1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
-- path.lua
-- Functions for pathpredicting, put in a separate file.
function advtrains.conway(midreal, prev, drives_on)--in order prev,mid,return
local mid=advtrains.round_vector_floor_y(midreal)
local midnode_ok, midconns=advtrains.get_rail_info_at(mid, drives_on)
if not midnode_ok then
return nil
end
local pconnid
for connid, conn in ipairs(midconns) do
local tps = advtrains.dirCoordSet(mid, conn.c)
if tps.x==prev.x and tps.z==prev.z then
pconnid=connid
end
end
local nconnid = advtrains.get_matching_conn(pconnid, #midconns)
local next, next_connid, _, nextrailheight = advtrains.get_adjacent_rail(mid, midconns, nconnid, drives_on)
if not next then
return nil
end
return vector.add(advtrains.round_vector_floor_y(next), {x=0, y=nextrailheight, z=0}), midconns[nconnid].c
end
function advtrains.pathpredict(id, train, gen_front, gen_back)
local maxn=train.path_extent_max or 0
while maxn < gen_front do--pregenerate
local conway
if train.max_index_on_track == maxn then
--atprint("maxn conway for ",maxn,train.path[maxn],maxn-1,train.path[maxn-1])
conway=advtrains.conway(train.path[maxn], train.path[maxn-1], train.drives_on)
end
if conway then
train.path[maxn+1]=conway
train.max_index_on_track=maxn+1
else
--do as if nothing has happened and preceed with path
--but do not update max_index_on_track
atprint("over-generating path max to index ",(maxn+1)," (position ",train.path[maxn]," )")
train.path[maxn+1]=vector.add(train.path[maxn], vector.subtract(train.path[maxn], train.path[maxn-1]))
end
train.path_dist[maxn]=vector.distance(train.path[maxn+1], train.path[maxn])
maxn=maxn+1
end
train.path_extent_max=maxn
local minn=train.path_extent_min or -1
while minn > gen_back do
local conway
if train.min_index_on_track == minn then
--atprint("minn conway for ",minn,train.path[minn],minn+1,train.path[minn+1])
conway=advtrains.conway(train.path[minn], train.path[minn+1], train.drives_on)
end
if conway then
train.path[minn-1]=conway
train.min_index_on_track=minn-1
else
--do as if nothing has happened and preceed with path
--but do not update min_index_on_track
atprint("over-generating path min to index ",(minn-1)," (position ",train.path[minn]," )")
train.path[minn-1]=vector.add(train.path[minn], vector.subtract(train.path[minn], train.path[minn+1]))
end
train.path_dist[minn-1]=vector.distance(train.path[minn], train.path[minn-1])
minn=minn-1
end
train.path_extent_min=minn
if not train.min_index_on_track then train.min_index_on_track=-1 end
if not train.max_index_on_track then train.max_index_on_track=0 end
end
-- Naming conventions:
-- 'index' - An index of the train.path table.
-- 'offset' - A value in meters that determines how far on the path to walk relative to a certain index
-- 'n' - Referring or pointing towards the 'next' path item, the one with index+1
-- 'p' - Referring or pointing towards the 'prev' path item, the one with index-1
-- 'f' - Referring to the positive end of the path (the end with the higher index)
-- 'b' - Referring to the negative end of the path (the end with the lower index)
-- New path structure of trains:
--Tables:
-- path - path positions. 'indices' are relative to this. At the moment, at.round_vector_floor_y(path[i])
-- is the node this item corresponds to, however, this will change in the future.
-- path_node - (reserved)
-- path_cn - Connid of the current node that points towards path[i+1]
-- path_cp - Connid of the current node that points towards path[i-1]
-- When the day comes on that path!=node, these will only be set if this index represents a transition between rail nodes
-- path_dist - The distance (in meters) between this (path[i]) and the next (path[i+1]) item of the path
-- path_dir - The direction of this path item's transition to the next path item, which is the angle of conns[path_cn[i]].c
--Variables:
-- path_ext_f/b - how far path[i] is set
-- path_trk_f/b - how far the path extends along a track. beyond those values, paths are generated in a straight line.
