aboutsummaryrefslogtreecommitdiff
path: root/src/client/mesh.h
blob: 0c4094de2a7777e5138ceb47b99b188a0c945c6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#pragma once

#include "irrlichttypes_extrabloated.h"
#include "nodedef.h"

/*!
 * Applies shading to a color based on the surface's
 * normal vector.
 */
void applyFacesShading(video::SColor &color, const v3f &normal);

/*
	Create a new cube mesh.
	Vertices are at (+-scale.X/2, +-scale.Y/2, +-scale.Z/2).

	The resulting mesh has 6 materials (up, down, right, left, back, front)
	which must be defined by the caller.
*/
scene::IAnimatedMesh* createCubeMesh(v3f scale);

/*
	Multiplies each vertex coordinate by the specified scaling factors
	(componentwise vector multiplication).
*/
void scaleMesh(scene::IMesh *mesh, v3f scale);

/*
	Translate each vertex coordinate by the specified vector.
*/
void translateMesh(scene::IMesh *mesh, v3f vec);

/*!
 * Sets a constant color for all vertices in the mesh buffer.
 */
void setMeshBufferColor(scene::IMeshBuffer *buf, const video::SColor &color);

/*
	Set a constant color for all vertices in the mesh
*/
void setMeshColor(scene::IMesh *mesh, const video::SColor &color);

/*
	Set a constant color for an animated mesh
*/
void setAnimatedMeshColor(scene::IAnimatedMeshSceneNode *node, const video::SColor &color);

/*!
 * Overwrites the color of a mesh buffer.
 * The color is darkened based on the normal vector of the vertices.
 */
void colorizeMeshBuffer(scene::IMeshBuffer *buf, const video::SColor *buffercolor);

/*
	Set the color of all vertices in the mesh.
	For each vertex, determine the largest absolute entry in
	the normal vector, and choose one of colorX, colorY or
	colorZ accordingly.
*/
void setMeshColorByNormalXYZ(scene::IMesh *mesh,
		const video::SColor &colorX,
		const video::SColor &colorY,
		const video::SColor &colorZ);

void setMeshColorByNormal(scene::IMesh *mesh, const v3f &normal,
		const video::SColor &color);

/*
	Rotate the mesh by 6d facedir value.
	Method only for meshnodes, not suitable for entities.
*/
void rotateMeshBy6dFacedir(scene::IMesh *mesh, int facedir);

/*
	Rotate the mesh around the axis and given angle in degrees.
*/
void rotateMeshXYby (scene::IMesh *mesh, f64 degrees);
void rotateMeshXZby (scene::IMesh *mesh, f64 degrees);
void rotateMeshYZby (scene::IMesh *mesh, f64 degrees);

/*
 *  Clone the mesh buffer.
 *  The returned pointer should be dropped.
 */
scene::IMeshBuffer* cloneMeshBuffer(scene::IMeshBuffer *mesh_buffer);

/*
	Clone the mesh.
*/
scene::SMesh* cloneMesh(scene::IMesh *src_mesh);

/*
	Convert nodeboxes to mesh. Each tile goes into a different buffer.
	boxes - set of nodeboxes to be converted into cuboids
	uv_coords[24] - table of texture uv coords for each cuboid face
	expand - factor by which cuboids will be resized
*/
scene::IMesh* convertNodeboxesToMesh(const std::vector<aabb3f> &boxes,
		const f32 *uv_coords = NULL, float expand = 0);

/*
	Update bounding box for a mesh.
*/
void recalculateBoundingBox(scene::IMesh *src_mesh);

