aboutsummaryrefslogtreecommitdiff
path: root/advtrains/path.lua
blob: 825e59b581b4300b93605c21f6dd1d4a01cbf1b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
-- path.lua
-- Functions for pathpredicting, put in a separate file. 

-- Naming conventions:
-- 'index' - An index of the train.path table.
-- 'offset' - A value in meters that determines how far on the path to walk relative to a certain index
-- 'n' - Referring or pointing towards the 'next' path item, the one with index+1
-- 'p' - Referring or pointing towards the 'prev' path item, the one with index-1
-- 'f' - Referring to the positive end of the path (the end with the higher index)
-- 'b' - Referring to the negative end of the path (the end with the lower index)

-- New path structure of trains:
--Tables:
-- path      - path positions. 'indices' are relative to this. At the moment, at.round_vector_floor_y(path[i])
--              is the node this item corresponds to, however, this will change in the future.
-- path_node - (reserved)
-- path_cn   - Connid of the current node that points towards path[i+1]
-- path_cp   - Connid of the current node that points towards path[i-1]
--     When the day comes on that path!=node, these will only be set if this index represents a transition between rail nodes
-- path_dist - The distance (in meters) between this (path[i]) and the next (path[i+1]) item of the path
-- path_dir  - The direction of this path item's transition to the next path item, which is the angle of conns[path_cn[i]].c
--Variables:
-- path_ext_f/b - how far path[i] is set
-- path_trk_f/b - how far the path extends along a track. beyond those values, paths are generated in a straight line.
-- path_req_f/b - how far path items were requested in the last step

-- creates the path data structure, reconstructing the train from a position and a connid
-- Important! train.drives_on must exist while calling this method
-- returns: true - successful
--           nil - node not yet available/unloaded, please wait
--         false - node definitely gone, remove train
function advtrains.path_create(train, pos, connid, rel_index)
	local posr = advtrains.round_vector_floor_y(pos)
	local node_ok, conns, rhe = advtrains.get_rail_info_at(pos, train.drives_on)
	if not node_ok then
		return node_ok
	end
	local mconnid = advtrains.get_matching_conn(connid, #conns)
	train.index = rel_index
	train.path = { [0] = { x=posr.x, y=posr.y+rhe, z=posr.z } }
	train.path_cn = { [0] = connid }
	train.path_cp = { [0] = mconnid }
	train.path_dist = {}
	
	train.path_dir = {
		[0] = advtrains.conn_angle_median(conns[mconnid].c, conns[connid].c)
	}
	
	train.path_ext_f=0
	train.path_ext_b=0
	train.path_trk_f=0
	train.path_trk_b=0
	train.path_req_f=0
	train.path_req_b=0
	
	advtrains.occ.set_item(train.id, posr, 0)
	return true
end

-- Sets position and connid to properly restore after a crash, e.g. in order
-- to save the train or to invalidate its path
-- Assumes that the train is in clean state
-- if invert ist true, setrestore will use the end index
function advtrains.path_setrestore(train, invert)
	local idx = train.index
	if invert then
		idx = train.end_index
	end
	
	local pos, connid, frac = advtrains.path_getrestore(train, idx, invert, true)
	
	train.last_pos = pos
	train.last_connid = connid
	train.last_frac = frac
end
-- Get restore position, connid and frac (in this order) for a train that will originate at the passed index
-- If invert is set, it will return path_cp and multiply frac by -1, in order to reverse the train there.
function advtrains.path_getrestore(train, index, invert)
	local idx = index
	local cns = train.path_cn
	
	if invert then
		cns = train.path_cp
	end
	
	local fli = atfloor(index)
	advtrains.path_get(train, fli)
	if fli > train.path_trk_f then
		fli = train.path_trk_f
	end
	if fli < train.path_trk_b then
		fli = train.path_trk_b
	end
	return advtrains.path_get(train, fli),
			cns[fli],
			(idx - fli) * (invert and -1 or 1)
end

-- Invalidates a path
-- this is supposed to clear stuff from the occupation tables
-- This function throws a warning whenever any code calls it while the train steps are run, since that must not happen.
-- The ignore_lock parameter can be used to ignore this, however, it should then be accompanied by a call to train_ensure_init
-- before returning from the calling function.
function advtrains.path_invalidate(train, ignore_lock)
	if advtrains.lock_path_inval and not ignore_lock then
		atwarn("Train ",train.train_id,": Illegal path invalidation has occured during train step:")
		atwarn(debug.traceback())
	end

	if train.path then
		for i,p in pairs(train.path) do
			advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(p))
		end
	end
	train.path = nil
	train.path_dist = nil
	train.path_cp = nil
	train.path_cn = nil
	train.path_dir = nil
	train.path_ext_f=0
	train.path_ext_b=0
	train.path_trk_f=0
	train.path_trk_b=0
	train.path_req_f=0
	train.path_req_b=0
	
	train.dirty = true
end

-- Prints a path using the passed print function
-- This function should be 'atprint', 'atlog', 'atwarn' or 'atdebug', because it needs to use print_concat_table
function advtrains.path_print(train, printf)
	printf("path_print: tid =",train.id," index =",train.index," end_index =",train.end_index," vel =",train.velocity)
	if not train.path then
		printf("path_print: Path is invalidated/inexistant.")
		return
	end
	printf("i:	CP	Position	Dir	CN		->Dist->")
	for i = train.path_ext_b, train.path_ext_f do
		if i==train.path_trk_b then
			printf("--Back on-track border here--")
		end
		printf(i,":	",train.path_cp[i],"	",train.path[i],"	",train.path_dir[i],"	",train.path_cn[i],"		->",train.path_dist[i],"->")
		if i==train.path_trk_f then
			printf("--Front on-track border here--")		
		end
	end
end

-- Function to get path entry at a position. This function will automatically calculate more of the path when required.
-- returns: pos, on_track
function advtrains.path_get(train, index)
	if not train.path then
		error("For train "..train.id..": path_get called but there's no path set yet!")
	end
	if index ~= atfloor(index) then
		error("For train "..train.id..": Called path_get() but index="..index.." is not a round number")
	end
	local pef = train.path_ext_f
	while index > pef do
		local pos = train.path[pef]
		local connid = train.path_cn[pef]
		local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y, next_conns
		if pef == train.path_trk_f then
			node_ok, this_conns = advtrains.get_rail_info_at(pos)
			if not node_ok then error("For train "..train.id..": Path item "..pef.." on-track but not a valid node!") end
			adj_pos, adj_connid, conn_idx, nextrail_y, next_conns = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
		end
		pef = pef + 1
		if adj_pos then
			advtrains.occ.set_item(train.id, adj_pos, pef)
		
			adj_pos.y = adj_pos.y + nextrail_y
			train.path_cp[pef] = adj_connid
			local mconnid = advtrains.get_matching_conn(adj_connid, #next_conns)
			train.path_cn[pef] = mconnid
			train.path_dir[pef] = advtrains.conn_angle_median(next_conns[adj_connid].c, next_conns[mconnid].c)
			train.path_trk_f = pef
		else
			-- off-track fallback behavior
			adj_pos = advtrains.pos_add_angle(pos, train.path_dir[pef-1])
			--atdebug("Offtrack overgenerating(front) at",adj_pos,"index",peb,"trkf",train.path_trk_f)
			train.path_dir[pef] = train.path_dir[pef-1]
		end
		train.path[pef] = adj_pos
		train.path_dist[pef - 1] = vector.distance(pos, adj_pos)
	end
	train.path_ext_f = pef
	local peb = train.path_ext_b
	while index < peb do
		local pos = train.path[peb]
		local connid = train.path_cp[peb]
		local node_ok, this_conns, adj_pos, adj_connid, conn_idx, nextrail_y, next_conns
		if peb == train.path_trk_b then
			node_ok, this_conns = advtrains.get_rail_info_at(pos)
			if not node_ok then error("For train "..train.id..": Path item "..peb.." on-track but not a valid node!") end
			adj_pos, adj_connid, conn_idx, nextrail_y, next_conns = advtrains.get_adjacent_rail(pos, this_conns, connid, train.drives_on)
		end
		peb = peb - 1
		if adj_pos then
			advtrains.occ.set_item(train.id, adj_pos, peb)
			