-- path_req_f/b - how far path items were requested in the last step
-- creates the path data structure, reconstructing the train from a position and a connid
-- Important! train.drives_on must exist while calling this method
-- returns: true - successful
-- nil - node not yet available/unloaded, please wait
-- false - node definitely gone, remove train
function advtrains.path_create(train, pos, connid, rel_index)
local posr = advtrains.round_vector_floor_y(pos)
local node_ok, conns, rhe = advtrains.get_rail_info_at(pos, train.drives_on)
if not node_ok then
return node_ok
end
local mconnid = advtrains.get_matching_conn(connid, #conns)
train.index = rel_index
train.path = { [0] = { x=posr.x, y=posr.y+rhe, z=posr.z } }
train.path_cn = { [0] = connid }
train.path_cp = { [0] = mconnid }
train.path_dist = {}
train.path_dir = {
[0] = advtrains.conn_angle_median(conns[mconnid].c, conns[connid].c)
}
train.path_ext_f=0
train.path_ext_b=0
train.path_trk_f=0
train.path_trk_b=0
train.path_req_f=0
train.path_req_b=0
advtrains.occ.set_item(train.id, posr, 0)
end
-- Sets position and connid to properly restore after a crash, e.g. in order
-- to save the train or to invalidate its path
-- Assumes that the train is in clean state
-- if invert ist true, setrestore will use the end index
function advtrains.path_setrestore(train, invert)
local idx = train.index
if invert then
idx = train.end_index
end
local pos, connid, frac = advtrains.path_getrestore(train, idx, invert)
train.last_pos = pos
train.last_connid = connid
train.last_frac = frac
end
-- Get restore position, connid and frac (in this order) for a train that will originate at the passed index
-- If invert is set, it will return path_cp and multiply frac by -1, in order to reverse the train there.
function advtrains.path_getrestore(train, index, invert)
local idx = train.index
local cns = train.path_cn
if invert then
idx = train.end_index
cns = train.path_cp
end
fli = atfloor(train.index)
if fli > train.path_trk_f then
fli = train.path_trk_f
end
if fli < train.path_trk_b then
fli = train.path_trk_b
end
return advtrains.path_get(train, fli),
cns[fli],
(idx - fli) * (invert and -1 or 1)
end
-- Invalidates a path
-- this is supposed to clear stuff from the occupation tables
function advtrains.path_invalidate(train)
if train.path then
for i,p in pairs(train.path) do
advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(p))
end
end
train.path = nil
train.path_dist = nil
train.path_cp = nil
train.path_cn = nil
train.path_dir = nil
train.path_ext_f=0
train.path_ext_b=0
train.path_trk_f=0
train.path_trk_b=0
train.path_req_f=0
train.path_req_b=0
end
-- Prints a path using the passed print function
-- This function should be 'atprint', 'atlog', 'atwarn' or 'atdebug', because it needs to use print_concat_table
function advtrains.path_print(train, printf)
printf("i: CP Position Dir CN ->Dist->")
for i = train.path_ext_b, train.path_ext_f do
printf(i,": ",train.path_cp[i]," ",train.path[i]," ",train.path_dir[i]," ",train.path_cn[i]," ->",train.path_dist[i],"->")
end
end
-- Function to get path entry at a position. This function will automatically calculate more of the path when required.
-- returns: pos, on_track
function advtrains.path_get(train, index)
if not train.path then
error("For train "..train.id..": path_get called but there's no path set yet!")
end
if index ~= atfloor(index) then
error("For train "..train.id..": Called path_get() but index="..index.." is not a round number")
end
local pef = train.path_ext_f
while index > pef do
local pos = train.path[pef]
local connid = train.path_cn[pef]
local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y, next_conns
if pef == train.path_trk_f then
node_ok, this_conns = advtrains.get_rail_info_at(pos)
if not node_ok then error("For train "..train.id..": Path item "..pef.." on-track but not a valid node!") end
adj_pos, adj_connid, conn_idx, nextrail_y, next_conns = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
end
pef = pef + 1
if adj_pos then
advtrains.occ.set_item(train.id, adj_pos, pef)
adj_pos.y = adj_pos.y + nextrail_y
train.path_cp[pef] = adj_connid
local mconnid = advtrains.get_matching_conn(adj_connid, #next_conns)
train.path_cn[pef] = mconnid
train.path_dir[pef] = advtrains.conn_angle_median(next_conns[adj_connid].c, next_conns[mconnid].c)
train.path_trk_f = pef
else
-- off-track fallback behavior
adj_pos = advtrains.pos_add_angle(pos, train.path_dir[pef-1])
train.path_dir[pef] = train.path_dir[pef-1]
end
train.path[pef] = adj_pos
train.path_dist[pef - 1] = vector.distance(pos, adj_pos)
