aboutsummaryrefslogtreecommitdiff
path: root/src/client/joystick_controller.h
blob: cbc60886cfc72fd91edf101ee016ac3f82475d2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
Minetest
Copyright (C) 2016 est31, <MTest31@outlook.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#pragma once

#include "irrlichttypes_extrabloated.h"
#include "keys.h"
#include <bitset>
#include <vector>

enum JoystickAxis {
	JA_SIDEWARD_MOVE,
	JA_FORWARD_MOVE,

	JA_FRUSTUM_HORIZONTAL,
	JA_FRUSTUM_VERTICAL,

	// To know the count of enum values
	JA_COUNT,
};

struct JoystickAxisLayout {
	u16 axis_id;
	// -1 if to invert, 1 if to keep it.
	int invert;
};


struct JoystickCombination {

	virtual bool isTriggered(const irr::SEvent::SJoystickEvent &ev) const=0;

	GameKeyType key;
};

struct JoystickButtonCmb : public JoystickCombination {

	JoystickButtonCmb() = default;

	JoystickButtonCmb(GameKeyType key, u32 filter_mask, u32 compare_mask) :
		filter_mask(filter_mask),
		compare_mask(compare_mask)
	{
		this->key = key;
	}

	virtual ~JoystickButtonCmb() = default;

	virtual bool isTriggered(const irr::SEvent::SJoystickEvent &ev) const;

	u32 filter_mask;
	u32 compare_mask;
};

struct JoystickAxisCmb : public JoystickCombination {

	JoystickAxisCmb() = default;

	JoystickAxisCmb(GameKeyType key, u16 axis_to_compare, int direction, s16 thresh) :
		axis_to_compare(axis_to_compare),
		direction(direction),
		thresh(thresh)
	{
		this->key = key;
	}

	virtual ~JoystickAxisCmb() = default;

	bool isTriggered(const irr::SEvent::SJoystickEvent &ev) const override;

	u16 axis_to_compare;

	// if -1, thresh must be smaller than the axis value in order to trigger
	// if  1, thresh must be bigger  than the axis value in order to trigger
	int direction;
	s16 thresh;
};

struct JoystickLayout {
	std::vector<JoystickButtonCmb> button_keys;
	std::vector<JoystickAxisCmb> axis_keys;
	JoystickAxisLayout axes[JA_COUNT];
	s16 axes_deadzone;
};

class JoystickController {

public:
	JoystickController();

	void onJoystickConnect(const std::vector<irr::SJoystickInfo> &joystick_infos);

	bool handleEvent(const irr::SEvent::SJoystickEvent &ev);
	void clear();

	bool wasKeyDown(GameKeyType b)
	{
		bool r = m_past_keys_pressed[b];
		m_past_keys_pressed[b] = false;
		return r;
	}

	bool wasKeyReleased(GameKeyType b)
	{
		return m_keys_released[b];
	}
	void clearWasKeyReleased(GameKeyType b)
	{
		m_keys_released[b] = false;
	}

	bool wasKeyPressed(GameKeyType b)
	{
		return m_keys_pressed[b];
	}
	void clearWasKeyPressed(GameKeyType b)
	{
		m_keys_pressed[b] = false;
	}

	bool isKeyDown(GameKeyType b)
	{
		return m_keys_down[b];
	}

	s16 getAxis(JoystickAxis axis)
	{
		return m_axes_vals[axis];
	}

	float getAxisWithoutDead(JoystickAxis axis);

	float getMovementDirection();
	float getMovementSpeed();

	f32 doubling_dtime;

private:
	void setLayoutFromControllerName(const std::string &name);