			adj_pos.y = adj_pos.y + nextrail_y
			train.path_cn[peb] = adj_connid
			local mconnid = advtrains.get_matching_conn(adj_connid, #next_conns)
			train.path_cp[peb] = mconnid
			train.path_dir[peb] = advtrains.conn_angle_median(next_conns[mconnid].c, next_conns[adj_connid].c)
			train.path_trk_b = peb
		else
			-- off-track fallback behavior
			adj_pos = advtrains.pos_add_angle(pos, train.path_dir[peb+1] + math.pi)
			--atdebug("Offtrack overgenerating(back) at",adj_pos,"index",peb,"trkb",train.path_trk_b)
			train.path_dir[peb] = train.path_dir[peb+1]
		end
		train.path[peb] = adj_pos
		train.path_dist[peb] = vector.distance(pos, adj_pos)
	end
	train.path_ext_b = peb
	
	if index < train.path_req_b then
		train.path_req_b = index
	end
	if index > train.path_req_f then
		train.path_req_f = index
	end
	
	return train.path[index], (index<=train.path_trk_f and index>=train.path_trk_b)
	
end

-- interpolated position to fractional index given, and angle based on path_dir
-- returns: pos, angle(yaw), p_floor, p_ceil
function advtrains.path_get_interpolated(train, index)
	local i_floor = atfloor(index)
	local i_ceil = i_floor + 1
	local frac = index - i_floor
	local p_floor = advtrains.path_get(train, i_floor)
	local p_ceil = advtrains.path_get(train, i_ceil)
	-- Note: minimal code duplication to path_get_adjacent, for performance
	
	local a_floor = train.path_dir[i_floor]
	local a_ceil = train.path_dir[i_ceil]
	
	local ang = advtrains.minAngleDiffRad(a_floor, a_ceil)
	
	return vector.add(p_floor, vector.multiply(vector.subtract(p_ceil, p_floor), frac)), (a_floor + frac * ang)%(2*math.pi), p_floor, p_ceil
end
-- returns the 2 path positions directly adjacent to index and the fraction on how to interpolate between them
-- returns: pos_floor, pos_ceil, fraction
function advtrains.path_get_adjacent(train, index)
	local i_floor = atfloor(index)
	local i_ceil = i_floor + 1
	local frac = index - i_floor
	local p_floor = advtrains.path_get(train, i_floor)
	local p_ceil = advtrains.path_get(train, i_ceil)
	return p_floor, p_ceil, frac
end

function advtrains.path_get_index_by_offset(train, index, offset)
	local off = offset
	local idx = atfloor(index)
	-- go down to floor. Calculate required path_dist
	advtrains.path_get_adjacent(train, idx)
	off = off + ((index-idx) * train.path_dist[idx])
	--atdebug("pibo: 1 off=",off,"idx=",idx,"  index=",index)
	
	-- then walk the path back until we overshoot (off becomes >=0)
	while off<0 do
		idx = idx - 1
		advtrains.path_get_adjacent(train, idx)
		off = off + train.path_dist[idx]
	end
	--atdebug("pibo: 2 off=",off,"idx=",idx)
	-- then walk the path forward until we would overshoot
	while off - train.path_dist[idx] >= 0 do
		idx = idx + 1
		advtrains.path_get_adjacent(train, idx)
		if not train.path_dist[idx] then
			for i=-5,5 do
				atdebug(idx+i,train.path_dist[idx+i])
			end
		end
		off = off - train.path_dist[idx]
	end
	--atdebug("pibo: 3 off=",off,"idx=",idx," returns:",idx + (off / train.path_dist[idx]))
	-- we should now be on the floor of the index we actually want.
	-- give them the rest!
	
	return idx + (off / train.path_dist[idx])
end

local PATH_CLEAR_KEEP = 4

function advtrains.path_clear_unused(train)
	local i
	for i = train.path_ext_b, train.path_req_b - PATH_CLEAR_KEEP do
		advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(train.path[i]))
		train.path[i] = nil
		train.path_dist[i-1] = nil
		train.path_cp[i] = nil
		train.path_cn[i] = nil
		train.path_dir[i] = nil
		train.path_ext_b = i + 1
	end
	
	for i = train.path_ext_f,train.path_req_f + PATH_CLEAR_KEEP,-1 do
		advtrains.occ.clear_item(train.id, advtrains.round_vector_floor_y(train.path[i]))
		train.path[i] = nil
		train.path_dist[i] = nil
		train.path_cp[i] = nil
		train.path_cn[i] = nil
		train.path_dir[i+1] = nil
		train.path_ext_f = i - 1
	end
	train.path_trk_b = math.max(train.path_trk_b, train.path_ext_b)
	train.path_trk_f = math.min(train.path_trk_f, train.path_ext_f)
	
	train.path_req_f = math.ceil(train.index)
	train.path_req_b = math.floor(train.end_index or train.index)
end

function advtrains.path_lookup(train, pos)
	local cp = advtrains.round_vector_floor_y(pos)
	for i = train.path_ext_b, train.path_ext_f do
		if vector.equals(advtrains.round_vector_floor_y(train.path[i]), cp) then
			return i
		end
	end
	return nil
end
a id='n1625' href='#n1625'>1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "connection.h"
#include "main.h"
#include "serialization.h"
#include "log.h"
#include "porting.h"
#include "util/serialize.h"
#include "util/numeric.h"
#include "util/string.h"
#include "settings.h"

namespace con
{

static u16 readPeerId(u8 *packetdata)
{
	return readU16(&packetdata[4]);
}
static u8 readChannel(u8 *packetdata)
{
	return readU8(&packetdata[6]);
}

BufferedPacket makePacket(Address &address, u8 *data, u32 datasize,
		u32 protocol_id, u16 sender_peer_id, u8 channel)
{
	u32 packet_size = datasize + BASE_HEADER_SIZE;
	BufferedPacket p(packet_size);
	p.address = address;

	writeU32(&p.data[0], protocol_id);
	writeU16(&p.data[4], sender_peer_id);
	writeU8(&p.data[6], channel);

	memcpy(&p.data[BASE_HEADER_SIZE], data, datasize);

	return p;
}

BufferedPacket makePacket(Address &address, SharedBuffer<u8> &data,
		u32 protocol_id, u16 sender_peer_id, u8 channel)
{
	return makePacket(address, *data, data.getSize(),
			protocol_id, sender_peer_id, channel);
}

SharedBuffer<u8> makeOriginalPacket(
		SharedBuffer<u8> data)
{
	u32 header_size = 1;
	u32 packet_size = data.getSize() + header_size;
	SharedBuffer<u8> b(packet_size);

	writeU8(&b[0], TYPE_ORIGINAL);

	memcpy(&b[header_size], *data, data.getSize());

	return b;
}

std::list<SharedBuffer<u8> > makeSplitPacket(
		SharedBuffer<u8> data,
		u32 chunksize_max,
		u16 seqnum)
{
	// Chunk packets, containing the TYPE_SPLIT header
	std::list<SharedBuffer<u8> > chunks;
	
	u32 chunk_header_size = 7;
	u32 maximum_data_size = chunksize_max - chunk_header_size;
	u32 start = 0;
	u32 end = 0;
	u32 chunk_num = 0;
	u16 chunk_count = 0;
	do{
		end = start + maximum_data_size - 1;
		if(end > data.getSize() - 1)
			end = data.getSize() - 1;
		
		u32 payload_size = end - start + 1;
		u32 packet_size = chunk_header_size + payload_size;

