aboutsummaryrefslogtreecommitdiff
path: root/src/voxel.cpp
Commit message (Collapse)AuthorAge
* Remove some old dead code. Fix some Clang warnings in SRP (ng->N... willLoic Blot2015-07-24
| | | | always evaluate to true.
* Optimise MapBlockMesh related functionsgregorycu2015-02-23
| | | | | | | | | Directely or indirectly optimises the following functions: * MapBlockMesh::MapBlockMesh * MapBlockMesh::getTileInfo * MapBlockMesh::makeFastFace * MapBlockMesh::getSmoothLightCombined
* Create empty default constructor for MapNodeCraig Robbins2015-01-18
|
* Add VoxelArea::hasEmptyExtentunknown2015-01-13
|
* VoxelManipulator: Remove unnecessary deallocation stepskwolekr2014-12-27
|
* Large increase in performanceCraig Robbins2014-12-24
|
* Use std::string::empty() instead of size() where applicableAnton2014-12-12
|
* Optimise VoxelManipulator::copyFromCraig Robbins2014-12-04
| | | | | | ~3-4x faster This indirectly optimises MapBlock:copyTo() which in turn improves performance of MeshMakeData::fill()
* Optimise functions from CNodeDefManager and VoxelManipulatorCraig Robbins2014-11-21
| | | | | CNodeDefManager::get() VoxelManipulator::addArea()
* Remove emerge and speedup addArea by using memcopy instead of one by one ↵sapier2014-06-23
| | | | assignment
* Use memset for flag initialization (compiler optimization is way better)sapier2014-06-23
| | | | use temp variables instead of recalculating array index
* Omnicleanup: header cleanup, add ModApiUtil shared between game and mainmenuKahrl2013-08-14
|
* Fix nearly all warningskwolekr2013-05-19
|
* Migrate to STL containers/algorithms.Ilya Zhuravlev2013-03-11
|
* Fix most walled-off caveskwolekr2013-02-25
|
* Update Copyright YearsSfan52013-02-24
|
* Change Minetest-c55 to MinetestPilzAdam2013-02-24
|
* Properly and efficiently use split utility headersPerttu Ahola2012-06-17
|
* Switch the license to be LGPLv2/later, with small parts still remaining as ↵Perttu Ahola2012-06-05
| | | | GPLv2/later, by agreement of major contributors
* Implement propagateSunlight for VoxelManipulatorPerttu Ahola2012-03-27
|
* Optimize lighting by a tiny bitPerttu Ahola2011-11-29
|
* GameDef compilesPerttu Ahola2011-11-29
|
* extended content-type rangePerttu Ahola2011-07-23
|
* Moved some mapnode content stuff from mapnode.{h,cpp} and digging property ↵Perttu Ahola2011-06-17
| | | | stuff from material.cpp to content_mapnode.{h,cpp}
* partly working chunk-based map generator (doesn't save properly, spawn is ↵Perttu Ahola2011-02-01
| | | | pretty random)
* map generation framework under development... not quite operational at this ↵Perttu Ahola2011-01-30
| | | | point.
* Reworked texture, material, mineral and whatever handlingPerttu Ahola2011-01-26
|
* removed alternative name "pressure" from param2Perttu Ahola2011-01-25
|
* Faster lighting at map generation timePerttu Ahola2011-01-24
|
* commented out old water stuffPerttu Ahola2011-01-24
|
* old water removed, some fixes here and therePerttu Ahola2011-01-17
|
* working goodPerttu Ahola2010-12-26
|
* some work-in-progressPerttu Ahola2010-12-22
|
* organizing stuff.Perttu Ahola2010-12-21
|
* framework for modifying texturesPerttu Ahola2010-12-20
|
* day/night working client sidePerttu Ahola2010-12-19
|
* before daynight mesh cachePerttu Ahola2010-12-18
|
* little fixesPerttu Ahola2010-12-14
|
* working nicelyPerttu Ahola2010-12-13
|
* starting to separate "material" to "content" and "tile"Perttu Ahola2010-12-12
|
* removed accidental double flowWaterPerttu Ahola2010-12-11
|
* commit before some radicallish changes to water behaviorPerttu Ahola2010-12-11
|
* some work-in-progress water stuffPerttu Ahola2010-12-01
|
* license stuffPerttu Ahola2010-11-29
| | | | | --HG-- rename : src/licensecomment.txt => licensecomment.txt
* vokselijuttu lisättyPerttu Ahola2010-11-29
>683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * Minetest
 * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
 * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *  1. Redistributions of source code must retain the above copyright notice, this list of
 *     conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice, this list
 *     of conditions and the following disclaimer in the documentation and/or other materials
 *     provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <cmath>
#include "noise.h"
#include <iostream>
#include <cstring> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"

