirToCoord

function advtrains.maxN(list, expectstart)
	local n=expectstart or 0
	while list[n] do
		n=n+1
	end
	return n-1
end

function advtrains.minN(list, expectstart)
	local n=expectstart or 0
	while list[n] do
		n=n-1
	end
	return n+1
end

function atround(number)
	return math.floor(number+0.5)
end
atfloor = math.floor


function advtrains.round_vector_floor_y(vec)
	return {x=math.floor(vec.x+0.5), y=math.floor(vec.y), z=math.floor(vec.z+0.5)}
end

function advtrains.yawToDirection(yaw, conn1, conn2)
	if not conn1 or not conn2 then
		error("given nil to yawToDirection: conn1="..(conn1 or "nil").." conn2="..(conn1 or "nil"))
	end
	local yaw1 = advtrains.dir_to_angle(conn1)
	local yaw2 = advtrains.dir_to_angle(conn2)
	local adiff1 = advtrains.minAngleDiffRad(yaw, yaw1)
	local adiff2 = advtrains.minAngleDiffRad(yaw, yaw2)
	
	if math.abs(adiff2)<math.abs(adiff1) then
		return conn2
	else
		return conn1
	end
end

function advtrains.yawToAnyDir(yaw)
	local min_conn, min_diff=0, 10
	for conn, vec in pairs(advtrains.dir_trans_tbl) do
		local yaw1 = advtrains.dir_to_angle(conn)
		local diff = math.abs(advtrains.minAngleDiffRad(yaw, yaw1))
		if diff < min_diff then
			min_conn = conn
			min_diff = diff
		end
	end
	return min_conn
end
function advtrains.yawToClosestConn(yaw, conns)
	local min_connid, min_diff=1, 10
	for connid, conn in ipairs(conns) do
		local yaw1 = advtrains.dir_to_angle(conn.c)
		local diff = math.abs(advtrains.minAngleDiffRad(yaw, yaw1))
		if diff < min_diff then
			min_connid = connid
			min_diff = diff
		end
	end
	return min_connid
end

local pi, pi2 = math.pi, 2*math.pi
function advtrains.minAngleDiffRad(r1, r2)
	while r1>pi2 do
		r1=r1-pi2
	end
	while r1<0 do
		r1=r1+pi2
	end
	while r2>pi2 do
		r2=r2-pi2
	end
	while r1<0 do
		r2=r2+pi2
	end
	local try1=r2-r1
	local try2=r2+pi2-r1
	local try3=r2-pi2-r1
	
	local minabs = math.min(math.abs(try1), math.abs(try2), math.abs(try3))
	if minabs==math.abs(try1) then
		return try1
	end
	if minabs==math.abs(try2) then
		return try2
	end
	if minabs==math.abs(try3) then
		return try3
	end
end


-- Takes 2 connections (0...AT_CMAX) as argument
-- Returns the angle median of those 2 positions from the pov
-- of standing on the cdir1 side and looking towards cdir2
-- cdir1 - >NODE> - cdir2
function advtrains.conn_angle_median(cdir1, cdir2)
	local ang1 = advtrains.dir_to_angle(advtrains.oppd(cdir1))
	local ang2 = advtrains.dir_to_angle(cdir2)
	return ang1 + advtrains.minAngleDiffRad(ang1, ang2)/2
end

function advtrains.merge_tables(a, ...)
	local new={}
	for _,t in ipairs({a,...}) do
		for k,v in pairs(t) do new[k]=v end
	end
	return new
end
function advtrains.save_keys(tbl, keys)
	local new={}
	for _,key in ipairs(keys) do
		new[key] = tbl[key]
	end
	return new
end

function advtrains.get_real_index_position(path, index)
	if not path or not index then return end
	
	local first_pos=path[math.floor(index)]
	local second_pos=path[math.floor(index)+1]
	