		SharedBuffer<u8> chunk(packet_size);
		
		writeU8(&chunk[0], TYPE_SPLIT);
		writeU16(&chunk[1], seqnum);
		// [3] u16 chunk_count is written at next stage
		writeU16(&chunk[5], chunk_num);
		memcpy(&chunk[chunk_header_size], &data[start], payload_size);

		chunks.push_back(chunk);
		chunk_count++;
		
		start = end + 1;
		chunk_num++;
	}
	while(end != data.getSize() - 1);

	for(std::list<SharedBuffer<u8> >::iterator i = chunks.begin();
		i != chunks.end(); ++i)
	{
		// Write chunk_count
		writeU16(&((*i)[3]), chunk_count);
	}

	return chunks;
}

std::list<SharedBuffer<u8> > makeAutoSplitPacket(
		SharedBuffer<u8> data,
		u32 chunksize_max,
		u16 &split_seqnum)
{
	u32 original_header_size = 1;
	std::list<SharedBuffer<u8> > list;
	if(data.getSize() + original_header_size > chunksize_max)
	{
		list = makeSplitPacket(data, chunksize_max, split_seqnum);
		split_seqnum++;
		return list;
	}
	else
	{
		list.push_back(makeOriginalPacket(data));
	}
	return list;
}

SharedBuffer<u8> makeReliablePacket(
		SharedBuffer<u8> data,
		u16 seqnum)
{
	/*dstream<<"BEGIN SharedBuffer<u8> makeReliablePacket()"<<std::endl;
	dstream<<"data.getSize()="<<data.getSize()<<", data[0]="
			<<((unsigned int)data[0]&0xff)<<std::endl;*/
	u32 header_size = 3;
	u32 packet_size = data.getSize() + header_size;
	SharedBuffer<u8> b(packet_size);

	writeU8(&b[0], TYPE_RELIABLE);
	writeU16(&b[1], seqnum);

	memcpy(&b[header_size], *data, data.getSize());

	/*dstream<<"data.getSize()="<<data.getSize()<<", data[0]="
			<<((unsigned int)data[0]&0xff)<<std::endl;*/
	//dstream<<"END SharedBuffer<u8> makeReliablePacket()"<<std::endl;
	return b;
}

/*
	ReliablePacketBuffer
*/

ReliablePacketBuffer::ReliablePacketBuffer(): m_list_size(0) {}

void ReliablePacketBuffer::print()
{
	for(std::list<BufferedPacket>::iterator i = m_list.begin();
		i != m_list.end();
		++i)
	{
		u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
		dout_con<<s<<" ";
	}
}
bool ReliablePacketBuffer::empty()
{
	return m_list.empty();
}
u32 ReliablePacketBuffer::size()
{
	return m_list_size;
}
RPBSearchResult ReliablePacketBuffer::findPacket(u16 seqnum)
{
	std::list<BufferedPacket>::iterator i = m_list.begin();
	for(; i != m_list.end(); ++i)
	{
		u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
		/*dout_con<<"findPacket(): finding seqnum="<<seqnum
				<<", comparing to s="<<s<<std::endl;*/
		if(s == seqnum)
			break;
	}
	return i;
}
RPBSearchResult ReliablePacketBuffer::notFound()
{
	return m_list.end();
}
bool ReliablePacketBuffer::getFirstSeqnum(u16 *result)
{
	if(empty())
		return false;
	BufferedPacket p = *m_list.begin();
	*result = readU16(&p.data[BASE_HEADER_SIZE+1]);
	return true;
}
BufferedPacket ReliablePacketBuffer::popFirst()
{
	if(empty())
		throw NotFoundException("Buffer is empty");
	BufferedPacket p = *m_list.begin();
	m_list.erase(m_list.begin());
	--m_list_size;
	return p;
}
BufferedPacket ReliablePacketBuffer::popSeqnum(u16 seqnum)
{
	RPBSearchResult r = findPacket(seqnum);
	if(r == notFound()){
		dout_con<<"Not found"<<std::endl;
		throw NotFoundException("seqnum not found in buffer");
	}
	BufferedPacket p = *r;
	m_list.erase(r);
	--m_list_size;
	return p;
}
void ReliablePacketBuffer::insert(BufferedPacket &p)
{
	assert(p.data.getSize() >= BASE_HEADER_SIZE+3);
	u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]);
	assert(type == TYPE_RELIABLE);
	u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);

	++m_list_size;
	// Find the right place for the packet and insert it there

	// If list is empty, just add it
	if(m_list.empty())
	{
		m_list.push_back(p);
		// Done.
		return;
	}
	// Otherwise find the right place
	std::list<BufferedPacket>::iterator i = m_list.begin();
	// Find the first packet in the list which has a higher seqnum
	for(; i != m_list.end(); ++i){
		u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
		if(s == seqnum){
			--m_list_size;
			throw AlreadyExistsException("Same seqnum in list");
		}
		if(seqnum_higher(s, seqnum)){
			break;
		}
	}
	// If we're at the end of the list, add the packet to the
	// end of the list
	if(i == m_list.end())
	{
		m_list.push_back(p);
		// Done.
		return;
	}
	// Insert before i
	m_list.insert(i, p);
}

void ReliablePacketBuffer::incrementTimeouts(float dtime)
{
	for(std::list<BufferedPacket>::iterator i = m_list.begin();
		i != m_list.end(); ++i)
	{
		i->time += dtime;
		i->totaltime += dtime;
	}
}

void ReliablePacketBuffer::resetTimedOuts(float timeout)
{
	for(std::list<BufferedPacket>::iterator i = m_list.begin();
		i != m_list.end(); ++i)
	{
		if(i->time >= timeout)
			i->time = 0.0;
	}
}

bool ReliablePacketBuffer::anyTotaltimeReached(float timeout)
{
	for(std::list<BufferedPacket>::iterator i = m_list.begin();
		i != m_list.end(); ++i)
	{
		if(i->totaltime >= timeout)
			return true;
	}
	return false;
}

std::list<BufferedPacket> ReliablePacketBuffer::getTimedOuts(float timeout)
{
	std::list<BufferedPacket> timed_outs;
	for(std::list<BufferedPacket>::iterator i = m_list.begin();
		i != m_list.end(); ++i)
	{
		if(i->time >= timeout)
			timed_outs.push_back(*i);
	}
	return timed_outs;
}

/*
	IncomingSplitBuffer
*/

IncomingSplitBuffer::~IncomingSplitBuffer()
{
	for(std::map<u16, IncomingSplitPacket*>::iterator i = m_buf.begin();
		i != m_buf.end(); ++i)
	{
		delete i->second;
	}
}
/*
	This will throw a GotSplitPacketException when a full
	split packet is constructed.
*/
SharedBuffer<u8> IncomingSplitBuffer::insert(BufferedPacket &p, bool reliable)
{
	u32 headersize = BASE_HEADER_SIZE + 7;
	assert(p.data.getSize() >= headersize);
	u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]);
	assert(type == TYPE_SPLIT);
	u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);
	u16 chunk_count = readU16(&p.data[BASE_HEADER_SIZE+3]);
	u16 chunk_num = readU16(&p.data[BASE_HEADER_SIZE+5]);

	// Add if doesn't exist
	if(m_buf.find(seqnum) == m_buf.end())
	{
		IncomingSplitPacket *sp = new IncomingSplitPacket();
		sp->chunk_count = chunk_count;
		sp->reliable = reliable;
		m_buf[seqnum] = sp;
	}
	
	IncomingSplitPacket *sp = m_buf[seqnum];
	
	// TODO: These errors should be thrown or something? Dunno.
	if(chunk_count != sp->chunk_count)
		derr_con<<"Connection: WARNING: chunk_count="<<chunk_count
				<<" != sp->chunk_count="<<sp->chunk_count
				<<std::endl;
	if(reliable != sp->reliable)
		derr_con<<"Connection: WARNING: reliable="<<reliable
				<<" != sp->reliable="<<sp->reliable
				<<std::endl;

	// If chunk already exists, ignore it.
	// Sometimes two identical packets may arrive when there is network
	// lag and the server re-sends stuff.
	if(sp->chunks.find(chunk_num) != sp->chunks.end())
		return SharedBuffer<u8>();
	
	// Cut chunk data out of packet
	u32 chunkdatasize = p.data.getSize() - headersize;
	SharedBuffer<u8> chunkdata(chunkdatasize);
	memcpy(*chunkdata, &(p.data[headersize]), chunkdatasize);
	