#define NOISE_MAGIC_X    1619
#define NOISE_MAGIC_Y    31337
#define NOISE_MAGIC_Z    52591
#define NOISE_MAGIC_SEED 1013

typedef float (*Interp2dFxn)(
		float v00, float v10, float v01, float v11,
		float x, float y);

typedef float (*Interp3dFxn)(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z);

FlagDesc flagdesc_noiseparams[] = {
	{"defaults",    NOISE_FLAG_DEFAULTS},
	{"eased",       NOISE_FLAG_EASED},
	{"absvalue",    NOISE_FLAG_ABSVALUE},
	{"pointbuffer", NOISE_FLAG_POINTBUFFER},
	{"simplex",     NOISE_FLAG_SIMPLEX},
	{NULL,          0}
};

///////////////////////////////////////////////////////////////////////////////

PcgRandom::PcgRandom(u64 state, u64 seq)
{
	seed(state, seq);
}

void PcgRandom::seed(u64 state, u64 seq)
{
	m_state = 0U;
	m_inc = (seq << 1u) | 1u;
	next();
	m_state += state;
	next();
}


u32 PcgRandom::next()
{
	u64 oldstate = m_state;
	m_state = oldstate * 6364136223846793005ULL + m_inc;

	u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
	u32 rot = oldstate >> 59u;
	return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}


u32 PcgRandom::range(u32 bound)
{
	// If the bound is 0, we cover the whole RNG's range
	if (bound == 0)
		return next();

	/*
		This is an optimization of the expression:
		  0x100000000ull % bound
		since 64-bit modulo operations typically much slower than 32.
	*/
	u32 threshold = -bound % bound;
	u32 r;

	/*
		If the bound is not a multiple of the RNG's range, it may cause bias,
		e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
		Using rand() % 3, the number 0 would be twice as likely to appear.
		With a very large RNG range, the effect becomes less prevalent but
		still present.

		This can be solved by modifying the range of the RNG to become a
		multiple of bound by dropping values above the a threshold.

		In our example, threshold == 4 % 3 == 1, so reject values < 1
		(that is, 0), thus making the range == 3 with no bias.

		This loop may look dangerous, but will always terminate due to the
		RNG's property of uniformity.
	*/
	while ((r = next()) < threshold)
		;

	return r % bound;
}


s32 PcgRandom::range(s32 min, s32 max)
{
	if (max < min)
		throw PrngException("Invalid range (max < min)");

	// We have to cast to s64 because otherwise this could overflow,
	// and signed overflow is undefined behavior.
	u32 bound = (s64)max - (s64)min + 1;
	return range(bound) + min;
}


void PcgRandom::bytes(void *out, size_t len)
{
	u8 *outb = (u8 *)out;
	int bytes_left = 0;
	u32 r;

	while (len--) {
		if (bytes_left == 0) {
			bytes_left = sizeof(u32);
			r = next();
		}

		*outb = r & 0xFF;
		outb++;
		bytes_left--;
		r >>= CHAR_BIT;
	}
}


s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
{
	s32 accum = 0;
	for (int i = 0; i != num_trials; i++)
		accum += range(min, max);
	return myround((float)accum / num_trials);
}

///////////////////////////////////////////////////////////////////////////////

float noise2d(int x, int y, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


float noise3d(int x, int y, int z, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


inline float dotProduct(float vx, float vy, float wx, float wy)
{
	return vx * wx + vy * wy;
}


inline float linearInterpolation(float v0, float v1, float t)
{
	return v0 + (v1 - v0) * t;
}


inline float biLinearInterpolation(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float u = linearInterpolation(v00, v10, tx);
	float v = linearInterpolation(v01, v11, tx);
	return linearInterpolation(u, v, ty);
}


inline float biLinearInterpolationNoEase(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float u = linearInterpolation(v00, v10, x);
	float v = linearInterpolation(v01, v11, x);
	return linearInterpolation(u, v, y);
}


float triLinearInterpolation(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float tz = easeCurve(z);
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
	return linearInterpolation(u, v, tz);
}

float triLinearInterpolationNoEase(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
	return linearInterpolation(u, v, z);
}