	if not first_pos or not second_pos then return nil end
	
	local factor=index-math.floor(index)
	local actual_pos={x=first_pos.x-(first_pos.x-second_pos.x)*factor, y=first_pos.y-(first_pos.y-second_pos.y)*factor, z=first_pos.z-(first_pos.z-second_pos.z)*factor,}
	return actual_pos
end
function advtrains.pos_median(pos1, pos2)
	return {x=pos1.x-(pos1.x-pos2.x)*0.5, y=pos1.y-(pos1.y-pos2.y)*0.5, z=pos1.z-(pos1.z-pos2.z)*0.5}
end
function advtrains.abs_ceil(i)
	return math.ceil(math.abs(i))*math.sign(i)
end

function advtrains.serialize_inventory(inv)
	local ser={}
	local liszts=inv:get_lists()
	for lisztname, liszt in pairs(liszts) do
		ser[lisztname]={}
		for idx, item in ipairs(liszt) do
			local istring=item:to_string()
			if istring~="" then
				ser[lisztname][idx]=istring
			end
		end
	end
	return minetest.serialize(ser)
end
function advtrains.deserialize_inventory(sers, inv)
	local ser=minetest.deserialize(sers)
	if ser then
		inv:set_lists(ser)
		return true
	end
	return false
end

--is_protected wrapper that checks for protection_bypass privilege
function advtrains.is_protected(pos, name)
	if not name then
		error("advtrains.is_protected() called without name parameter!")
	end
	if minetest.check_player_privs(name, {protection_bypass=true}) then
		--player can bypass protection
		return false
	end
	return minetest.is_protected(pos, name)
end

function advtrains.is_creative(name)
	if not name then
		error("advtrains.is_creative() called without name parameter!")
	end
	if minetest.check_player_privs(name, {creative=true}) then
		return true
	end
	return minetest.settings:get_bool("creative_mode")
end

function advtrains.ms_to_kmh(speed)
	return speed * 3.6
end

-- 4 possible inputs:
-- integer: just do that modulo calculation
-- table with c set: rotate c
-- table with tables: rotate each
-- table with integers: rotate each (probably no use case)
function advtrains.rotate_conn_by(conn, rotate)
	if tonumber(conn) then
		return (conn+rotate)%AT_CMAX
	elseif conn.c then
		return { c = (conn.c+rotate)%AT_CMAX, y = conn.y}
	end
	local tmp={}
	for connid, data in ipairs(conn) do
		tmp[connid]=advtrains.rotate_conn_by(data, rotate)
	end
	return tmp
end


function advtrains.oppd(dir)
	return advtrains.rotate_conn_by(dir, AT_CMAX/2)
end
--conn_to_match like rotate_conn_by
--other_conns have to be a table of conn tables!
function advtrains.conn_matches_to(conn, other_conns)
	if tonumber(conn) then
		for connid, data in ipairs(other_conns) do
			if advtrains.oppd(conn) == data.c then return connid end
		end
		return false
	elseif conn.c then
		for connid, data in ipairs(other_conns) do
			local cmp = advtrains.oppd(conn)
			if cmp.c == data.c and (cmp.y or 0) == (data.y or 0) then return connid end
		end
		return false
	end
	local tmp={}
	for connid, data in ipairs(conn) do
		local backmatch = advtrains.conn_matches_to(data, other_conns)
		if backmatch then return backmatch, connid end --returns <connid of other rail> <connid of this rail>
	end
	return false
end


-- returns: <adjacent pos>, <conn index of adjacent>, <my conn index>, <railheight of adjacent>
function advtrains.get_adjacent_rail(this_posnr, this_conns_p, conn_idx, drives_on)
	local this_pos = advtrains.round_vector_floor_y(this_posnr)
	local this_conns = this_conns_p
	if not this_conns then
		_, this_conns = advtrains.get_rail_info_at(this_pos)
	end
	if not conn_idx then
		for coni, _ in ipairs(this_conns) do
			local adj_pos, adj_conn_idx, _, nry, nco = advtrains.get_adjacent_rail(this_pos, this_conns, coni)
			if adj_pos then return adj_pos,adj_conn_idx,coni,nry, nco end
		end
		return nil
	end
	
	local conn = this_conns[conn_idx]
	local conn_y = conn.y or 0
	local adj_pos = advtrains.dirCoordSet(this_pos, conn.c);
	