	// Set chunk data in buffer
	sp->chunks[chunk_num] = chunkdata;
	
	// If not all chunks are received, return empty buffer
	if(sp->allReceived() == false)
		return SharedBuffer<u8>();

	// Calculate total size
	u32 totalsize = 0;
	for(std::map<u16, SharedBuffer<u8> >::iterator i = sp->chunks.begin();
		i != sp->chunks.end(); ++i)
	{
		totalsize += i->second.getSize();
	}
	
	SharedBuffer<u8> fulldata(totalsize);

	// Copy chunks to data buffer
	u32 start = 0;
	for(u32 chunk_i=0; chunk_i<sp->chunk_count;
			chunk_i++)
	{
		SharedBuffer<u8> buf = sp->chunks[chunk_i];
		u16 chunkdatasize = buf.getSize();
		memcpy(&fulldata[start], *buf, chunkdatasize);
		start += chunkdatasize;;
	}

	// Remove sp from buffer
	m_buf.erase(seqnum);
	delete sp;

	return fulldata;
}
void IncomingSplitBuffer::removeUnreliableTimedOuts(float dtime, float timeout)
{
	std::list<u16> remove_queue;
	for(std::map<u16, IncomingSplitPacket*>::iterator i = m_buf.begin();
		i != m_buf.end(); ++i)
	{
		IncomingSplitPacket *p = i->second;
		// Reliable ones are not removed by timeout
		if(p->reliable == true)
			continue;
		p->time += dtime;
		if(p->time >= timeout)
			remove_queue.push_back(i->first);
	}
	for(std::list<u16>::iterator j = remove_queue.begin();
		j != remove_queue.end(); ++j)
	{
		dout_con<<"NOTE: Removing timed out unreliable split packet"
				<<std::endl;
		delete m_buf[*j];
		m_buf.erase(*j);
	}
}

/*
	Channel
*/

Channel::Channel()
{
	next_outgoing_seqnum = SEQNUM_INITIAL;
	next_incoming_seqnum = SEQNUM_INITIAL;
	next_outgoing_split_seqnum = SEQNUM_INITIAL;
}
Channel::~Channel()
{
}

/*
	Peer
*/

Peer::Peer(u16 a_id, Address a_address):
	address(a_address),
	id(a_id),
	timeout_counter(0.0),
	ping_timer(0.0),
	resend_timeout(0.5),
	avg_rtt(-1.0),
	has_sent_with_id(false),
	m_sendtime_accu(0),
	m_max_packets_per_second(10),
	m_num_sent(0),
	m_max_num_sent(0),
	congestion_control_aim_rtt(0.2),
	congestion_control_max_rate(400),
	congestion_control_min_rate(10)
{
}
Peer::~Peer()
{
}

void Peer::reportRTT(float rtt)
{
	if(rtt >= 0.0){
		if(rtt < 0.01){
			if(m_max_packets_per_second < congestion_control_max_rate)
				m_max_packets_per_second += 10;
		} else if(rtt < congestion_control_aim_rtt){
			if(m_max_packets_per_second < congestion_control_max_rate)
				m_max_packets_per_second += 2;
		} else {
			m_max_packets_per_second *= 0.8;
			if(m_max_packets_per_second < congestion_control_min_rate)
				m_max_packets_per_second = congestion_control_min_rate;
		}
	}

	if(rtt < -0.999)
	{}
	else if(avg_rtt < 0.0)
		avg_rtt = rtt;
	else
		avg_rtt = rtt * 0.1 + avg_rtt * 0.9;
	
	// Calculate resend_timeout

	/*int reliable_count = 0;
	for(int i=0; i<CHANNEL_COUNT; i++)
	{
		reliable_count += channels[i].outgoing_reliables.size();
	}
	float timeout = avg_rtt * RESEND_TIMEOUT_FACTOR
			* ((float)reliable_count * 1);*/
	
	float timeout = avg_rtt * RESEND_TIMEOUT_FACTOR;
	if(timeout < RESEND_TIMEOUT_MIN)
		timeout = RESEND_TIMEOUT_MIN;
	if(timeout > RESEND_TIMEOUT_MAX)
		timeout = RESEND_TIMEOUT_MAX;
	resend_timeout = timeout;
}
				
/*
	Connection
*/

Connection::Connection(u32 protocol_id, u32 max_packet_size, float timeout,
		bool ipv6):
	m_protocol_id(protocol_id),
	m_max_packet_size(max_packet_size),
	m_timeout(timeout),
	m_socket(ipv6),
	m_peer_id(0),
	m_bc_peerhandler(NULL),
	m_bc_receive_timeout(0),
	m_indentation(0)
{
	m_socket.setTimeoutMs(5);

	Start();
}

Connection::Connection(u32 protocol_id, u32 max_packet_size, float timeout,
		bool ipv6, PeerHandler *peerhandler):
	m_protocol_id(protocol_id),
	m_max_packet_size(max_packet_size),
	m_timeout(timeout),
	m_socket(ipv6),
	m_peer_id(0),
	m_bc_peerhandler(peerhandler),
	m_bc_receive_timeout(0),
	m_indentation(0)
{
	m_socket.setTimeoutMs(5);

	Start();
}


Connection::~Connection()
{
	Stop();
	// Delete peers
	for(std::map<u16, Peer*>::iterator
			j = m_peers.begin();
			j != m_peers.end(); ++j)
	{
		delete j->second;
	}
}

/* Internal stuff */

void * Connection::Thread()
{
	ThreadStarted();
	log_register_thread("Connection");

	dout_con<<"Connection thread started"<<std::endl;
	
	u32 curtime = porting::getTimeMs();
	u32 lasttime = curtime;

	while(!StopRequested())
	{
		BEGIN_DEBUG_EXCEPTION_HANDLER
		
		lasttime = curtime;
		curtime = porting::getTimeMs();
		float dtime = (float)(curtime - lasttime) / 1000.;
		if(dtime > 0.1)
			dtime = 0.1;
		if(dtime < 0.0)
			dtime = 0.0;
		
		runTimeouts(dtime);

		while(!m_command_queue.empty()){
			ConnectionCommand c = m_command_queue.pop_front();
			processCommand(c);
		}

		send(dtime);

		receive();
		
		END_DEBUG_EXCEPTION_HANDLER(derr_con);
	}

	return NULL;
}

void Connection::putEvent(ConnectionEvent &e)
{
	assert(e.type != CONNEVENT_NONE);
	m_event_queue.push_back(e);
}

void Connection::processCommand(ConnectionCommand &c)
{
	switch(c.type){
	case CONNCMD_NONE:
		dout_con<<getDesc()<<" processing CONNCMD_NONE"<<std::endl;
		return;
	case CONNCMD_SERVE:
		dout_con<<getDesc()<<" processing CONNCMD_SERVE port="
				<<c.port<<std::endl;
		serve(c.port);
		return;
	case CONNCMD_CONNECT:
		dout_con<<getDesc()<<" processing CONNCMD_CONNECT"<<std::endl;
		connect(c.address);
		return;
	case CONNCMD_DISCONNECT:
		dout_con<<getDesc()<<" processing CONNCMD_DISCONNECT"<<std::endl;
		disconnect();
		return;
	case CONNCMD_SEND:
		dout_con<<getDesc()<<" processing CONNCMD_SEND"<<std::endl;
		send(c.peer_id, c.channelnum, c.data, c.reliable);
		return;
	case CONNCMD_SEND_TO_ALL:
		dout_con<<getDesc()<<" processing CONNCMD_SEND_TO_ALL"<<std::endl;
		sendToAll(c.channelnum, c.data, c.reliable);
		return;
	case CONNCMD_DELETE_PEER:
		dout_con<<getDesc()<<" processing CONNCMD_DELETE_PEER"<<std::endl;
		deletePeer(c.peer_id, false);
		return;
	}
}

