aboutsummaryrefslogtreecommitdiff
path: root/po/ja
Commit message (Expand)AuthorAge
* Run updatepo.shIlya Zhuravlev2013-09-08
* Run util/updatepo.shPilzAdam2013-08-25
* Fix i18n of some strings.arsdragonfly2013-07-02
* Update po filesPilzAdam2013-05-13
* Update po filesPilzAdam2013-03-30
* Translated using Weblate (Japanese)Mitori Itoshiki2013-03-30
* Translated using Weblate (Japanese)c h2013-03-07
* Translated using Weblate (Japanese)Mitori Itoshiki2013-03-01
* Translated using Weblate (Japanese)Tomona Nanase2013-02-28
* Translated using Weblate (Japanese)Mitori Itoshiki2013-02-20
* Translated using Weblate (Japanese)Tomona Nanase2013-02-19
* Translated using Weblate (Japanese)Mitori Itoshiki2013-02-08
* Add Japanese & Korean languages.Ilya Zhuravlev2013-02-05
'>116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/*
 * Minetest
 * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
 * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *  1. Redistributions of source code must retain the above copyright notice, this list of
 *     conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice, this list
 *     of conditions and the following disclaimer in the documentation and/or other materials
 *     provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <math.h>
#include "noise.h"
#include <iostream>
#include <string.h> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"

#define NOISE_MAGIC_X    1619
#define NOISE_MAGIC_Y    31337
#define NOISE_MAGIC_Z    52591
#define NOISE_MAGIC_SEED 1013

typedef float (*Interp2dFxn)(
		float v00, float v10, float v01, float v11,
		float x, float y);

typedef float (*Interp3dFxn)(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z);

float cos_lookup[16] = {
	1.0,  0.9238,  0.7071,  0.3826, 0, -0.3826, -0.7071, -0.9238,
	1.0, -0.9238, -0.7071, -0.3826, 0,  0.3826,  0.7071,  0.9238
};

FlagDesc flagdesc_noiseparams[] = {
	{"defaults",    NOISE_FLAG_DEFAULTS},
	{"eased",       NOISE_FLAG_EASED},
	{"absvalue",    NOISE_FLAG_ABSVALUE},
	{"pointbuffer", NOISE_FLAG_POINTBUFFER},
	{"simplex",     NOISE_FLAG_SIMPLEX},
	{NULL,          0}
};

///////////////////////////////////////////////////////////////////////////////

PcgRandom::PcgRandom(u64 state, u64 seq)
{
	seed(state, seq);
}

void PcgRandom::seed(u64 state, u64 seq)
{
	m_state = 0U;
	m_inc = (seq << 1u) | 1u;
	next();
	m_state += state;
	next();
}


u32 PcgRandom::next()
{
	u64 oldstate = m_state;
	m_state = oldstate * 6364136223846793005ULL + m_inc;

	u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
	u32 rot = oldstate >> 59u;
	return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}


u32 PcgRandom::range(u32 bound)
{
	// If the bound is 0, we cover the whole RNG's range
	if (bound == 0)
		return next();
	/*
	If the bound is not a multiple of the RNG's range, it may cause bias,
	e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
	Using rand() % 3, the number 0 would be twice as likely to appear.
	With a very large RNG range, the effect becomes less prevalent but
	still present.  This can be solved by modifying the range of the RNG
	to become a multiple of bound by dropping values above the a threshold.
	In our example, threshold == 4 - 3 = 1 % 3 == 1, so reject 0, thus
	making the range 3 with no bias.

	This loop looks dangerous, but will always terminate due to the
	RNG's property of uniformity.
	*/
	u32 threshold = -bound % bound;
	u32 r;

	while ((r = next()) < threshold)
		;

	return r % bound;
}


s32 PcgRandom::range(s32 min, s32 max)
{
	if (max < min)
		throw PrngException("Invalid range (max < min)");

	u32 bound = max - min + 1;
	return range(bound) + min;
}


void PcgRandom::bytes(void *out, size_t len)
{
	u8 *outb = (u8 *)out;
	int bytes_left = 0;
	u32 r;

	while (len--) {
		if (bytes_left == 0) {
			bytes_left = sizeof(u32);
			r = next();
		}

		*outb = r & 0xFF;
		outb++;
		bytes_left--;
		r >>= CHAR_BIT;
	}
}


s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
{
	s32 accum = 0;
	for (int i = 0; i != num_trials; i++)
		accum += range(min, max);
	return myround((float)accum / num_trials);
}