	while conn_y>=1 do
		conn_y = conn_y - 1
		adj_pos.y = adj_pos.y + 1
	end
	
	local nextnode_ok, nextconns, nextrail_y=advtrains.get_rail_info_at(adj_pos, drives_on)
	if not nextnode_ok then
		adj_pos.y = adj_pos.y - 1
		conn_y = conn_y + 1
		nextnode_ok, nextconns, nextrail_y=advtrains.get_rail_info_at(adj_pos, drives_on)
		if not nextnode_ok then
			return nil
		end
	end
	local adj_connid = advtrains.conn_matches_to({c=conn.c, y=conn_y}, nextconns)
	if adj_connid then
		return adj_pos, adj_connid, conn_idx, nextrail_y, nextconns
	end
	return nil
end

local connlku={[2]={2,1}, [3]={2,1,1}, [4]={2,1,4,3}}
function advtrains.get_matching_conn(conn, nconns)
	return connlku[nconns][conn]
end

function advtrains.random_id()
	local idst=""
	for i=0,5 do
		idst=idst..(math.random(0,9))
	end
	return idst
end
-- Shorthand for pos_to_string and round_vector_floor_y
function advtrains.roundfloorpts(pos)
	return minetest.pos_to_string(advtrains.round_vector_floor_y(pos))
end