	JoystickLayout m_layout;

	s16 m_axes_vals[JA_COUNT];

	u8 m_joystick_id = 0;

	std::bitset<KeyType::INTERNAL_ENUM_COUNT> m_keys_down;
	std::bitset<KeyType::INTERNAL_ENUM_COUNT> m_keys_pressed;

	f32 m_internal_time;

	f32 m_past_pressed_time[KeyType::INTERNAL_ENUM_COUNT];

	std::bitset<KeyType::INTERNAL_ENUM_COUNT> m_past_keys_pressed;
	std::bitset<KeyType::INTERNAL_ENUM_COUNT> m_keys_released;
};
5' href='#n585'>585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Minetest
 * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
 * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *  1. Redistributions of source code must retain the above copyright notice, this list of
 *     conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice, this list
 *     of conditions and the following disclaimer in the documentation and/or other materials
 *     provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <math.h>
#include "noise.h"
#include <iostream>
#include <string.h> // memset
#include "debug.h"
#include "util/numeric.h"
#include "util/string.h"
#include "exceptions.h"

#define NOISE_MAGIC_X    1619
#define NOISE_MAGIC_Y    31337
#define NOISE_MAGIC_Z    52591
#define NOISE_MAGIC_SEED 1013

typedef float (*Interp2dFxn)(
		float v00, float v10, float v01, float v11,
		float x, float y);

typedef float (*Interp3dFxn)(
		float v000, float v100, float v010, float v110,
		float v001, float v101, float v011, float v111,
		float x, float y, float z);

float cos_lookup[16] = {
	1.0,  0.9238,  0.7071,  0.3826, 0, -0.3826, -0.7071, -0.9238,
	1.0, -0.9238, -0.7071, -0.3826, 0,  0.3826,  0.7071,  0.9238
};

FlagDesc flagdesc_noiseparams[] = {
	{"defaults",    NOISE_FLAG_DEFAULTS},
	{"eased",       NOISE_FLAG_EASED},
	{"absvalue",    NOISE_FLAG_ABSVALUE},
	{"pointbuffer", NOISE_FLAG_POINTBUFFER},
	{"simplex",     NOISE_FLAG_SIMPLEX},
	{NULL,          0}
};

///////////////////////////////////////////////////////////////////////////////

PcgRandom::PcgRandom(u64 state, u64 seq)
{
	seed(state, seq);
}

void PcgRandom::seed(u64 state, u64 seq)
{
	m_state = 0U;
	m_inc = (seq << 1u) | 1u;
	next();
	m_state += state;
	next();
}


u32 PcgRandom::next()
{
	u64 oldstate = m_state;
	m_state = oldstate * 6364136223846793005ULL + m_inc;

	u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
	u32 rot = oldstate >> 59u;
	return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}


u32 PcgRandom::range(u32 bound)
{
	// If the bound is 0, we cover the whole RNG's range
	if (bound == 0)
		return next();

	/*
		This is an optimization of the expression:
		  0x100000000ull % bound
		since 64-bit modulo operations typically much slower than 32.
	*/
	u32 threshold = -bound % bound;
	u32 r;

	/*
		If the bound is not a multiple of the RNG's range, it may cause bias,
		e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
		Using rand() % 3, the number 0 would be twice as likely to appear.
		With a very large RNG range, the effect becomes less prevalent but
		still present.

		This can be solved by modifying the range of the RNG to become a
		multiple of bound by dropping values above the a threshold.

		In our example, threshold == 4 % 3 == 1, so reject values < 1
		(that is, 0), thus making the range == 3 with no bias.

		This loop may look dangerous, but will always terminate due to the
		RNG's property of uniformity.
	*/
	while ((r = next()) < threshold)
		;

	return r % bound;
}


s32 PcgRandom::range(s32 min, s32 max)
{
	if (max < min)
		throw PrngException("Invalid range (max < min)");

	u32 bound = max - min + 1;
	return range(bound) + min;
}


void PcgRandom::bytes(void *out, size_t len)
{
	u8 *outb = (u8 *)out;
	int bytes_left = 0;
	u32 r;

	while (len--) {
		if (bytes_left == 0) {
			bytes_left = sizeof(u32);
			r = next();
		}

		*outb = r & 0xFF;
		outb++;
		bytes_left--;
		r >>= CHAR_BIT;
	}
}


s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
{
	s32 accum = 0;
	for (int i = 0; i != num_trials; i++)
		accum += range(min, max);
	return myround((float)accum / num_trials);
}