///////////////////////////////////////////////////////////////////////////////

float noise2d(int x, int y, int seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


float noise3d(int x, int y, int z, int seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


inline float dotProduct(float vx, float vy, float wx, float wy)
{
	return vx * wx + vy * wy;
}


inline float linearInterpolation(float v0, float v1, float t)
{
	return v0 + (v1 - v0) * t;
}


inline float biLinearInterpolation(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float u = linearInterpolation(v00, v10, tx);
	float v = linearInterpolation(v01, v11, tx);
	return linearInterpolation(u, v, ty);
}


inline float biLinearInterpolationNoEase(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float u = linearInterpolation(v00, v10, x);
	float v = linearInterpolation(v01, v11, x);
	return linearInterpolation(u, v, y);
}


float triLinearInterpolation(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float tz = easeCurve(z);
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
	return linearInterpolation(u, v, tz);
}

float triLinearInterpolationNoEase(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
	return linearInterpolation(u, v, z);
}

float noise2d_gradient(float x, float y, int seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Get values for corners of square
	float v00 = noise2d(x0, y0, seed);
	float v10 = noise2d(x0+1, y0, seed);
	float v01 = noise2d(x0, y0+1, seed);
	float v11 = noise2d(x0+1, y0+1, seed);
	// Interpolate
	if (eased)
		return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
	else
		return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}


float noise3d_gradient(float x, float y, float z, int seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	int z0 = myfloor(z);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	float zl = z - (float)z0;
	// Get values for corners of cube
	float v000 = noise3d(x0,     y0,     z0,     seed);
	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
	// Interpolate
	if (eased) {
		return triLinearInterpolation(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	} else {
		return triLinearInterpolationNoEase(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	}
}


float noise2d_perlin(float x, float y, int seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise2d_perlin_abs(float x, float y, int seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin(float x, float y, float z, int seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin_abs(float x, float y, float z, int seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float contour(float v)
{
	v = fabs(v);
	if (v >= 1.0)
		return 0.0;
	return (1.0 - v);
}


///////////////////////// [ New noise ] ////////////////////////////


float NoisePerlin2D(NoiseParams *np, float x, float y, int seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise2d_gradient(x * f, y * f, seed + i,
			np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


float NoisePerlin3D(NoiseParams *np, float x, float y, float z, int seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	z /= np->spread.Z;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
			np->flags & NOISE_FLAG_EASED);

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


Noise::Noise(NoiseParams *np_, int seed, u32 sx, u32 sy, u32 sz)
{
	memcpy(&np, np_, sizeof(np));
	this->seed = seed;
	this->sx   = sx;
	this->sy   = sy;
	this->sz   = sz;

	this->persist_buf  = NULL;
	this->gradient_buf = NULL;
	this->result       = NULL;

	allocBuffers();
}


Noise::~Noise()
{
	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] noise_buf;
	delete[] result;
}


void Noise::allocBuffers()
{
	if (sx < 1)
		sx = 1;
	if (sy < 1)
		sy = 1;
	if (sz < 1)
		sz = 1;

	this->noise_buf = NULL;
	resizeNoiseBuf(sz > 1);

	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] result;

	try {
		size_t bufsize = sx * sy * sz;
		this->persist_buf  = NULL;
		this->gradient_buf = new float[bufsize];
		this->result       = new float[bufsize];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


void Noise::setSize(u32 sx, u32 sy, u32 sz)
{
	this->sx = sx;
	this->sy = sy;
	this->sz = sz;

	allocBuffers();
}


void Noise::setSpreadFactor(v3f spread)
{
	this->np.spread = spread;

	resizeNoiseBuf(sz > 1);
}


void Noise::setOctaves(int octaves)
{
	this->np.octaves = octaves;

	resizeNoiseBuf(sz > 1);
}


void Noise::resizeNoiseBuf(bool is3d)
{
	//maximum possible spread value factor
	float ofactor = (np.lacunarity > 1.0) ?
		pow(np.lacunarity, np.octaves - 1) :
		np.lacunarity;

	// noise lattice point count
	// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
	float num_noise_points_x = sx * ofactor / np.spread.X;
	float num_noise_points_y = sy * ofactor / np.spread.Y;
	float num_noise_points_z = sz * ofactor / np.spread.Z;

	// protect against obviously invalid parameters
	if (num_noise_points_x > 1000000000.f ||
		num_noise_points_y > 1000000000.f ||
		num_noise_points_z > 1000000000.f)
		throw InvalidNoiseParamsException();

	// + 2 for the two initial endpoints
	// + 1 for potentially crossing a boundary due to offset
	size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
	size_t nly = (size_t)ceil(num_noise_points_y) + 3;
	size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;

	delete[] noise_buf;
	try {
		noise_buf = new float[nlx * nly * nlz];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