void Connection::send(float dtime)
{
	for(std::map<u16, Peer*>::iterator
			j = m_peers.begin();
			j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		peer->m_sendtime_accu += dtime;
		peer->m_num_sent = 0;
		peer->m_max_num_sent = peer->m_sendtime_accu *
				peer->m_max_packets_per_second;
	}
	Queue<OutgoingPacket> postponed_packets;
	while(!m_outgoing_queue.empty()){
		OutgoingPacket packet = m_outgoing_queue.pop_front();
		Peer *peer = getPeerNoEx(packet.peer_id);
		if(!peer)
			continue;
		if(peer->channels[packet.channelnum].outgoing_reliables.size() >= 5){
			postponed_packets.push_back(packet);
		} else if(peer->m_num_sent < peer->m_max_num_sent){
			rawSendAsPacket(packet.peer_id, packet.channelnum,
					packet.data, packet.reliable);
			peer->m_num_sent++;
		} else {
			postponed_packets.push_back(packet);
		}
	}
	while(!postponed_packets.empty()){
		m_outgoing_queue.push_back(postponed_packets.pop_front());
	}
	for(std::map<u16, Peer*>::iterator
			j = m_peers.begin();
			j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		peer->m_sendtime_accu -= (float)peer->m_num_sent /
				peer->m_max_packets_per_second;
		if(peer->m_sendtime_accu > 10. / peer->m_max_packets_per_second)
			peer->m_sendtime_accu = 10. / peer->m_max_packets_per_second;
	}
}

// Receive packets from the network and buffers and create ConnectionEvents
void Connection::receive()
{
	u32 datasize = m_max_packet_size * 2;  // Double it just to be safe
	// TODO: We can not know how many layers of header there are.
	// For now, just assume there are no other than the base headers.
	u32 packet_maxsize = datasize + BASE_HEADER_SIZE;
	SharedBuffer<u8> packetdata(packet_maxsize);

	bool single_wait_done = false;
	
	for(u32 loop_i=0; loop_i<1000; loop_i++) // Limit in case of DoS
	{
	try{
		/* Check if some buffer has relevant data */
		{
			u16 peer_id;
			SharedBuffer<u8> resultdata;
			bool got = getFromBuffers(peer_id, resultdata);
			if(got){
				ConnectionEvent e;
				e.dataReceived(peer_id, resultdata);
				putEvent(e);
				continue;
			}
		}
		
		if(single_wait_done){
			if(m_socket.WaitData(0) == false)
				break;
		}
		
		single_wait_done = true;

		Address sender;
		s32 received_size = m_socket.Receive(sender, *packetdata, packet_maxsize);

		if(received_size < 0)
			break;
		if(received_size < BASE_HEADER_SIZE)
			continue;
		if(readU32(&packetdata[0]) != m_protocol_id)
			continue;
		
		u16 peer_id = readPeerId(*packetdata);
		u8 channelnum = readChannel(*packetdata);
		if(channelnum > CHANNEL_COUNT-1){
			PrintInfo(derr_con);
			derr_con<<"Receive(): Invalid channel "<<channelnum<<std::endl;
			throw InvalidIncomingDataException("Channel doesn't exist");
		}

		if(peer_id == PEER_ID_INEXISTENT)
		{
			/*
				Somebody is trying to send stuff to us with no peer id.
				
				Check if the same address and port was added to our peer
				list before.
				Allow only entries that have has_sent_with_id==false.
			*/

			std::map<u16, Peer*>::iterator j;
			j = m_peers.begin();
			for(; j != m_peers.end(); ++j)
			{
				Peer *peer = j->second;
				if(peer->has_sent_with_id)
					continue;
				if(peer->address == sender)
					break;
			}
			
			/*
				If no peer was found with the same address and port,
				we shall assume it is a new peer and create an entry.
			*/
			if(j == m_peers.end())
			{
				// Pass on to adding the peer
			}
			// Else: A peer was found.
			else
			{
				Peer *peer = j->second;
				peer_id = peer->id;
				PrintInfo(derr_con);
				derr_con<<"WARNING: Assuming unknown peer to be "
						<<"peer_id="<<peer_id<<std::endl;
			}
		}
		
		/*
			The peer was not found in our lists. Add it.
		*/
		if(peer_id == PEER_ID_INEXISTENT)
		{
			// Somebody wants to make a new connection

			// Get a unique peer id (2 or higher)
			u16 peer_id_new = 2;
			/*
				Find an unused peer id
			*/
			bool out_of_ids = false;
			for(;;)
			{
				// Check if exists
				if(m_peers.find(peer_id_new) == m_peers.end())
					break;
				// Check for overflow
				if(peer_id_new == 65535){
					out_of_ids = true;
					break;
				}
				peer_id_new++;
			}
			if(out_of_ids){
				errorstream<<getDesc()<<" ran out of peer ids"<<std::endl;
				continue;
			}

			PrintInfo();
			dout_con<<"Receive(): Got a packet with peer_id=PEER_ID_INEXISTENT,"
					" giving peer_id="<<peer_id_new<<std::endl;

			// Create a peer
			Peer *peer = new Peer(peer_id_new, sender);
			m_peers[peer->id] = peer;
			
			// Create peer addition event
			ConnectionEvent e;
			e.peerAdded(peer_id_new, sender);
			putEvent(e);
			
			// Create CONTROL packet to tell the peer id to the new peer.
			SharedBuffer<u8> reply(4);
			writeU8(&reply[0], TYPE_CONTROL);
			writeU8(&reply[1], CONTROLTYPE_SET_PEER_ID);
			writeU16(&reply[2], peer_id_new);
			sendAsPacket(peer_id_new, 0, reply, true);
			
			// We're now talking to a valid peer_id
			peer_id = peer_id_new;

			// Go on and process whatever it sent
		}

		std::map<u16, Peer*>::iterator node = m_peers.find(peer_id);

		if(node == m_peers.end())
		{
			// Peer not found
			// This means that the peer id of the sender is not PEER_ID_INEXISTENT
			// and it is invalid.
			PrintInfo(derr_con);
			derr_con<<"Receive(): Peer not found"<<std::endl;
			throw InvalidIncomingDataException("Peer not found (possible timeout)");
		}

		Peer *peer = node->second;

		// Validate peer address
		if(peer->address != sender)
		{
			PrintInfo(derr_con);
			derr_con<<"Peer "<<peer_id<<" sending from different address."
					" Ignoring."<<std::endl;
			continue;
		}
		
		peer->timeout_counter = 0.0;

		Channel *channel = &(peer->channels[channelnum]);
		
		// Throw the received packet to channel->processPacket()

		// Make a new SharedBuffer from the data without the base headers
		SharedBuffer<u8> strippeddata(received_size - BASE_HEADER_SIZE);
		memcpy(*strippeddata, &packetdata[BASE_HEADER_SIZE],
				strippeddata.getSize());
		
		try{
			// Process it (the result is some data with no headers made by us)
			SharedBuffer<u8> resultdata = processPacket
					(channel, strippeddata, peer_id, channelnum, false);
			
			PrintInfo();
			dout_con<<"ProcessPacket returned data of size "
					<<resultdata.getSize()<<std::endl;
			
			ConnectionEvent e;
			e.dataReceived(peer_id, resultdata);
			putEvent(e);
			continue;
		}catch(ProcessedSilentlyException &e){
		}
	}catch(InvalidIncomingDataException &e){
	}
	catch(ProcessedSilentlyException &e){
	}
	} // for
}

void Connection::runTimeouts(float dtime)
{
	float congestion_control_aim_rtt
			= g_settings->getFloat("congestion_control_aim_rtt");
	float congestion_control_max_rate
			= g_settings->getFloat("congestion_control_max_rate");
	float congestion_control_min_rate
			= g_settings->getFloat("congestion_control_min_rate");

	std::list<u16> timeouted_peers;
	for(std::map<u16, Peer*>::iterator j = m_peers.begin();
		j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;

		// Update congestion control values
		peer->congestion_control_aim_rtt = congestion_control_aim_rtt;
		peer->congestion_control_max_rate = congestion_control_max_rate;
		peer->congestion_control_min_rate = congestion_control_min_rate;
		
