aboutsummaryrefslogtreecommitdiff
path: root/src/script/common/c_content.h
Commit message (Collapse)AuthorAge
* Move get_schematic and read_schematic to l_mapgen.cppkwolekr2014-12-10
|
* Remove get_noiseparams function. read_noiseparams should be used from now onkwolekr2014-12-10
|
* Add flags and lacunarity as new noise parameterskwolekr2014-12-07
| | | | | | | Add 'absolute value' option to noise map functions Extend persistence modulation to 3D noise Extend 'eased' option to noise2d_perlin* functions Some noise.cpp formatting fixups
* Add Generator Element Management frameworkkwolekr2014-11-12
| | | | Add BiomeManager, OreManager, DecorationManager, and SchematicManager
* Update set_mapgen_params and set_gen_notify Lua API to use new flag formatkwolekr2014-03-08
|
* Add minetest.set_noiseparam_defaults() Lua APIkwolekr2014-02-15
|
* Add capability to read table flag fields from Lua APIkwolekr2014-02-09
|
* Make flag strings clear specified flag with 'no' prefixkwolekr2014-02-08
| | | | | Remove flagmask field from set_mapgen_params table Add small bits of needed documentation
* Add maximum recursion depth to read_json_valueShadowNinja2014-01-11
|
* Rename get_json_value to read_json_valueShadowNinja2014-01-11
|
* Add 'minetest.write_json'ShadowNinja2013-12-18
|
* Add minetest.parse_json, engine.parse_jsonKahrl2013-09-02
|
* Omnicleanup: header cleanup, add ModApiUtil shared between game and mainmenuKahrl2013-08-14
|
* Decoration: Add Schematic decoration typekwolekr2013-06-22
|
* Fix class/struct forward declaration inconsistencies (good on ya, MSVC)Kahrl2013-06-06
|
* Move scriptapi to separate folder (by sapier)sapier2013-05-25
On the lua side, notably minetest.env:<function>(<args>) should now be replaced by minetest.<function>(<args>). The old way is and will stay supported for a long time. Also: Update and clean up lua_api.txt (by celeron55) Move EnvRef to lua and remove add_rat and add_firefly (by kahrl) Add separate src/util/CMakeLists.txt, other minor fixes (by kahrl)
n289' href='#n289'>289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#pragma once

#include "basic_macros.h"
#include "constants.h"
#include "irrlichttypes.h"
#include "irr_v2d.h"
#include "irr_v3d.h"
#include "irr_aabb3d.h"
#include "SColor.h"
#include <matrix4.h>

#define rangelim(d, min, max) ((d) < (min) ? (min) : ((d) > (max) ? (max) : (d)))
#define myfloor(x) ((x) < 0.0 ? (int)(x) - 1 : (int)(x))
// The naive swap performs better than the xor version
#define SWAP(t, x, y) do { \
	t temp = x; \
	x = y; \
	y = temp; \
} while (0)

// Maximum radius of a block.  The magic number is
// sqrt(3.0) / 2.0 in literal form.
static constexpr const f32 BLOCK_MAX_RADIUS = 0.866025403784f * MAP_BLOCKSIZE * BS;

inline s16 getContainerPos(s16 p, s16 d)
{
	return (p >= 0 ? p : p - d + 1) / d;
}

inline v2s16 getContainerPos(v2s16 p, s16 d)
{
	return v2s16(
		getContainerPos(p.X, d),
		getContainerPos(p.Y, d)
	);
}

inline v3s16 getContainerPos(v3s16 p, s16 d)
{
	return v3s16(
		getContainerPos(p.X, d),
		getContainerPos(p.Y, d),
		getContainerPos(p.Z, d)
	);
}

inline v2s16 getContainerPos(v2s16 p, v2s16 d)
{
	return v2s16(
		getContainerPos(p.X, d.X),
		getContainerPos(p.Y, d.Y)
	);
}

inline v3s16 getContainerPos(v3s16 p, v3s16 d)
{
	return v3s16(
		getContainerPos(p.X, d.X),
		getContainerPos(p.Y, d.Y),
		getContainerPos(p.Z, d.Z)
	);
}

inline void getContainerPosWithOffset(s16 p, s16 d, s16 &container, s16 &offset)
{
	container = (p >= 0 ? p : p - d + 1) / d;
	offset = p & (d - 1);
}

inline void getContainerPosWithOffset(const v2s16 &p, s16 d, v2s16 &container, v2s16 &offset)
{
	getContainerPosWithOffset(p.X, d, container.X, offset.X);
	getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
}

inline void getContainerPosWithOffset(const v3s16 &p, s16 d, v3s16 &container, v3s16 &offset)
{
	getContainerPosWithOffset(p.X, d, container.X, offset.X);
	getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
	getContainerPosWithOffset(p.Z, d, container.Z, offset.Z);
}