///////////////////////////////////////////////////////////////////////////////

float noise2d(int x, int y, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


float noise3d(int x, int y, int z, s32 seed)
{
	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
	n = (n >> 13) ^ n;
	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
	return 1.f - (float)(int)n / 0x40000000;
}


inline float dotProduct(float vx, float vy, float wx, float wy)
{
	return vx * wx + vy * wy;
}


inline float linearInterpolation(float v0, float v1, float t)
{
	return v0 + (v1 - v0) * t;
}


inline float biLinearInterpolation(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float u = linearInterpolation(v00, v10, tx);
	float v = linearInterpolation(v01, v11, tx);
	return linearInterpolation(u, v, ty);
}


inline float biLinearInterpolationNoEase(
	float v00, float v10,
	float v01, float v11,
	float x, float y)
{
	float u = linearInterpolation(v00, v10, x);
	float v = linearInterpolation(v01, v11, x);
	return linearInterpolation(u, v, y);
}


float triLinearInterpolation(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float tx = easeCurve(x);
	float ty = easeCurve(y);
	float tz = easeCurve(z);
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
	return linearInterpolation(u, v, tz);
}

float triLinearInterpolationNoEase(
	float v000, float v100, float v010, float v110,
	float v001, float v101, float v011, float v111,
	float x, float y, float z)
{
	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
	return linearInterpolation(u, v, z);
}

float noise2d_gradient(float x, float y, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	// Get values for corners of square
	float v00 = noise2d(x0, y0, seed);
	float v10 = noise2d(x0+1, y0, seed);
	float v01 = noise2d(x0, y0+1, seed);
	float v11 = noise2d(x0+1, y0+1, seed);
	// Interpolate
	if (eased)
		return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
	else
		return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
}


float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
{
	// Calculate the integer coordinates
	int x0 = myfloor(x);
	int y0 = myfloor(y);
	int z0 = myfloor(z);
	// Calculate the remaining part of the coordinates
	float xl = x - (float)x0;
	float yl = y - (float)y0;
	float zl = z - (float)z0;
	// Get values for corners of cube
	float v000 = noise3d(x0,     y0,     z0,     seed);
	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
	// Interpolate
	if (eased) {
		return triLinearInterpolation(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	} else {
		return triLinearInterpolationNoEase(
			v000, v100, v010, v110,
			v001, v101, v011, v111,
			xl, yl, zl);
	}
}


float noise2d_perlin(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++)
	{
		a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise2d_perlin_abs(float x, float y, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float noise3d_perlin_abs(float x, float y, float z, s32 seed,
	int octaves, float persistence, bool eased)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;
	for (int i = 0; i < octaves; i++) {
		a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
		f *= 2.0;
		g *= persistence;
	}
	return a;
}


float contour(float v)
{
	v = fabs(v);
	if (v >= 1.0)
		return 0.0;
	return (1.0 - v);
}


///////////////////////// [ New noise ] ////////////////////////////


float NoisePerlin2D(NoiseParams *np, float x, float y, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise2d_gradient(x * f, y * f, seed + i,
			np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


float NoisePerlin3D(NoiseParams *np, float x, float y, float z, s32 seed)
{
	float a = 0;
	float f = 1.0;
	float g = 1.0;

	x /= np->spread.X;
	y /= np->spread.Y;
	z /= np->spread.Z;
	seed += np->seed;

	for (size_t i = 0; i < np->octaves; i++) {
		float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
			np->flags & NOISE_FLAG_EASED);

		if (np->flags & NOISE_FLAG_ABSVALUE)
			noiseval = fabs(noiseval);

		a += g * noiseval;
		f *= np->lacunarity;
		g *= np->persist;
	}

	return np->offset + a * np->scale;
}


Noise::Noise(NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
{
	memcpy(&np, np_, sizeof(np));
	this->seed = seed;
	this->sx   = sx;
	this->sy   = sy;
	this->sz   = sz;