		/*
			Check peer timeout
		*/
		peer->timeout_counter += dtime;
		if(peer->timeout_counter > m_timeout)
		{
			PrintInfo(derr_con);
			derr_con<<"RunTimeouts(): Peer "<<peer->id
					<<" has timed out."
					<<" (source=peer->timeout_counter)"
					<<std::endl;
			// Add peer to the list
			timeouted_peers.push_back(peer->id);
			// Don't bother going through the buffers of this one
			continue;
		}

		float resend_timeout = peer->resend_timeout;
		for(u16 i=0; i<CHANNEL_COUNT; i++)
		{
			std::list<BufferedPacket> timed_outs;
			
			Channel *channel = &peer->channels[i];

			// Remove timed out incomplete unreliable split packets
			channel->incoming_splits.removeUnreliableTimedOuts(dtime, m_timeout);
			
			// Increment reliable packet times
			channel->outgoing_reliables.incrementTimeouts(dtime);

			// Check reliable packet total times, remove peer if
			// over timeout.
			if(channel->outgoing_reliables.anyTotaltimeReached(m_timeout))
			{
				PrintInfo(derr_con);
				derr_con<<"RunTimeouts(): Peer "<<peer->id
						<<" has timed out."
						<<" (source=reliable packet totaltime)"
						<<std::endl;
				// Add peer to the to-be-removed list
				timeouted_peers.push_back(peer->id);
				goto nextpeer;
			}

			// Re-send timed out outgoing reliables
			
			timed_outs = channel->
					outgoing_reliables.getTimedOuts(resend_timeout);

			channel->outgoing_reliables.resetTimedOuts(resend_timeout);

			for(std::list<BufferedPacket>::iterator j = timed_outs.begin();
				j != timed_outs.end(); ++j)
			{
				u16 peer_id = readPeerId(*(j->data));
				u8 channel = readChannel(*(j->data));
				u16 seqnum = readU16(&(j->data[BASE_HEADER_SIZE+1]));

				PrintInfo(derr_con);
				derr_con<<"RE-SENDING timed-out RELIABLE to ";
				j->address.print(&derr_con);
				derr_con<<"(t/o="<<resend_timeout<<"): "
						<<"from_peer_id="<<peer_id
						<<", channel="<<((int)channel&0xff)
						<<", seqnum="<<seqnum
						<<std::endl;

				rawSend(*j);

				// Enlarge avg_rtt and resend_timeout:
				// The rtt will be at least the timeout.
				// NOTE: This won't affect the timeout of the next
				// checked channel because it was cached.
				peer->reportRTT(resend_timeout);
			}
		}
		
		/*
			Send pings
		*/
		peer->ping_timer += dtime;
		if(peer->ping_timer >= 5.0)
		{
			// Create and send PING packet
			SharedBuffer<u8> data(2);
			writeU8(&data[0], TYPE_CONTROL);
			writeU8(&data[1], CONTROLTYPE_PING);
			rawSendAsPacket(peer->id, 0, data, true);

			peer->ping_timer = 0.0;
		}
		
nextpeer:
		continue;
	}

	// Remove timed out peers
	for(std::list<u16>::iterator i = timeouted_peers.begin();
		i != timeouted_peers.end(); ++i)
	{
		PrintInfo(derr_con);
		derr_con<<"RunTimeouts(): Removing peer "<<(*i)<<std::endl;
		deletePeer(*i, true);
	}
}

void Connection::serve(u16 port)
{
	dout_con<<getDesc()<<" serving at port "<<port<<std::endl;
	try{
		m_socket.Bind(port);
		m_peer_id = PEER_ID_SERVER;
	}
	catch(SocketException &e){
		// Create event
		ConnectionEvent ce;
		ce.bindFailed();
		putEvent(ce);
	}
}

void Connection::connect(Address address)
{
	dout_con<<getDesc()<<" connecting to "<<address.serializeString()
			<<":"<<address.getPort()<<std::endl;

	std::map<u16, Peer*>::iterator node = m_peers.find(PEER_ID_SERVER);
	if(node != m_peers.end()){
		throw ConnectionException("Already connected to a server");
	}

	Peer *peer = new Peer(PEER_ID_SERVER, address);
	m_peers[peer->id] = peer;

	// Create event
	ConnectionEvent e;
	e.peerAdded(peer->id, peer->address);
	putEvent(e);
	
	m_socket.Bind(0);
	
	// Send a dummy packet to server with peer_id = PEER_ID_INEXISTENT
	m_peer_id = PEER_ID_INEXISTENT;
	SharedBuffer<u8> data(0);
	Send(PEER_ID_SERVER, 0, data, true);
}

void Connection::disconnect()
{
	dout_con<<getDesc()<<" disconnecting"<<std::endl;

	// Create and send DISCO packet
	SharedBuffer<u8> data(2);
	writeU8(&data[0], TYPE_CONTROL);
	writeU8(&data[1], CONTROLTYPE_DISCO);
	
	// Send to all
	for(std::map<u16, Peer*>::iterator j = m_peers.begin();
		j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		rawSendAsPacket(peer->id, 0, data, false);
	}
}

void Connection::sendToAll(u8 channelnum, SharedBuffer<u8> data, bool reliable)
{
	for(std::map<u16, Peer*>::iterator j = m_peers.begin();
		j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		send(peer->id, channelnum, data, reliable);
	}
}

void Connection::send(u16 peer_id, u8 channelnum,
		SharedBuffer<u8> data, bool reliable)
{
	dout_con<<getDesc()<<" sending to peer_id="<<peer_id<<std::endl;

	assert(channelnum < CHANNEL_COUNT);
	
	Peer *peer = getPeerNoEx(peer_id);
	if(peer == NULL)
		return;
	Channel *channel = &(peer->channels[channelnum]);

	u32 chunksize_max = m_max_packet_size - BASE_HEADER_SIZE;
	if(reliable)
		chunksize_max -= RELIABLE_HEADER_SIZE;

	std::list<SharedBuffer<u8> > originals;
	originals = makeAutoSplitPacket(data, chunksize_max,
			channel->next_outgoing_split_seqnum);
	
	for(std::list<SharedBuffer<u8> >::iterator i = originals.begin();
		i != originals.end(); ++i)
	{
		SharedBuffer<u8> original = *i;
		
		sendAsPacket(peer_id, channelnum, original, reliable);
	}
}

void Connection::sendAsPacket(u16 peer_id, u8 channelnum,
		SharedBuffer<u8> data, bool reliable)
{
	OutgoingPacket packet(peer_id, channelnum, data, reliable);
	m_outgoing_queue.push_back(packet);
}

void Connection::rawSendAsPacket(u16 peer_id, u8 channelnum,
		SharedBuffer<u8> data, bool reliable)
{
	Peer *peer = getPeerNoEx(peer_id);
	if(!peer)
		return;
	Channel *channel = &(peer->channels[channelnum]);

	if(reliable)
	{
		u16 seqnum = channel->next_outgoing_seqnum;
		channel->next_outgoing_seqnum++;

		SharedBuffer<u8> reliable = makeReliablePacket(data, seqnum);

		// Add base headers and make a packet
		BufferedPacket p = makePacket(peer->address, reliable,
				m_protocol_id, m_peer_id, channelnum);
		
		try{
			// Buffer the packet
			channel->outgoing_reliables.insert(p);
		}
		catch(AlreadyExistsException &e)
		{
			PrintInfo(derr_con);
			derr_con<<"WARNING: Going to send a reliable packet "
					"seqnum="<<seqnum<<" that is already "
					"in outgoing buffer"<<std::endl;
			//assert(0);
		}
		
		// Send the packet
		rawSend(p);
	}
	else
	{
		// Add base headers and make a packet
		BufferedPacket p = makePacket(peer->address, data,
				m_protocol_id, m_peer_id, channelnum);

		// Send the packet
		rawSend(p);
	}
}

void Connection::rawSend(const BufferedPacket &packet)
{
	try{
		m_socket.Send(packet.address, *packet.data, packet.data.getSize());
	} catch(SendFailedException &e){
		derr_con<<"Connection::rawSend(): SendFailedException: "
				<<packet.address.serializeString()<<std::endl;
	}
}