inline bool isInArea(v3s16 p, s16 d)
{
	return (
		p.X >= 0 && p.X < d &&
		p.Y >= 0 && p.Y < d &&
		p.Z >= 0 && p.Z < d
	);
}

inline bool isInArea(v2s16 p, s16 d)
{
	return (
		p.X >= 0 && p.X < d &&
		p.Y >= 0 && p.Y < d
	);
}

inline bool isInArea(v3s16 p, v3s16 d)
{
	return (
		p.X >= 0 && p.X < d.X &&
		p.Y >= 0 && p.Y < d.Y &&
		p.Z >= 0 && p.Z < d.Z
	);
}

inline void sortBoxVerticies(v3s16 &p1, v3s16 &p2) {
	if (p1.X > p2.X)
		SWAP(s16, p1.X, p2.X);
	if (p1.Y > p2.Y)
		SWAP(s16, p1.Y, p2.Y);
	if (p1.Z > p2.Z)
		SWAP(s16, p1.Z, p2.Z);
}

inline v3s16 componentwise_min(const v3s16 &a, const v3s16 &b)
{
	return v3s16(MYMIN(a.X, b.X), MYMIN(a.Y, b.Y), MYMIN(a.Z, b.Z));
}

inline v3s16 componentwise_max(const v3s16 &a, const v3s16 &b)
{
	return v3s16(MYMAX(a.X, b.X), MYMAX(a.Y, b.Y), MYMAX(a.Z, b.Z));
}


/** Returns \p f wrapped to the range [-360, 360]
 *
 *  See test.cpp for example cases.
 *
 *  \note This is also used in cases where degrees wrapped to the range [0, 360]
 *  is innapropriate (e.g. pitch needs negative values)
 *
 *  \internal functionally equivalent -- although precision may vary slightly --
 *  to fmodf((f), 360.0f) however empirical tests indicate that this approach is
 *  faster.
 */
inline float modulo360f(float f)
{
	int sign;
	int whole;
	float fraction;

	if (f < 0) {
		f = -f;
		sign = -1;
	} else {
		sign = 1;
	}

	whole = f;

	fraction = f - whole;
	whole %= 360;

	return sign * (whole + fraction);
}


/** Returns \p f wrapped to the range [0, 360]
  */
inline float wrapDegrees_0_360(float f)
{
	float value = modulo360f(f);
	return value < 0 ? value + 360 : value;
}


/** Returns \p v3f wrapped to the range [0, 360]
  */
inline v3f wrapDegrees_0_360_v3f(v3f v)
{
	v3f value_v3f;
	value_v3f.X = modulo360f(v.X);
	value_v3f.Y = modulo360f(v.Y);
	value_v3f.Z = modulo360f(v.Z);

	// Now that values are wrapped, use to get values for certain ranges
	value_v3f.X = value_v3f.X < 0 ? value_v3f.X + 360 : value_v3f.X;
	value_v3f.Y = value_v3f.Y < 0 ? value_v3f.Y + 360 : value_v3f.Y;
	value_v3f.Z = value_v3f.Z < 0 ? value_v3f.Z + 360 : value_v3f.Z;
	return value_v3f;
}


/** Returns \p f wrapped to the range [-180, 180]
  */
inline float wrapDegrees_180(float f)
{
	float value = modulo360f(f + 180);
	if (value < 0)
		value += 360;
	return value - 180;
}

/*
	Pseudo-random (VC++ rand() sucks)
*/
#define MYRAND_RANGE 0xffffffff
u32 myrand();
void mysrand(unsigned int seed);
void myrand_bytes(void *out, size_t len);
int myrand_range(int min, int max);

/*
	Miscellaneous functions
*/

inline u32 get_bits(u32 x, u32 pos, u32 len)
{
	u32 mask = (1 << len) - 1;
	return (x >> pos) & mask;
}

inline void set_bits(u32 *x, u32 pos, u32 len, u32 val)
{
	u32 mask = (1 << len) - 1;
	*x &= ~(mask << pos);
	*x |= (val & mask) << pos;
}

inline u32 calc_parity(u32 v)
{
	v ^= v >> 16;
	v ^= v >> 8;
	v ^= v >> 4;
	v &= 0xf;
	return (0x6996 >> v) & 1;
}

u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed);

bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
		f32 camera_fov, f32 range, f32 *distance_ptr=NULL);

s16 adjustDist(s16 dist, float zoom_fov);

/*
	Returns nearest 32-bit integer for given floating point number.
	<cmath> and <math.h> in VC++ don't provide round().
*/
inline s32 myround(f32 f)
{
	return (s32)(f < 0.f ? (f - 0.5f) : (f + 0.5f));
}

inline constexpr f32 sqr(f32 f)
{
	return f * f;
}

/*
	Returns integer position of node in given floating point position
*/
inline v3s16 floatToInt(v3f p, f32 d)
{
	return v3s16(
		(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
		(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
		(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
}