	this->persist_buf  = NULL;
	this->gradient_buf = NULL;
	this->result       = NULL;

	allocBuffers();
}


Noise::~Noise()
{
	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] noise_buf;
	delete[] result;
}


void Noise::allocBuffers()
{
	if (sx < 1)
		sx = 1;
	if (sy < 1)
		sy = 1;
	if (sz < 1)
		sz = 1;

	this->noise_buf = NULL;
	resizeNoiseBuf(sz > 1);

	delete[] gradient_buf;
	delete[] persist_buf;
	delete[] result;

	try {
		size_t bufsize = sx * sy * sz;
		this->persist_buf  = NULL;
		this->gradient_buf = new float[bufsize];
		this->result       = new float[bufsize];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


void Noise::setSize(u32 sx, u32 sy, u32 sz)
{
	this->sx = sx;
	this->sy = sy;
	this->sz = sz;

	allocBuffers();
}


void Noise::setSpreadFactor(v3f spread)
{
	this->np.spread = spread;

	resizeNoiseBuf(sz > 1);
}


void Noise::setOctaves(int octaves)
{
	this->np.octaves = octaves;

	resizeNoiseBuf(sz > 1);
}


void Noise::resizeNoiseBuf(bool is3d)
{
	//maximum possible spread value factor
	float ofactor = (np.lacunarity > 1.0) ?
		pow(np.lacunarity, np.octaves - 1) :
		np.lacunarity;

	// noise lattice point count
	// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
	float num_noise_points_x = sx * ofactor / np.spread.X;
	float num_noise_points_y = sy * ofactor / np.spread.Y;
	float num_noise_points_z = sz * ofactor / np.spread.Z;

	// protect against obviously invalid parameters
	if (num_noise_points_x > 1000000000.f ||
		num_noise_points_y > 1000000000.f ||
		num_noise_points_z > 1000000000.f)
		throw InvalidNoiseParamsException();

	// + 2 for the two initial endpoints
	// + 1 for potentially crossing a boundary due to offset
	size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
	size_t nly = (size_t)ceil(num_noise_points_y) + 3;
	size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;

	delete[] noise_buf;
	try {
		noise_buf = new float[nlx * nly * nlz];
	} catch (std::bad_alloc &e) {
		throw InvalidNoiseParamsException();
	}
}


/*
 * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 * 2 lines + 2 planes.
 * However, this would require the noise calls to be interposed with the
 * interpolation loops, which may trash the icache, leading to lower overall
 * performance.
 * Another optimization that could save half as many noise calls is to carry over
 * values from the previous noise lattice as midpoints in the new lattice for the
 * next octave.
 */
#define idx(x, y) ((y) * nlx + (x))
void Noise::gradientMap2D(
		float x, float y,
		float step_x, float step_y,
		s32 seed)
{
	float v00, v01, v10, v11, u, v, orig_u;
	u32 index, i, j, noisex, noisey;
	u32 nlx, nly;
	s32 x0, y0;

	bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
	Interp2dFxn interpolate = eased ?
		biLinearInterpolation : biLinearInterpolationNoEase;

	x0 = floor(x);
	y0 = floor(y);
	u = x - (float)x0;
	v = y - (float)y0;
	orig_u = u;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	index = 0;
	for (j = 0; j != nly; j++)
		for (i = 0; i != nlx; i++)
			noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	for (j = 0; j != sy; j++) {
		v00 = noise_buf[idx(0, noisey)];
		v10 = noise_buf[idx(1, noisey)];
		v01 = noise_buf[idx(0, noisey + 1)];
		v11 = noise_buf[idx(1, noisey + 1)];

		u = orig_u;
		noisex = 0;
		for (i = 0; i != sx; i++) {
			gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);

			u += step_x;
			if (u >= 1.0) {
				u -= 1.0;
				noisex++;
				v00 = v10;
				v01 = v11;
				v10 = noise_buf[idx(noisex + 1, noisey)];
				v11 = noise_buf[idx(noisex + 1, noisey + 1)];
			}
		}