Peer* Connection::getPeer(u16 peer_id)
{
	std::map<u16, Peer*>::iterator node = m_peers.find(peer_id);

	if(node == m_peers.end()){
		throw PeerNotFoundException("GetPeer: Peer not found (possible timeout)");
	}

	// Error checking
	assert(node->second->id == peer_id);

	return node->second;
}

Peer* Connection::getPeerNoEx(u16 peer_id)
{
	std::map<u16, Peer*>::iterator node = m_peers.find(peer_id);

	if(node == m_peers.end()){
		return NULL;
	}

	// Error checking
	assert(node->second->id == peer_id);

	return node->second;
}

std::list<Peer*> Connection::getPeers()
{
	std::list<Peer*> list;
	for(std::map<u16, Peer*>::iterator j = m_peers.begin();
		j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		list.push_back(peer);
	}
	return list;
}

bool Connection::getFromBuffers(u16 &peer_id, SharedBuffer<u8> &dst)
{
	for(std::map<u16, Peer*>::iterator j = m_peers.begin();
		j != m_peers.end(); ++j)
	{
		Peer *peer = j->second;
		for(u16 i=0; i<CHANNEL_COUNT; i++)
		{
			Channel *channel = &peer->channels[i];
			SharedBuffer<u8> resultdata;
			bool got = checkIncomingBuffers(channel, peer_id, resultdata);
			if(got){
				dst = resultdata;
				return true;
			}
		}
	}
	return false;
}

bool Connection::checkIncomingBuffers(Channel *channel, u16 &peer_id,
		SharedBuffer<u8> &dst)
{
	u16 firstseqnum = 0;
	// Clear old packets from start of buffer
	for(;;){
		bool found = channel->incoming_reliables.getFirstSeqnum(&firstseqnum);
		if(!found)
			break;
		if(seqnum_higher(channel->next_incoming_seqnum, firstseqnum))
			channel->incoming_reliables.popFirst();
		else
			break;
	}
	// This happens if all packets are old
	
	if(channel->incoming_reliables.empty() == false)
	{
		if(firstseqnum == channel->next_incoming_seqnum)
		{
			BufferedPacket p = channel->incoming_reliables.popFirst();
			
			peer_id = readPeerId(*p.data);
			u8 channelnum = readChannel(*p.data);
			u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);

			PrintInfo();
			dout_con<<"UNBUFFERING TYPE_RELIABLE"
					<<" seqnum="<<seqnum
					<<" peer_id="<<peer_id
					<<" channel="<<((int)channelnum&0xff)
					<<std::endl;

			channel->next_incoming_seqnum++;
			
			u32 headers_size = BASE_HEADER_SIZE + RELIABLE_HEADER_SIZE;
			// Get out the inside packet and re-process it
			SharedBuffer<u8> payload(p.data.getSize() - headers_size);
			memcpy(*payload, &p.data[headers_size], payload.getSize());

			dst = processPacket(channel, payload, peer_id, channelnum, true);
			return true;
		}
	}
	return false;
}

SharedBuffer<u8> Connection::processPacket(Channel *channel,
		SharedBuffer<u8> packetdata, u16 peer_id,
		u8 channelnum, bool reliable)
{
	IndentationRaiser iraiser(&(m_indentation));

	if(packetdata.getSize() < 1)
		throw InvalidIncomingDataException("packetdata.getSize() < 1");

	u8 type = readU8(&packetdata[0]);
	
	if(type == TYPE_CONTROL)
	{
		if(packetdata.getSize() < 2)
			throw InvalidIncomingDataException("packetdata.getSize() < 2");

		u8 controltype = readU8(&packetdata[1]);

		if(controltype == CONTROLTYPE_ACK)
		{
			if(packetdata.getSize() < 4)
				throw InvalidIncomingDataException
						("packetdata.getSize() < 4 (ACK header size)");

			u16 seqnum = readU16(&packetdata[2]);
			PrintInfo();
			dout_con<<"Got CONTROLTYPE_ACK: channelnum="
					<<((int)channelnum&0xff)<<", peer_id="<<peer_id
					<<", seqnum="<<seqnum<<std::endl;

			try{
				BufferedPacket p = channel->outgoing_reliables.popSeqnum(seqnum);
				// Get round trip time
				float rtt = p.totaltime;

				// Let peer calculate stuff according to it
				// (avg_rtt and resend_timeout)
				Peer *peer = getPeer(peer_id);
				peer->reportRTT(rtt);

				//PrintInfo(dout_con);
				//dout_con<<"RTT = "<<rtt<<std::endl;

				/*dout_con<<"OUTGOING: ";
				PrintInfo();
				channel->outgoing_reliables.print();
				dout_con<<std::endl;*/
			}
			catch(NotFoundException &e){
				PrintInfo(derr_con);
				derr_con<<"WARNING: ACKed packet not "
						"in outgoing queue"
						<<std::endl;
			}

			throw ProcessedSilentlyException("Got an ACK");
		}
		else if(controltype == CONTROLTYPE_SET_PEER_ID)
		{
			if(packetdata.getSize() < 4)
				throw InvalidIncomingDataException
						("packetdata.getSize() < 4 (SET_PEER_ID header size)");
			u16 peer_id_new = readU16(&packetdata[2]);
			PrintInfo();
			dout_con<<"Got new peer id: "<<peer_id_new<<"... "<<std::endl;

			if(GetPeerID() != PEER_ID_INEXISTENT)
			{
				PrintInfo(derr_con);
				derr_con<<"WARNING: Not changing"
						" existing peer id."<<std::endl;
			}
			else
			{
				dout_con<<"changing."<<std::endl;
				SetPeerID(peer_id_new);
			}
			throw ProcessedSilentlyException("Got a SET_PEER_ID");
		}
		else if(controltype == CONTROLTYPE_PING)
		{
			// Just ignore it, the incoming data already reset
			// the timeout counter
			PrintInfo();
			dout_con<<"PING"<<std::endl;
			throw ProcessedSilentlyException("Got a PING");
		}
		else if(controltype == CONTROLTYPE_DISCO)
		{
			// Just ignore it, the incoming data already reset
			// the timeout counter
			PrintInfo();
			dout_con<<"DISCO: Removing peer "<<(peer_id)<<std::endl;
			
			if(deletePeer(peer_id, false) == false)
			{
				PrintInfo(derr_con);
				derr_con<<"DISCO: Peer not found"<<std::endl;
			}

			throw ProcessedSilentlyException("Got a DISCO");
		}
		else{
			PrintInfo(derr_con);
			derr_con<<"INVALID TYPE_CONTROL: invalid controltype="
					<<((int)controltype&0xff)<<std::endl;
			throw InvalidIncomingDataException("Invalid control type");
		}
	}
	else if(type == TYPE_ORIGINAL)
	{
		if(packetdata.getSize() < ORIGINAL_HEADER_SIZE)
			throw InvalidIncomingDataException
					("packetdata.getSize() < ORIGINAL_HEADER_SIZE");
		PrintInfo();
		dout_con<<"RETURNING TYPE_ORIGINAL to user"
				<<std::endl;
		// Get the inside packet out and return it
		SharedBuffer<u8> payload(packetdata.getSize() - ORIGINAL_HEADER_SIZE);
		memcpy(*payload, &packetdata[ORIGINAL_HEADER_SIZE], payload.getSize());
		return payload;
	}
	else if(type == TYPE_SPLIT)
	{
		// We have to create a packet again for buffering
		// This isn't actually too bad an idea.
		BufferedPacket packet = makePacket(
				getPeer(peer_id)->address,
				packetdata,
				GetProtocolID(),
				peer_id,
				channelnum);
		// Buffer the packet
		SharedBuffer<u8> data = channel->incoming_splits.insert(packet, reliable);
		if(data.getSize() != 0)
		{
			PrintInfo();
			dout_con<<"RETURNING TYPE_SPLIT: Constructed full data, "
					<<"size="<<data.getSize()<<std::endl;
			return data;
		}
		PrintInfo();
		dout_con<<"BUFFERED TYPE_SPLIT"<<std::endl;
		throw ProcessedSilentlyException("Buffered a split packet chunk");
	}
	else if(type == TYPE_RELIABLE)
	{
		// Recursive reliable packets not allowed
		if(reliable)
			throw InvalidIncomingDataException("Found nested reliable packets");

		if(packetdata.getSize() < RELIABLE_HEADER_SIZE)
			throw InvalidIncomingDataException
					("packetdata.getSize() < RELIABLE_HEADER_SIZE");

		u16 seqnum = readU16(&packetdata[1]);

		bool is_future_packet = seqnum_higher(seqnum, channel->next_incoming_seqnum);
		bool is_old_packet = seqnum_higher(channel->next_incoming_seqnum, seqnum);
		