float noise2d_gradient(float x, float y, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Get values for corners of square
	float v00 = noise2d(x0, y0, seed);
	float v10 = noise2d(x0+1, y0, seed);
	float v01 = noise2d(x0, y0+1, seed);
	float v11 = noise2d(x0+1, y0+1, seed);
	// Interpolate
	if (eased)
		return biLinearInterpolation(v00, v10, v01, v11, xl, yl);

	return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}


float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	int z0 = myfloor(z);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	float zl = z - (float)z0;
	// Get values for corners of cube
	float v000 = noise3d(x0,     y0,     z0,     seed);
	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
	// Interpolate
	if (eased) {
		return triLinearInterpolation(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	}

	return triLinearInterpolationNoEase(
		v000, v100, v010, v110,
		v001, v101, v011, v111,
		xl, yl, zl);
}


float noise2d_perlin(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise2d_perlin_abs(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * std::fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin_abs(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * std::fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float contour(float v)
{
	v = std::fabs(v);
	if (v >= 1.0)
		return 0.0;
	return (1.0 - v);
}


///////////////////////// [ New noise ] ////////////////////////////


float NoisePerlin2D(const NoiseParams *np, float x, float y, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise2d_gradient(x * f, y * f, seed + i,
			np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = std::fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


float NoisePerlin3D(const NoiseParams *np, float x, float y, float z, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	z /= np->spread.Z;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
			np->flags & NOISE_FLAG_EASED);

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = std::fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


Noise::Noise(const NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
{
	np = *np_;
	this->seed = seed;
	this->sx   = sx;
	this->sy   = sy;
	this->sz   = sz;

	allocBuffers();
}


Noise::~Noise()
{
	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] noise_buf;
	delete[] result;
}


void Noise::allocBuffers()
{
	if (sx < 1)
		sx = 1;
	if (sy < 1)
		sy = 1;
	if (sz < 1)
		sz = 1;

	this->noise_buf = NULL;
	resizeNoiseBuf(sz > 1);

	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] result;

	try {
		size_t bufsize = sx * sy * sz;
		this->persist_buf  = NULL;
		this->gradient_buf = new float[bufsize];
		this->result       = new float[bufsize];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


void Noise::setSize(u32 sx, u32 sy, u32 sz)
{
	this->sx = sx;
	this->sy = sy;
	this->sz = sz;

	allocBuffers();
}


void Noise::setSpreadFactor(v3f spread)
{
	this->np.spread = spread;

	resizeNoiseBuf(sz > 1);
}


void Noise::setOctaves(int octaves)
{
	this->np.octaves = octaves;

	resizeNoiseBuf(sz > 1);
}


void Noise::resizeNoiseBuf(bool is3d)
{
	// Maximum possible spread value factor
	float ofactor = (np.lacunarity > 1.0) ?
		pow(np.lacunarity, np.octaves - 1) :
		np.lacunarity;

	// Noise lattice point count
	// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
	float num_noise_points_x = sx * ofactor / np.spread.X;
	float num_noise_points_y = sy * ofactor / np.spread.Y;
	float num_noise_points_z = sz * ofactor / np.spread.Z;

	// Protect against obviously invalid parameters
	if (num_noise_points_x > 1000000000.f ||
			num_noise_points_y > 1000000000.f ||
			num_noise_points_z > 1000000000.f)
		throw InvalidNoiseParamsException();

	// Protect against an octave having a spread < 1, causing broken noise values
	if (np.spread.X / ofactor < 1.0f ||
			np.spread.Y / ofactor < 1.0f ||
			np.spread.Z / ofactor < 1.0f) {
		errorstream << "A noise parameter has too many octaves: "
			<< np.octaves << " octaves" << std::endl;
		throw InvalidNoiseParamsException("A noise parameter has too many octaves");
	}

	// + 2 for the two initial endpoints
	// + 1 for potentially crossing a boundary due to offset
	size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3;
	size_t nly = (size_t)std::ceil(num_noise_points_y) + 3;
	size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1;

	delete[] noise_buf;
	try {
		noise_buf = new float[nlx * nly * nlz];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