/*
	Returns integer position of node in given double precision position
 */
inline v3s16 doubleToInt(v3d p, double d)
{
	return v3s16(
		(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
		(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
		(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
}

/*
	Returns floating point position of node in given integer position
*/
inline v3f intToFloat(v3s16 p, f32 d)
{
	return v3f(
		(f32)p.X * d,
		(f32)p.Y * d,
		(f32)p.Z * d
	);
}

// Random helper. Usually d=BS
inline aabb3f getNodeBox(v3s16 p, float d)
{
	return aabb3f(
		(float)p.X * d - 0.5f * d,
		(float)p.Y * d - 0.5f * d,
		(float)p.Z * d - 0.5f * d,
		(float)p.X * d + 0.5f * d,
		(float)p.Y * d + 0.5f * d,
		(float)p.Z * d + 0.5f * d
	);
}


class IntervalLimiter
{
public:
	IntervalLimiter() = default;

	/*
		dtime: time from last call to this method
		wanted_interval: interval wanted
		return value:
			true: action should be skipped
			false: action should be done
	*/
	bool step(float dtime, float wanted_interval)
	{
		m_accumulator += dtime;
		if (m_accumulator < wanted_interval)
			return false;
		m_accumulator -= wanted_interval;
		return true;
	}

private:
	float m_accumulator = 0.0f;
};


/*
	Splits a list into "pages". For example, the list [1,2,3,4,5] split
	into two pages would be [1,2,3],[4,5]. This function computes the
	minimum and maximum indices of a single page.

	length: Length of the list that should be split
	page: Page number, 1 <= page <= pagecount
	pagecount: The number of pages, >= 1
	minindex: Receives the minimum index (inclusive).
	maxindex: Receives the maximum index (exclusive).

	Ensures 0 <= minindex <= maxindex <= length.
*/
inline void paging(u32 length, u32 page, u32 pagecount, u32 &minindex, u32 &maxindex)
{
	if (length < 1 || pagecount < 1 || page < 1 || page > pagecount) {
		// Special cases or invalid parameters
		minindex = maxindex = 0;
	} else if(pagecount <= length) {
		// Less pages than entries in the list:
		// Each page contains at least one entry
		minindex = (length * (page-1) + (pagecount-1)) / pagecount;
		maxindex = (length * page + (pagecount-1)) / pagecount;
	} else {
		// More pages than entries in the list:
		// Make sure the empty pages are at the end
		if (page < length) {
			minindex = page-1;
			maxindex = page;
		} else {
			minindex = 0;
			maxindex = 0;
		}
	}
}

inline float cycle_shift(float value, float by = 0, float max = 1)
{
    if (value + by < 0)   return value + by + max;
    if (value + by > max) return value + by - max;
    return value + by;
}

inline bool is_power_of_two(u32 n)
{
	return n != 0 && (n & (n - 1)) == 0;
}

// Compute next-higher power of 2 efficiently, e.g. for power-of-2 texture sizes.
// Public Domain: https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
inline u32 npot2(u32 orig) {
	orig--;
	orig |= orig >> 1;
	orig |= orig >> 2;
	orig |= orig >> 4;
	orig |= orig >> 8;
	orig |= orig >> 16;
	return orig + 1;
}

// Gradual steps towards the target value in a wrapped (circular) system
// using the shorter of both ways
template<typename T>
inline void wrappedApproachShortest(T &current, const T target, const T stepsize,
	const T maximum)
{
	T delta = target - current;
	if (delta < 0)
		delta += maximum;

	if (delta > stepsize && maximum - delta > stepsize) {
		current += (delta < maximum / 2) ? stepsize : -stepsize;
		if (current >= maximum)
			current -= maximum;
	} else {
		current = target;
	}
}

void setPitchYawRollRad(core::matrix4 &m, const v3f &rot);

inline void setPitchYawRoll(core::matrix4 &m, const v3f &rot)
{
	setPitchYawRollRad(m, rot * core::DEGTORAD64);
}

v3f getPitchYawRollRad(const core::matrix4 &m);

inline v3f getPitchYawRoll(const core::matrix4 &m)
{
	return getPitchYawRollRad(m) * core::RADTODEG64;
}

// Muliply the RGB value of a color linearly, and clamp to black/white
inline irr::video::SColor multiplyColorValue(const irr::video::SColor &color, float mod)
{
	return irr::video::SColor(color.getAlpha(),
			core::clamp<u32>(color.getRed() * mod, 0, 255),
			core::clamp<u32>(color.getGreen() * mod, 0, 255),
			core::clamp<u32>(color.getBlue() * mod, 0, 255));
}