-- insert an element into a table if it does not yet exist there
-- equalfunc is a function to compare equality, defaults to ==
-- returns true if the element was inserted
function advtrains.insert_once(tab, elem, equalfunc)
	for _,e in pairs(tab) do
		if equalfunc and equalfunc(elem, e) or e==elem then return false end
	end
	tab[#tab+1] = elem
	return true
end
max) { PseudoRandom pr(blockseed + 4234); MapNode n_ore(ore, 0, ore_param2); int max_height = clust_size; int y_start = pr.range(nmin.Y, nmax.Y - max_height); if (!noise) { int sx = nmax.X - nmin.X + 1; int sz = nmax.Z - nmin.Z + 1; noise = new Noise(np, 0, sx, sz); } noise->seed = seed + y_start; noise->perlinMap2D(nmin.X, nmin.Z); int index = 0; for (int z = nmin.Z; z <= nmax.Z; z++) for (int x = nmin.X; x <= nmax.X; x++) { float noiseval = noise->result[index++]; if (noiseval < nthresh) continue; int height = max_height * (1. / pr.range(1, 3)); int y0 = y_start + np->scale * noiseval; //pr.range(1, 3) - 1; int y1 = y0 + height; for (int y = y0; y != y1; y++) { u32 i = vm->m_area.index(x, y, z); if (!vm->m_area.contains(i)) continue; for (size_t ii = 0; ii < wherein.size(); ii++) if (vm->m_data[i].getContent() == wherein[ii]) vm->m_data[i] = n_ore; } } } /////////////////////////////////////////////////////////////////////////////// Decoration *createDecoration(DecorationType type) { switch (type) { case DECO_SIMPLE: return new DecoSimple; case DECO_SCHEMATIC: return new DecoSchematic; //case DECO_LSYSTEM: // return new DecoLSystem; default: return NULL; } } Decoration::Decoration() { mapseed = 0; np = NULL; fill_ratio = 0; sidelen = 1; } Decoration::~Decoration() { delete np; } void Decoration::resolveNodeNames(INodeDefManager *ndef) { this->ndef = ndef; if (c_place_on == CONTENT_IGNORE) c_place_on = ndef->getId(place_on_name); } void Decoration::placeDeco(Mapgen *mg, u32 blockseed, v3s16 nmin, v3s16 nmax) { PseudoRandom ps(blockseed + 53); int carea_size = nmax.X - nmin.X + 1; // Divide area into parts if (carea_size % sidelen) { errorstream << "Decoration::placeDeco: chunk size is not divisible by " "sidelen; setting sidelen to " << carea_size << std::endl; sidelen = carea_size; } s16 divlen = carea_size / sidelen; int area = sidelen * sidelen; for (s16 z0 = 0; z0 < divlen; z0++) for (s16 x0 = 0; x0 < divlen; x0++) { v2s16 p2d_center( // Center position of part of division nmin.X + sidelen / 2 + sidelen * x0, nmin.Z + sidelen / 2 + sidelen * z0 ); v2s16 p2d_min( // Minimum edge of part of division nmin.X + sidelen * x0, nmin.Z + sidelen * z0 ); v2s16 p2d_max( // Maximum edge of part of division nmin.X + sidelen + sidelen * x0 - 1, nmin.Z + sidelen + sidelen * z0 - 1 ); // Amount of decorations float nval = np ? NoisePerlin2D(np, p2d_center.X, p2d_center.Y, mapseed) : fill_ratio; u32 deco_count = area * MYMAX(nval, 0.f); for (u32 i = 0; i < deco_count; i++) { s16 x = ps.range(p2d_min.X, p2d_max.X); s16 z = ps.range(p2d_min.Y, p2d_max.Y); int mapindex = carea_size * (z - nmin.Z) + (x - nmin.X); s16 y = mg->heightmap ? mg->heightmap[mapindex] : mg->findGroundLevel(v2s16(x, z), nmin.Y, nmax.Y); if (y < nmin.Y || y > nmax.Y) continue; int height = getHeight(); int max_y = nmax.Y;// + MAP_BLOCKSIZE - 1; if (y + 1 + height > max_y) { continue; #if 0 printf("Decoration at (%d %d %d) cut off\n", x, y, z); //add to queue JMutexAutoLock cutofflock(cutoff_mutex); cutoffs.push_back(CutoffData(x, y, z, height)); #endif } if (mg->biomemap) { std::set<u8>::iterator iter; if (biomes.size()) { iter = biomes.find(mg->biomemap[mapindex]); if (iter == biomes.end()) continue; } } generate(mg, &ps, max_y, v3s16(x, y, z)); } } } #if 0 void Decoration::placeCutoffs(Mapgen *mg, u32 blockseed, v3s16 nmin, v3s16 