		v += step_y;
		if (v >= 1.0) {
			v -= 1.0;
			noisey++;
		}
	}
}
#undef idx


#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
void Noise::gradientMap3D(
		float x, float y, float z,
		float step_x, float step_y, float step_z,
		s32 seed)
{
	float v000, v010, v100, v110;
	float v001, v011, v101, v111;
	float u, v, w, orig_u, orig_v;
	u32 index, i, j, k, noisex, noisey, noisez;
	u32 nlx, nly, nlz;
	s32 x0, y0, z0;

	Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
		triLinearInterpolation : triLinearInterpolationNoEase;

	x0 = floor(x);
	y0 = floor(y);
	z0 = floor(z);
	u = x - (float)x0;
	v = y - (float)y0;
	w = z - (float)z0;
	orig_u = u;
	orig_v = v;

	//calculate noise point lattice
	nlx = (u32)(u + sx * step_x) + 2;
	nly = (u32)(v + sy * step_y) + 2;
	nlz = (u32)(w + sz * step_z) + 2;
	index = 0;
	for (k = 0; k != nlz; k++)
		for (j = 0; j != nly; j++)
			for (i = 0; i != nlx; i++)
				noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);

	//calculate interpolations
	index  = 0;
	noisey = 0;
	noisez = 0;
	for (k = 0; k != sz; k++) {
		v = orig_v;
		noisey = 0;
		for (j = 0; j != sy; j++) {
			v000 = noise_buf[idx(0, noisey,     noisez)];
			v100 = noise_buf[idx(1, noisey,     noisez)];
			v010 = noise_buf[idx(0, noisey + 1, noisez)];
			v110 = noise_buf[idx(1, noisey + 1, noisez)];
			v001 = noise_buf[idx(0, noisey,     noisez + 1)];
			v101 = noise_buf[idx(1, noisey,     noisez + 1)];
			v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
			v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];

			u = orig_u;
			noisex = 0;
			for (i = 0; i != sx; i++) {
				gradient_buf[index++] = interpolate(
					v000, v100, v010, v110,
					v001, v101, v011, v111,
					u, v, w);

				u += step_x;
				if (u >= 1.0) {
					u -= 1.0;
					noisex++;
					v000 = v100;
					v010 = v110;
					v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
					v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
					v001 = v101;
					v011 = v111;
					v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
					v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
				}
			}

			v += step_y;
			if (v >= 1.0) {
				v -= 1.0;
				noisey++;
			}
		}

		w += step_z;
		if (w >= 1.0) {
			w -= 1.0;
			noisez++;
		}
	}
}
#undef idx


float *Noise::perlinMap2D(float x, float y, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy;

	x /= np.spread.X;
	y /= np.spread.Y;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap2D(x * f, y * f,
			f / np.spread.X, f / np.spread.Y,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
{
	float f = 1.0, g = 1.0;
	size_t bufsize = sx * sy * sz;

	x /= np.spread.X;
	y /= np.spread.Y;
	z /= np.spread.Z;

	memset(result, 0, sizeof(float) * bufsize);

	if (persistence_map) {
		if (!persist_buf)
			persist_buf = new float[bufsize];
		for (size_t i = 0; i != bufsize; i++)
			persist_buf[i] = 1.0;
	}

	for (size_t oct = 0; oct < np.octaves; oct++) {
		gradientMap3D(x * f, y * f, z * f,
			f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
			seed + np.seed + oct);

		updateResults(g, persist_buf, persistence_map, bufsize);

		f *= np.lacunarity;
		g *= np.persist;
	}

	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
		for (size_t i = 0; i != bufsize; i++)
			result[i] = result[i] * np.scale + np.offset;
	}

	return result;
}


void Noise::updateResults(float g, float *gmap,
	float *persistence_map, size_t bufsize)
{
	// This looks very ugly, but it is 50-70% faster than having
	// conditional statements inside the loop