/*
 * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 * 2 lines + 2 planes.
 * However, this would require the noise calls to be interposed with the
 * interpolation loops, which may trash the icache, leading to lower overall
 * performance.
 * Another optimization that could save half as many noise calls is to carry over
 * values from the previous noise lattice as midpoints in the new lattice for the
 * next octave.
 */
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
		float x, float y,
		float step_x, float step_y,
		s32 seed)
{
	float v00, v01, v10, v11, u, v, orig_u;
	u32 index, i, j, noisex, noisey;
	u32 nlx, nly;
	s32 x0, y0;

	bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
	Interp2dFxn interpolate = eased ?
		biLinearInterpolation : biLinearInterpolationNoEase;

	x0 = std::floor(x);
	y0 = std::floor(y);
	u = x - (float)x0;
	v = y - (float)y0;
	orig_u = u;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	index = 0;
	for (j = 0; j != nly; j++)
		for (i = 0; i != nlx; i++)
			noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	for (j = 0; j != sy; j++) {
		v00 = noise_buf[idx(0, noisey)];
		v10 = noise_buf[idx(1, noisey)];
		v01 = noise_buf[idx(0, noisey + 1)];
		v11 = noise_buf[idx(1, noisey + 1)];

		u = orig_u;
		noisex = 0;
		for (i = 0; i != sx; i++) {
			gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);

			u += step_x;
			if (u >= 1.0) {
				u -= 1.0;
				noisex++;
				v00 = v10;
				v01 = v11;
				v10 = noise_buf[idx(noisex + 1, noisey)];
				v11 = noise_buf[idx(noisex + 1, noisey + 1)];
			}
		}

		v += step_y;
		if (v >= 1.0) {
			v -= 1.0;
			noisey++;
		}
	}
}
#undef idx


#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
		float x, float y, float z,
		float step_x, float step_y, float step_z,
		s32 seed)
{
	float v000, v010, v100, v110;
	float v001, v011, v101, v111;
	float u, v, w, orig_u, orig_v;
	u32 index, i, j, k, noisex, noisey, noisez;
	u32 nlx, nly, nlz;
	s32 x0, y0, z0;

	Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
		triLinearInterpolation : triLinearInterpolationNoEase;

	x0 = std::floor(x);
	y0 = std::floor(y);
	z0 = std::floor(z);
	u = x - (float)x0;
	v = y - (float)y0;
	w = z - (float)z0;
	orig_u = u;
	orig_v = v;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	nlz = (u32)(w + sz * step_z) + 2;
	index = 0;
	for (k = 0; k != nlz; k++)
		for (j = 0; j != nly; j++)
			for (i = 0; i != nlx; i++)
				noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	noisez = 0;
	for (k = 0; k != sz; k++) {
		v = orig_v;
		noisey = 0;
		for (j = 0; j != sy; j++) {
			v000 = noise_buf[idx(0, noisey,     noisez)];
			v100 = noise_buf[idx(1, noisey,     noisez)];
			v010 = noise_buf[idx(0, noisey + 1, noisez)];
			v110 = noise_buf[idx(1, noisey + 1, noisez)];
			v001 = noise_buf[idx(0, noisey,     noisez + 1)];
			v101 = noise_buf[idx(1, noisey,     noisez + 1)];
			v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
			v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];

			u = orig_u;
			noisex = 0;
			for (i = 0; i != sx; i++) {
				gradient_buf[index++] = interpolate(
					v000, v100, v010, v110,
					v001, v101, v011, v111,
					u, v, w);

				u += step_x;
				if (u >= 1.0) {
					u -= 1.0;
					noisex++;
					v000 = v100;
					v010 = v110;
					v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
					v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
					v001 = v101;
					v011 = v111;
					v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
					v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
				}
			}

			v += step_y;
			if (v >= 1.0) {
				v -= 1.0;
				noisey++;
			}
		}

		w += step_z;
		if (w >= 1.0) {
			w -= 1.0;
			noisez++;
		}
	}
}
#undef idx


float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy;

	x /= np.spread.X;
	y /= np.spread.Y;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap2D(x * f, y * f,
			f / np.spread.X, f / np.spread.Y,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy * sz;

	x /= np.spread.X;
	y /= np.spread.Y;
	z /= np.spread.Z;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap3D(x * f, y * f, z * f,
			f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


void Noise::updateResults(float g, float *gmap,
	const float *persistence_map, size_t bufsize)
{
	// This looks very ugly, but it is 50-70% faster than having
	// conditional statements inside the loop
	if (np.flags & NOISE_FLAG_ABSVALUE) {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * std::fabs(gradient_buf[i]);
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * std::fabs(gradient_buf[i]);
		}
	} else {
		if (persistence_map) {
			for (size_t i = 0; i != bufsize; i++) {
				result[i] += gmap[i] * gradient_buf[i];
				gmap[i] *= persistence_map[i];
			}
		} else {
			for (size_t i = 0; i != bufsize; i++)
				result[i] += g * gradient_buf[i];
		}
	}
}