nmax) { PseudoRandom pr(blockseed + 53); std::vector<CutoffData> handled_cutoffs; // Copy over the cutoffs we're interested in so we don't needlessly hold a lock { JMutexAutoLock cutofflock(cutoff_mutex); for (std::list<CutoffData>::iterator i = cutoffs.begin(); i != cutoffs.end(); ++i) { CutoffData cutoff = *i; v3s16 p = cutoff.p; s16 height = cutoff.height; if (p.X < nmin.X || p.X > nmax.X || p.Z < nmin.Z || p.Z > nmax.Z) continue; if (p.Y + height < nmin.Y || p.Y > nmax.Y) continue; handled_cutoffs.push_back(cutoff); } } // Generate the cutoffs for (size_t i = 0; i != handled_cutoffs.size(); i++) { v3s16 p = handled_cutoffs[i].p; s16 height = handled_cutoffs[i].height; if (p.Y + height > nmax.Y) { //printf("Decoration at (%d %d %d) cut off again!\n", p.X, p.Y, p.Z); cuttoffs.push_back(v3s16(p.X, p.Y, p.Z)); } generate(mg, &pr, nmax.Y, nmin.Y - p.Y, v3s16(p.X, nmin.Y, p.Z)); } // Remove cutoffs that were handled from the cutoff list { JMutexAutoLock cutofflock(cutoff_mutex); for (std::list<CutoffData>::iterator i = cutoffs.begin(); i != cutoffs.end(); ++i) { for (size_t j = 0; j != handled_cutoffs.size(); j++) { CutoffData coff = *i; if (coff.p == handled_cutoffs[j].p) i = cutoffs.erase(i); } } } } #endif /////////////////////////////////////////////////////////////////////////////// void DecoSimple::resolveNodeNames(INodeDefManager *ndef) { Decoration::resolveNodeNames(ndef); if (c_deco == CONTENT_IGNORE && !decolist_names.size()) { c_deco = ndef->getId(deco_name); if (c_deco == CONTENT_IGNORE) { errorstream << "DecoSimple::resolveNodeNames: decoration node '" << deco_name << "' not defined" << std::endl; c_deco = CONTENT_AIR; } } if (c_spawnby == CONTENT_IGNORE) { c_spawnby = ndef->getId(spawnby_name); if (c_spawnby == CONTENT_IGNORE) { errorstream << "DecoSimple::resolveNodeNames: spawnby node '" << spawnby_name << "' not defined" << std::endl; nspawnby = -1; c_spawnby = CONTENT_AIR; } } if (c_decolist.size()) return; for (size_t i = 0; i != decolist_names.size(); i++) { content_t c = ndef->getId(decolist_names[i]); if (c == CONTENT_IGNORE) { errorstream << "DecoSimple::resolveNodeNames: decolist node '" << decolist_names[i] << "' not defined" << std::endl; c = CONTENT_AIR; } c_decolist.push_back(c); } } void DecoSimple::generate(Mapgen *mg, PseudoRandom *pr, s16 max_y, v3s16 p) { ManualMapVoxelManipulator *vm = mg->vm; u32 vi = vm->m_area.index(p); if (vm->m_data[vi].getContent() != c_place_on && c_place_on != CONTENT_IGNORE) return; if (nspawnby != -1) { int nneighs = 0; v3s16 dirs[8] = { // a Moore neighborhood v3s16( 0, 0, 1), v3s16( 0, 0, -1), v3s16( 1, 0, 0), v3s16(-1, 0, 0), v3s16( 1, 0, 1), v3s16(-1, 0, 1), v3s16(-1, 0, -1), v3s16( 1, 0, -1) }; for (int i = 0; i != 8; i++) { u32 index = vm->m_area.index(p + dirs[i]); if (vm->m_area.contains(index) && vm->m_data[index].getContent() == c_spawnby) nneighs++; } if (nneighs < nspawnby) return; } size_t ndecos = c_decolist.size(); content_t c_place = ndecos ? c_decolist[pr->range(0, ndecos - 1)] : c_deco; s16 height = (deco_height_max > 0) ? pr->range(deco_height, deco_height_max) : deco_height; height = MYMIN(height, max_y - p.Y); v3s16 em = vm->m_area.getExtent(); for (int i = 0; i < height; i++) { vm->m_area.add_y(em, vi, 1); content_t c = vm->m_data[vi].getContent(); if (c != CONTENT_AIR && c != CONTENT_IGNORE) break; vm->m_data[vi] = MapNode(c_place); } } int DecoSimple::getHeight() { return (deco_height_max > 0) ? deco_height_max : deco_height; } std::string DecoSimple::getName() { return deco_name; } /////////////////////////////////////////////////////////////////////////////// DecoSchematic::DecoSchematic() { node_names = NULL; schematic = NULL; slice_probs = NULL; flags = 0; size = v3s16(0, 0, 0); } DecoSchematic::~DecoSchematic() { delete node_names; delete []schematic; delete []slice_probs; } void DecoSchematic::resolveNodeNames(INodeDefManager *ndef) { Decoration::resolveNodeNames(ndef); if (filename.empty()) return; if (!node_names) { errorstream << "DecoSchematic::resolveNodeNames: node name list was " "not created" << std::endl; return; } for (size_t i = 0; i != node_names->size(); i++) { std::string name = node_names->at(i); std::map<std::string, std::string>::iterator it; it = replacements.find(name); if (it != replacements.end()) name = it->second; content_t c = ndef->getId(name); if (c == CONTENT_IGNORE) { errorstream << "DecoSchematic::resolveNodeNames: node '" << name << "' not defined" << std::endl; c = CONTENT_AIR; } c_nodes.push_back(c); } for (int i = 0; i != size.X * size.Y * size.Z; i++) schematic[i].setContent(c_nodes[schematic[i].getContent()]); delete node_names; node_names = NULL; } void DecoSchematic::generate(Mapgen *mg, PseudoRandom *pr, s16 max_y, v3s16 p) { ManualMapVoxelManipulator *vm = mg->vm; if (flags & DECO_PLACE_CENTER_X) p.X -= (size.X + 1) / 2; if (flags & DECO_PLACE_CENTER_Y) p.Y -= (size.Y + 1) / 2; if (flags & DECO_PLACE_CENTER_Z) p.Z -= (size.Z + 1) / 2; u32 vi = vm->m_area.index(p); if (vm->m_data[vi].getContent() != c_place_on && c_place_on != CONTENT_IGNORE) return; Rotation rot = (rotation == ROTATE_RAND) ? (Rotation)pr->range(ROTATE_0, ROTATE_270) : rotation; blitToVManip(p, vm, rot, false); } int DecoSchematic::getHeight() { return size.Y; } std::string DecoSchematic::getName() { return filename; } void DecoSchematic::blitToVManip(v3s16 p, ManualMapVoxelManipulator *vm, Rotation rot, bool force_placement) { int xstride = 1; int ystride = size.X; int zstride = size.X * size.Y; s16 sx = size.X; s16 sy = size.Y; s16 sz = size.Z; int i_start, i_step_x, i_step_z; switch (rot) { case ROTATE_90: i_start = sx - 1; i_step_x = zstride; i_step_z = -xstride; SWAP(s16, sx, sz); break; case ROTATE_180: i_start = zstride * (sz - 1) + sx - 1; i_step_x = -xstride; i_step_z = -zstride; break; case ROTATE_270: i_start = zstride * (sz - 1); i_step_x = -zstride; i_step_z = xstride; SWAP(s16, sx, sz); break; default: i_start = 0; i_step_x = xstride; i_step_z = zstride; } s16 y_map = p.Y; for (s16 y = 0; y != sy; y++) { if (slice_probs[y] != MTSCHEM_PROB_ALWAYS && myrand_range(1, 255) > slice_probs[y]) continue; for (s16 z = 0; z != sz; z++) { u32 i = z * i_step_z + y * ystride + i_start; for (s16 x = 0; x != sx; x++, i += i_step_x) { u32 vi = vm->m_area.index(p.X + x, y_map, p.Z + z); if (!vm->m_area.contains(vi)) continue; if (schematic[i].getContent() == CONTENT_IGNORE) continue; if (schematic[i].param1 == MTSCHEM_PROB_NEVER) continue; if (!force_placement) { content_t c = vm->m_data[vi].getContent(); if (c != CONTENT_AIR && c != CONTENT_IGNORE) continue; } if (schematic[i].param1 != MTSCHEM_PROB_ALWAYS && myrand_range(1, 255) > schematic[i].param1) continue; vm->m_data[vi] = schematic[i]; vm->m_data[vi].param1 = 0; if (rot) vm->m_data[vi].rotateAlongYAxis(ndef, rot); } } y_map++; } } void DecoSchematic::placeStructure(Map *map, v3s16 p) { assert(schematic != NULL); ManualMapVoxelManipulator *vm = new ManualMapVoxelManipulator(map); Rotation rot = (rotation == ROTATE_RAND) ? (Rotation)myrand_range(ROTATE_0, ROTATE_270) : rotation; v3s16 s = (rot == ROTATE_90 || rot == ROTATE_270) ? v3s16(size.Z, size.Y, size.X) : size; if (flags & DECO_PLACE_CENTER_X) p.X -= (s.X + 1) / 2; if (flags & DECO_PLACE_CENTER_Y) p.Y -= (s.Y + 1) / 2; if (flags & DECO_PLACE_CENTER_Z) p.Z -= (s.Z + 1) / 2; v3s16 bp1 = getNodeBlockPos(p); v3s16 bp2 = getNodeBlockPos(p + s - v3s16(1,1,1)); vm->initialEmerge(bp1, bp2); blitToVManip(p, vm, rot, true); std::map<v3s16, MapBlock *> lighting_modified_blocks; std::map<v3s16, MapBlock *> modified_blocks; vm->blitBackAll(&modified_blocks); // TODO: Optimize this by using Mapgen::calcLighting() instead lighting_modified_blocks.insert(modified_blocks.begin(), modified_blocks.end()); map->updateLighting(lighting_modified_blocks, modified_blocks); MapEditEvent event; event.type = MEET_OTHER; for (std::map<v3s16, MapBlock *>::iterator it = modified_blocks.begin(); it != modified_blocks.end(); ++it) event.modified_blocks.insert(it->first); map->dispatchEvent(&event); } bool DecoSchematic::loadSchematicFile() { content_t cignore = CONTENT_IGNORE; bool have_cignore = false; std::ifstream is(filename.c_str(), std::ios_base::binary); u32 signature = readU32(is); if (signature != MTSCHEM_FILE_SIGNATURE) { errorstream << "loadSchematicFile: invalid schematic " "file" << std::endl; return false; } u16 version = readU16(is); if (version > MTSCHEM_FILE_VER_HIGHEST_READ) { errorstream << "loadSchematicFile: unsupported schematic " "file version" << std::endl; return false; } size = readV3S16(is); delete []slice_probs; slice_probs = new u8[size.Y]; if (version >= 3) { for (int y = 0; y != size.Y; y++) slice_probs[y] = readU8(is); } else { for (int y = 0; y != size.Y; y++) slice_probs[y] = MTSCHEM_PROB_ALWAYS; } int nodecount = size.X * size.Y * size.Z; u16 nidmapcount = readU16(is); node_names = new std::vector<std::string>; for (int i = 0; i != nidmapcount; i++) { std::string name = deSerializeString(is); if (name == "ignore") { name = "air"; cignore = i; have_cignore = true; } node_names->push_back(name); } delete []schematic; schematic = new MapNode[nodecount]; MapNode::deSerializeBulk(is, SER_FMT_VER_HIGHEST_READ, schematic, nodecount, 2, 2, true); if (version == 1) { // fix up the probability values for (int i = 0; i != nodecount; i++) { if (schematic[i].param1 == 0) schematic[i].param1 = MTSCHEM_PROB_ALWAYS; if (have_cignore && schematic[i].getContent() == cignore) schematic[i].param1 = MTSCHEM_PROB_NEVER; } } return true; } /* Minetest Schematic File Format All values are stored in big-endian byte order. [u32] signature: 'MTSM' [u16] version: 3 [u16] size X [u16] size Y [u16] size Z For each Y: [u8] slice probability value [Name-ID table] Name ID Mapping Table [u16] name-id count For each name-id mapping: [u16] name length [u8[]] name ZLib deflated { For each node in schematic: (for z, y, x) [u16] content For each node in schematic: [u8] probability of occurance (param1) For each node in schematic: [u8] param2 } Version changes: 1 - Initial version 2 - Fixed messy never/always place; 0 probability is now never, 0xFF is always */ void DecoSchematic::saveSchematicFile(INodeDefManager *ndef) { std::ostringstream ss(std::ios_base::binary); writeU32(ss, MTSCHEM_FILE_SIGNATURE); // signature writeU16(ss, MTSCHEM_FILE_VER_HIGHEST_WRITE); // version writeV3S16(ss, size); // schematic size for (int y = 0; y != size.Y; y++) // Y slice probabilities writeU8(ss, slice_probs[y]); std::vector<content_t> usednodes; int nodecount = size.X * size.Y * size.Z; build_nnlist_and_update_ids(schematic, nodecount, &usednodes); u16 numids = usednodes.size(); writeU16(ss, numids); // name count for (int i = 0; i != numids; i++) ss << serializeString(ndef->get(usednodes[i]).name); // node names // compressed bulk node data MapNode::serializeBulk(ss, SER_FMT_VER_HIGHEST_WRITE, schematic, nodecount, 2, 2, true); fs::safeWriteToFile(filename, ss.str()); } void build_nnlist_and_update_ids(MapNode *nodes, u32 nodecount, std::vector<content_t> *usednodes) { std::map<content_t, content_t> nodeidmap; content_t numids = 0; for (u32 i = 0; i != nodecount; i++) { content_t