end
train.path_ext_f = pef
local peb = train.path_ext_b
while index < peb do
local pos = train.path[peb]
local connid = train.path_cp[peb]
local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y, next_conns
if peb == train.path_trk_b then
node_ok, this_conns = advtrains.get_rail_info_at(pos)
if not node_ok then error("For train "..train.id..": Path item "..peb.." on-track but not a valid node!") end
adj_pos, adj_connid, conn_idx, nextrail_y, next_conns = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
end
peb = peb - 1
if adj_pos then
advtrains.occ.set_item(train.id, adj_pos, peb)
adj_pos.y = adj_pos.y + nextrail_y
train.path_cn[peb] = adj_connid
local mconnid = advtrains.get_matching_conn(adj_connid, #next_conns)
train.path_cp[peb] = mconnid
train.path_dir[peb] = advtrains.conn_angle_median(next_conns[mconnid].c, next_conns[adj_connid].c)
train.path_trk_b = peb
else
-- off-track fallback behavior
adj_pos = advtrains.pos_add_angle(pos, train.path_dir[peb+1] + math.pi)
train.path_dir[peb] = train.path_dir[peb+1]
end
train.path[peb] = adj_pos
train.path_dist[peb] = vector.distance(pos, adj_pos)
end
train.path_ext_b = peb
if index < train.path_req_b then
train.path_req_b = index
end
if index > train.path_req_f then
train.path_req_f = index
end
return train.path[index], (index<=train.path_trk_f and index>=train.path_trk_b)
end
-- interpolated position to fractional index given, and angle based on path_dir
-- returns: pos, angle(yaw), p_floor, p_ceil
function advtrains.path_get_interpolated(train, index)
local i_floor = atfloor(index)
local i_ceil = i_floor + 1
local frac = index - i_floor
local p_floor = advtrains.path_get(train, i_floor)
local p_ceil = advtrains.path_get(train, i_ceil)
-- Note: minimal code duplication to path_get_adjacent, for performance
local a_floor = train.path_dir[i_floor]
local a_ceil = train.path_dir[i_ceil]
local ang = advtrains.minAngleDiffRad(a_floor, a_ceil)
return vector.add(p_floor, vector.multiply(vector.subtract(p_ceil, p_floor), frac)), (a_floor + frac * ang)%(2*math.pi), p_floor, p_ceil
end
-- returns the 2 path positions directly adjacent to index and the fraction on how to interpolate between them
-- returns: pos_floor, pos_ceil, fraction
function advtrains.path_get_adjacent(train, index)
local i_floor = atfloor(index)
local i_ceil = i_floor + 1
local frac = index - i_floor
local p_floor = advtrains.path_get(train, i_floor)
local p_ceil = advtrains.path_get(train, i_ceil)
return p_floor, p_ceil, frac
end
function advtrains.path_get_index_by_offset(train, index, offset)
local off = offset
local idx = atfloor(index)
-- go down to floor. Calculate required path_dist
advtrains.path_get_adjacent(train, idx)
off = off + ((index-idx) * train.path_dist[idx])
--atdebug("pibo: 1 off=",off,"idx=",idx," index=",index)
-- then walk the path back until we overshoot (off becomes >=0)
while off<0 do
idx = idx - 1
advtrains.path_get_adjacent(train, idx)
off = off + train.path_dist[idx]
end
--atdebug("pibo: 2 off=",off,"idx=",idx)
-- then walk the path forward until we would overshoot
while off - train.path_dist[idx] >= 0 do
idx = idx - 1
advtrains.path_get_adjacent(train, idx)
if not train.path_dist[idx] then
atdebug("second while",idx)
for i=-5,5 do
atdebug(idx+i,train.path_dist[idx+i])
end
end
off = off - train.path_dist[idx]
end
--atdebug("pibo: 3 off=",off,"idx=",idx," returns:",idx + (off / train.path_dist[idx]))
-- we should now be on the floor of the index we actually want.
-- give them the rest!
return idx + (off / train.path_dist[idx])
end
local PATH_CLEAR_KEEP = 4
function advtrains.path_clear_unused(train)
local i
for i = train.path_ext_b, train.path_req_b - PATH_CLEAR_KEEP do
advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(train.path[i]))
train.path[i] = nil
train.path_dist[i-1] = nil
train.path_cp[i] = nil
train.path_cn[i] = nil
train.path_dir[i] = nil
train.path_ext_b = i + 1
end
for i = train.path_ext_f,train.path_req_f + PATH_CLEAR_KEEP,-1 do
advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(train.path[i]))
train.path[i] = nil
train.path_dist[i] = nil
train.path_cp[i] = nil
train.path_cn[i] = nil
train.path_dir[i+1] = nil
train.path_ext_b = i - 1
end
train.path_req_f = math.ceil(train.index)
train.path_req_b = math.floor(train.end_index or train.index)
end
function advtrains.path_lookup(train, pos)
local cp = advtrains.round_vector_floor_y(pos)
for i = train.path_ext_b, train.path_ext_f do
if vector.equals(advtrains.round_vector_floor_y(train.path[i]), cp) then
return i
end
end
return nil
end
|