/*
	Vertex cache optimization according to the Forsyth paper:
	http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
	Ported from irrlicht 1.8
*/
scene::IMesh* createForsythOptimizedMesh(const scene::IMesh *mesh);
an>os, areas_map.size()); for (const auto &it : areas_map) { const Area &a = it.second; writeV3S16(os, a.minedge); writeV3S16(os, a.maxedge); writeU16(os, a.data.size()); os.write(a.data.data(), a.data.size()); } // Serialize IDs for (const auto &it : areas_map) writeU32(os, it.second.id); } void AreaStore::deserialize(std::istream &is) { u8 ver = readU8(is); // Assume forwards-compatibility before version 5 if (ver >= 5) throw SerializationError("Unknown AreaStore " "serialization version!"); u16 num_areas = readU16(is); std::vector<Area> areas; areas.reserve(num_areas); for (u32 i = 0; i < num_areas; ++i) { Area a(U32_MAX); a.minedge = readV3S16(is); a.maxedge = readV3S16(is); u16 data_len = readU16(is); a.data = std::string(data_len, '\0'); is.read(&a.data[0], data_len); areas.emplace_back(std::move(a)); } bool read_ids = is.good(); // EOF for old formats for (auto &area : areas) { if (read_ids) area.id = readU32(is); insertArea(&area); } } void AreaStore::invalidateCache() { if (m_cache_enabled) { m_res_cache.invalidate(); } } u32 AreaStore::getNextId() const { u32 free_id = 0; for (const auto &area : areas_map) { if (area.first > free_id) return free_id; // Found gap free_id = area.first + 1; } // End of map return free_id; } void AreaStore::setCacheParams(bool enabled, u8 block_radius, size_t limit) { m_cache_enabled = enabled; m_cacheblock_radius = MYMAX(block_radius, 16); m_res_cache.setLimit(MYMAX(limit, 20)); invalidateCache(); } void AreaStore::cacheMiss(void *data, const v3s16 &mpos, std::vector<Area *> *dest) { AreaStore *as = (AreaStore *)data; u8 r = as->m_cacheblock_radius; // get the points at the edges of the mapblock v3s16 minedge(mpos.X * r, mpos.Y * r, mpos.Z * r); v3s16 maxedge( minedge.X + r - 1, minedge.Y + r - 1, minedge.Z + r - 1); as->getAreasInArea(dest, minedge, maxedge, true); /* infostream << "Cache miss with " << dest->size() << " areas, between (" << minedge.X << ", " << minedge.Y << ", " << minedge.Z << ") and (" << maxedge.X << ", " << maxedge.Y << ", " << maxedge.Z << ")" << std::endl; // */ } void AreaStore::getAreasForPos(std::vector<Area *> *result, v3s16 pos) { if (m_cache_enabled) { v3s16 mblock = getContainerPos(pos, m_cacheblock_radius); const std::vector<Area *> *pre_list = m_res_cache.lookupCache(mblock); size_t s_p_l = pre_list->size(); for (size_t i = 0; i < s_p_l; i++) { Area *b = (*pre_list)[i]; if (AST_CONTAINS_PT(b, pos)) { result->push_back(b); } } } else { return getAreasForPosImpl(result, pos); } } //// // VectorAreaStore //// bool VectorAreaStore::insertArea(Area *a) { if (a->id == U32_MAX) a->id = getNextId(); std::pair<AreaMap::iterator, bool> res = areas_map.insert(std::make_pair(a->id, *a)); if (!res.second) // ID is not unique return false; m_areas.push_back(&res.first->second); invalidateCache(); return true; } bool VectorAreaStore::removeArea(u32 id) { AreaMap::iterator it = areas_map.find(id); if (it == areas_map.end()) return false; Area *a = &it->second; for (std::vector<Area *>::iterator v_it = m_areas.begin(); v_it != m_areas.end(); ++v_it) { if (*v_it == a) { m_areas.erase(v_it); break; } } areas_map.erase(it); invalidateCache(); return true; } void VectorAreaStore::getAreasForPosImpl(std::vector<Area *> *result, v3s16 pos) { for (Area *area : m_areas) { if (AST_CONTAINS_PT(area, pos)) { result->push_back(area); } } } void VectorAreaStore::getAreasInArea(std::vector<Area *> *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { for (Area *area : m_areas) { if (accept_overlap ? AST_AREAS_OVERLAP(minedge, maxedge, area) : AST_CONTAINS_AREA(minedge, maxedge, area)) { result->push_back(area); } } } #if USE_SPATIAL static inline SpatialIndex::Region get_spatial_region(const v3s16 minedge, const v3s16 maxedge) { const double p_low[] = {(double)minedge.X, (double)minedge.Y, (double)minedge.Z}; const double p_high[] = {(double)maxedge.X, (double)maxedge.Y, (double)maxedge.Z}; return SpatialIndex::Region(p_low, p_high, 3); } static inline SpatialIndex::Point get_spatial_point(const v3s16 pos) { const double p[] = {(double)pos.X, (double)pos.Y, (double)pos.Z}; return SpatialIndex::Point(p, 3); } bool SpatialAreaStore::insertArea(Area *a) { if (a->id == U32_MAX) a->id = getNextId(); if (!areas_map.insert(std::make_pair(a->id, *a)).second) // ID is not unique return false; m_tree->insertData(0, nullptr, get_spatial_region(a->minedge, a->maxedge), a->id); invalidateCache(); return true; } bool SpatialAreaStore::removeArea(u32 id) { std::map<u32, Area>::iterator itr = areas_map.find(id); if (itr != areas_map.end()) { Area *a = &itr->second; bool result = m_tree->deleteData(get_spatial_region(a->minedge, a->maxedge), id); areas_map.erase(itr); invalidateCache(); return result; } else { return false; } } void SpatialAreaStore::getAreasForPosImpl(std::vector<Area *> *result, v3s16 pos) { VectorResultVisitor visitor(result, this); m_tree->pointLocationQuery(get_spatial_point(pos), visitor); } void SpatialAreaStore::getAreasInArea(std::vector<Area *> *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { VectorResultVisitor visitor(result, this); if (accept_overlap) { m_tree->intersectsWithQuery(get_spatial_region(minedge, maxedge), visitor); } else { m_tree->containsWhatQuery(get_spatial_region(minedge, maxedge), visitor); } } SpatialAreaStore::~SpatialAreaStore() { delete m_tree; } SpatialAreaStore::SpatialAreaStore() { m_storagemanager = SpatialIndex::StorageManager::createNewMemoryStorageManager(); SpatialIndex::id_type id; m_tree = SpatialIndex::RTree::createNewRTree( *m_storagemanager, .7, // Fill factor 100, // Index capacity 100, // Leaf capacity 3, // dimension :) SpatialIndex::RTree::RV_RSTAR, id); } #endif