id; content_t c = nodes[i].getContent(); std::map<content_t, content_t>::const_iterator it = nodeidmap.find(c); if (it == nodeidmap.end()) { id = numids; numids++; usednodes->push_back(c); nodeidmap.insert(std::make_pair(c, id)); } else { id = it->second; } nodes[i].setContent(id); } } bool DecoSchematic::getSchematicFromMap(Map *map, v3s16 p1, v3s16 p2) { ManualMapVoxelManipulator *vm = new ManualMapVoxelManipulator(map); v3s16 bp1 = getNodeBlockPos(p1); v3s16 bp2 = getNodeBlockPos(p2); vm->initialEmerge(bp1, bp2); size = p2 - p1 + 1; slice_probs = new u8[size.Y]; for (s16 y = 0; y != size.Y; y++) slice_probs[y] = MTSCHEM_PROB_ALWAYS; schematic = new MapNode[size.X * size.Y * size.Z]; u32 i = 0; for (s16 z = p1.Z; z <= p2.Z; z++) for (s16 y = p1.Y; y <= p2.Y; y++) { u32 vi = vm->m_area.index(p1.X, y, z); for (s16 x = p1.X; x <= p2.X; x++, i++, vi++) { schematic[i] = vm->m_data[vi]; schematic[i].param1 = MTSCHEM_PROB_ALWAYS; } } delete vm; return true; } void DecoSchematic::applyProbabilities(v3s16 p0, std::vector<std::pair<v3s16, u8> > *plist, std::vector<std::pair<s16, u8> > *splist) { for (size_t i = 0; i != plist->size(); i++) { v3s16 p = (*plist)[i].first - p0; int index = p.Z * (size.Y * size.X) + p.Y * size.X + p.X; if (index < size.Z * size.Y * size.X) { u8 prob = (*plist)[i].second; schematic[index].param1 = prob; // trim unnecessary node names from schematic if (prob == MTSCHEM_PROB_NEVER) schematic[index].setContent(CONTENT_AIR); } } for (size_t i = 0; i != splist->size(); i++) { s16 y = (*splist)[i].first - p0.Y; slice_probs[y] = (*splist)[i].second; } } /////////////////////////////////////////////////////////////////////////////// Mapgen::Mapgen() { seed = 0; water_level = 0; generating = false; id = -1; vm = NULL; ndef = NULL; heightmap = NULL; biomemap = NULL; } // Returns Y one under area minimum if not found s16 Mapgen::findGroundLevelFull(v2s16 p2d) { v3s16 em = vm->m_area.getExtent(); s16 y_nodes_max = vm->m_area.MaxEdge.Y; s16 y_nodes_min = vm->m_area.MinEdge.Y; u32 i = vm->m_area.index(p2d.X, y_nodes_max, p2d.Y); s16 y; for (y = y_nodes_max; y >= y_nodes_min; y--) { MapNode &n = vm->m_data[i]; if (ndef->get(n).walkable) break; vm->m_area.add_y(em, i, -1); } return (y >= y_nodes_min) ? y : y_nodes_min - 1; } s16 Mapgen::findGroundLevel(v2s16 p2d, s16 ymin, s16 ymax) { v3s16 em = vm->m_area.getExtent(); u32 i = vm->m_area.index(p2d.X, ymax, p2d.Y); s16 y; for (y = ymax; y >= ymin; y--) { MapNode &n = vm->m_data[i]; if (ndef->get(n).walkable) break; vm->m_area.add_y(em, i, -1); } return y; } void Mapgen::updateHeightmap(v3s16 nmin, v3s16 nmax) { if (!heightmap) return; //TimeTaker t("Mapgen::updateHeightmap", NULL, PRECISION_MICRO); int index = 0; for (s16 z = nmin.Z; z <= nmax.Z; z++) { for (s16 x = nmin.X; x <= nmax.X; x++, index++) { s16 y = findGroundLevel(v2s16(x, z), nmin.Y, nmax.Y); // if the values found are out of range, trust the old heightmap if (y == nmax.Y && heightmap[index] > nmax.Y) continue; if (y == nmin.Y - 1 && heightmap[index] < nmin.Y) continue; heightmap[index] = y; } } //printf("updateHeightmap: %dus\n", t.stop()); } void Mapgen::updateLiquid(UniqueQueue<v3s16> *trans_liquid, v3s16 nmin, v3s16 nmax) { bool isliquid, wasliquid, rare; v3s16 em = vm->m_area.getExtent(); rare = g_settings->getBool("liquid_finite"); int rarecnt = 0; for (s16 z = nmin.Z; z <= nmax.Z; z++) { for (s16 x = nmin.X; x <= nmax.X; x++) { wasliquid = true; u32 i = vm->m_area.index(x, nmax.Y, z); for (s16 y = nmax.Y; y >= nmin.Y; y--) { isliquid = ndef->get(vm->m_data[i]).isLiquid(); // there was a change between liquid and nonliquid, add to queue. no need to add every with liquid_finite if (isliquid != wasliquid && (!rare || !(rarecnt++ % 36)))