		PrintInfo();
		if(is_future_packet)
			dout_con<<"BUFFERING";
		else if(is_old_packet)
			dout_con<<"OLD";
		else
			dout_con<<"RECUR";
		dout_con<<" TYPE_RELIABLE seqnum="<<seqnum
				<<" next="<<channel->next_incoming_seqnum;
		dout_con<<" [sending CONTROLTYPE_ACK"
				" to peer_id="<<peer_id<<"]";
		dout_con<<std::endl;
		
		//DEBUG
		//assert(channel->incoming_reliables.size() < 100);

		// Send a CONTROLTYPE_ACK
		SharedBuffer<u8> reply(4);
		writeU8(&reply[0], TYPE_CONTROL);
		writeU8(&reply[1], CONTROLTYPE_ACK);
		writeU16(&reply[2], seqnum);
		rawSendAsPacket(peer_id, channelnum, reply, false);

		//if(seqnum_higher(seqnum, channel->next_incoming_seqnum))
		if(is_future_packet)
		{
			/*PrintInfo();
			dout_con<<"Buffering reliable packet (seqnum="
					<<seqnum<<")"<<std::endl;*/
			
			// This one comes later, buffer it.
			// Actually we have to make a packet to buffer one.
			// Well, we have all the ingredients, so just do it.
			BufferedPacket packet = makePacket(
					getPeer(peer_id)->address,
					packetdata,
					GetProtocolID(),
					peer_id,
					channelnum);
			try{
				channel->incoming_reliables.insert(packet);
				
				/*PrintInfo();
				dout_con<<"INCOMING: ";
				channel->incoming_reliables.print();
				dout_con<<std::endl;*/
			}
			catch(AlreadyExistsException &e)
			{
			}

			throw ProcessedSilentlyException("Buffered future reliable packet");
		}
		//else if(seqnum_higher(channel->next_incoming_seqnum, seqnum))
		else if(is_old_packet)
		{
			// An old packet, dump it
			throw InvalidIncomingDataException("Got an old reliable packet");
		}

		channel->next_incoming_seqnum++;

		// Get out the inside packet and re-process it
		SharedBuffer<u8> payload(packetdata.getSize() - RELIABLE_HEADER_SIZE);
		memcpy(*payload, &packetdata[RELIABLE_HEADER_SIZE], payload.getSize());

		return processPacket(channel, payload, peer_id, channelnum, true);
	}
	else
	{
		PrintInfo(derr_con);
		derr_con<<"Got invalid type="<<((int)type&0xff)<<std::endl;
		throw InvalidIncomingDataException("Invalid packet type");
	}
	
	// We should never get here.
	// If you get here, add an exception or a return to some of the
	// above conditionals.
	assert(0);
	throw BaseException("Error in Channel::ProcessPacket()");
}

bool Connection::deletePeer(u16 peer_id, bool timeout)
{
	if(m_peers.find(peer_id) == m_peers.end())
		return false;
	
	Peer *peer = m_peers[peer_id];

	// Create event
	ConnectionEvent e;
	e.peerRemoved(peer_id, timeout, peer->address);
	putEvent(e);

	delete m_peers[peer_id];
	m_peers.erase(peer_id);
	return true;
}

/* Interface */

ConnectionEvent Connection::getEvent()
{
	if(m_event_queue.empty()){
		ConnectionEvent e;
		e.type = CONNEVENT_NONE;
		return e;
	}
	return m_event_queue.pop_front();
}

ConnectionEvent Connection::waitEvent(u32 timeout_ms)
{
	try{
		return m_event_queue.pop_front(timeout_ms);
	} catch(ItemNotFoundException &ex){
		ConnectionEvent e;
		e.type = CONNEVENT_NONE;
		return e;
	}
}

void Connection::putCommand(ConnectionCommand &c)
{
	m_command_queue.push_back(c);
}

void Connection::Serve(unsigned short port)
{
	ConnectionCommand c;
	c.serve(port);
	putCommand(c);
}

void Connection::Connect(Address address)
{
	ConnectionCommand c;
	c.connect(address);
	putCommand(c);
}

bool Connection::Connected()
{
	JMutexAutoLock peerlock(m_peers_mutex);

	if(m_peers.size() != 1)
		return false;
		
	std::map<u16, Peer*>::iterator node = m_peers.find(PEER_ID_SERVER);
	if(node == m_peers.end())
		return false;
	
	if(m_peer_id == PEER_ID_INEXISTENT)
		return false;
	
	return true;
}

void Connection::Disconnect()
{
	ConnectionCommand c;
	c.disconnect();
	putCommand(c);
}

u32 Connection::Receive(u16 &peer_id, SharedBuffer<u8> &data)
{
	for(;;){
		ConnectionEvent e = waitEvent(m_bc_receive_timeout);
		if(e.type != CONNEVENT_NONE)
			dout_con<<getDesc()<<": Receive: got event: "
					<<e.describe()<<std::endl;
		switch(e.type){
		case CONNEVENT_NONE:
			throw NoIncomingDataException("No incoming data");
		case CONNEVENT_DATA_RECEIVED:
			peer_id = e.peer_id;
			data = SharedBuffer<u8>(e.data);
			return e.data.getSize();
		case CONNEVENT_PEER_ADDED: {
			Peer tmp(e.peer_id, e.address);
			if(m_bc_peerhandler)
				m_bc_peerhandler->peerAdded(&tmp);
			continue; }
		case CONNEVENT_PEER_REMOVED: {
			Peer tmp(e.peer_id, e.address);
			if(m_bc_peerhandler)
				m_bc_peerhandler->deletingPeer(&tmp, e.timeout);
			continue; }
		case CONNEVENT_BIND_FAILED:
			throw ConnectionBindFailed("Failed to bind socket "
					"(port already in use?)");
		}
	}
	throw NoIncomingDataException("No incoming data");
}

void Connection::SendToAll(u8 channelnum, SharedBuffer<u8> data, bool reliable)
{
	assert(channelnum < CHANNEL_COUNT);

	ConnectionCommand c;
	c.sendToAll(channelnum, data, reliable);
	putCommand(c);
}

void Connection::Send(u16 peer_id, u8 channelnum,
		SharedBuffer<u8> data, bool reliable)
{
	assert(channelnum < CHANNEL_COUNT);

	ConnectionCommand c;
	c.send(peer_id, channelnum, data, reliable);
	putCommand(c);
}

void Connection::RunTimeouts(float dtime)
{
	// No-op
}

Address Connection::GetPeerAddress(u16 peer_id)
{
	JMutexAutoLock peerlock(m_peers_mutex);
	return getPeer(peer_id)->address;
}

float Connection::GetPeerAvgRTT(u16 peer_id)
{
	JMutexAutoLock peerlock(m_peers_mutex);
	return getPeer(peer_id)->avg_rtt;
}

void Connection::DeletePeer(u16 peer_id)
{
	ConnectionCommand c;
	c.deletePeer(peer_id);
	putCommand(c);
}

void Connection::PrintInfo(std::ostream &out)
{
	out<<getDesc()<<": ";
}

void Connection::PrintInfo()
{
	PrintInfo(dout_con);
}

std::string Connection::getDesc()
{
	return std::string("con(")+itos(m_socket.GetHandle())+"/"+itos(m_peer_id)+")";
}

} // namespace