/*
 * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 * 2 lines + 2 planes.
 * However, this would require the noise calls to be interposed with the
 * interpolation loops, which may trash the icache, leading to lower overall
 * performance.
 * Another optimization that could save half as many noise calls is to carry over
 * values from the previous noise lattice as midpoints in the new lattice for the
 * next octave.
 */
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
		float x, float y,
		float step_x, float step_y,
		int seed)
{
	float v00, v01, v10, v11, u, v, orig_u;
	u32 index, i, j, noisex, noisey;
	u32 nlx, nly;
	s32 x0, y0;

	bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
	Interp2dFxn interpolate = eased ?
		biLinearInterpolation : biLinearInterpolationNoEase;

	x0 = floor(x);
	y0 = floor(y);
	u = x - (float)x0;
	v = y - (float)y0;
	orig_u = u;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	index = 0;
	for (j = 0; j != nly; j++)
		for (i = 0; i != nlx; i++)
			noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	for (j = 0; j != sy; j++) {
		v00 = noise_buf[idx(0, noisey)];
		v10 = noise_buf[idx(1, noisey)];
		v01 = noise_buf[idx(0, noisey + 1)];
		v11 = noise_buf[idx(1, noisey + 1)];

		u = orig_u;
		noisex = 0;
		for (i = 0; i != sx; i++) {
			gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);

			u += step_x;
			if (u >= 1.0) {
				u -= 1.0;
				noisex++;
				v00 = v10;
				v01 = v11;
				v10 = noise_buf[idx(noisex + 1, noisey)];
				v11 = noise_buf[idx(noisex + 1, noisey + 1)];
			}
		}

		v += step_y;
		if (v >= 1.0) {
			v -= 1.0;
			noisey++;
		}
	}
}
#undef idx


#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
		float x, float y, float z,
		float step_x, float step_y, float step_z,
		int seed)
{
	float v000, v010, v100, v110;
	float v001, v011, v101, v111;
	float u, v, w, orig_u, orig_v;
	u32 index, i, j, k, noisex, noisey, noisez;
	u32 nlx, nly, nlz;
	s32 x0, y0, z0;

	Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
		triLinearInterpolation : triLinearInterpolationNoEase;

	x0 = floor(x);
	y0 = floor(y);
	z0 = floor(z);
	u = x - (float)x0;
	v = y - (float)y0;
	w = z - (float)z0;
	orig_u = u;
	orig_v = v;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	nlz = (u32)(w + sz * step_z) + 2;
	index = 0;
	for (k = 0; k != nlz; k++)
		for (j = 0; j != nly; j++)
			for (i = 0; i != nlx; i++)
				noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	noisez = 0;
	for (k = 0; k != sz; k++) {
		v = orig_v;
		noisey = 0;
		for (j = 0; j != sy; j++) {
			v000 = noise_buf[idx(0, noisey,     noisez)];
			v100 = noise_buf[idx(1, noisey,     noisez)];
			v010 = noise_buf[idx(0, noisey + 1, noisez)];
			v110 = noise_buf[idx(1, noisey + 1, noisez)];
			v001 = noise_buf[idx(0, noisey,     noisez + 1)];
			v101 = noise_buf[idx(1, noisey,     noisez + 1)];
			v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
			v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];

			u = orig_u;
			noisex = 0;
			for (i = 0; i != sx; i++) {
				gradient_buf[index++] = interpolate(
					v000, v100, v010, v110,
					v001, v101, v011, v111,
					u, v, w);

				u += step_x;
				if (u >= 1.0) {
					u -= 1.0;
					noisex++;
					v000 = v100;
					v010 = v110;
					v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
					v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
					v001 = v101;
					v011 = v111;
					v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
					v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
				}
			}

			v += step_y;
			if (v >= 1.0) {
				v -= 1.0;
				noisey++;
			}
		}

		w += step_z;
		if (w >= 1.0) {
			w -= 1.0;
			noisez++;
		}
	}
}
#undef idx


float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy;

	x /= np.spread.X;
	y /= np.spread.Y;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap2D(x * f, y * f,
			f / np.spread.X, f / np.spread.Y,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy * sz;

	x /= np.spread.X;
	y /= np.spread.Y;
	z /= np.spread.Z;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap3D(x * f, y * f, z * f,
			f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


void Noise::updateResults(float g, float *gmap,
	float *persistence_map, size_t bufsize)
{
	// This looks very ugly, but it is 50-70% faster than having
	// conditional statements inside the loop
	if (np.flags & NOISE_FLAG_ABSVALUE) {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * fabs(gradient_buf[i]);
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * fabs(gradient_buf[i]);
		}
	} else {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * gradient_buf[i];
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * gradient_buf[i];
		}
	}
}