aboutsummaryrefslogtreecommitdiff
path: root/src/mapnode.cpp
diff options
context:
space:
mode:
authorParamat <paramat@users.noreply.github.com>2017-05-05 21:07:25 +0100
committerLoïc Blot <nerzhul@users.noreply.github.com>2017-05-05 22:07:25 +0200
commite8b00fdf987e9c689f3dbf9c22c0a6269250c3b5 (patch)
tree94ce64f4ec15f14e073998ebf687d115b2ae9291 /src/mapnode.cpp
parent7c82f1e5dd55acf37cacc79709d4fb4d44e8698f (diff)
downloadminetest-e8b00fdf987e9c689f3dbf9c22c0a6269250c3b5.tar.gz
minetest-e8b00fdf987e9c689f3dbf9c22c0a6269250c3b5.tar.bz2
minetest-e8b00fdf987e9c689f3dbf9c22c0a6269250c3b5.zip
Clouds API: Fix yellow clouds at dawn and dusk (#5707)
Diffstat (limited to 'src/mapnode.cpp')
0 files changed, 0 insertions, 0 deletions
' href='#n120'>120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "collision.h"
#include <cmath>
#include "mapblock.h"
#include "map.h"
#include "nodedef.h"
#include "gamedef.h"
#ifndef SERVER
#include "client/clientenvironment.h"
#include "client/localplayer.h"
#endif
#include "serverenvironment.h"
#include "server/serveractiveobject.h"
#include "util/timetaker.h"
#include "profiler.h"

#ifdef __FAST_MATH__
#warning "-ffast-math is known to cause bugs in collision code, do not use!"
#endif

struct NearbyCollisionInfo {
	// node
	NearbyCollisionInfo(bool is_ul, int bouncy, const v3s16 &pos,
			const aabb3f &box) :
		is_unloaded(is_ul),
		obj(nullptr),
		bouncy(bouncy),
		position(pos),
		box(box)
	{}

	// object
	NearbyCollisionInfo(ActiveObject *obj, int bouncy,
			const aabb3f &box) :
		is_unloaded(false),
		obj(obj),
		bouncy(bouncy),
		box(box)
	{}

	inline bool isObject() const { return obj != nullptr; }

	bool is_unloaded;
	bool is_step_up = false;
	ActiveObject *obj;
	int bouncy;
	v3s16 position;
	aabb3f box;
};

// Helper functions:
// Truncate floating point numbers to specified number of decimal places
// in order to move all the floating point error to one side of the correct value
static inline f32 truncate(const f32 val, const f32 factor)
{
	return truncf(val * factor) / factor;
}

static inline v3f truncate(const v3f& vec, const f32 factor)
{
	return v3f(
		truncate(vec.X, factor),
		truncate(vec.Y, factor),
		truncate(vec.Z, factor)
	);
}

// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
CollisionAxis axisAlignedCollision(
		const aabb3f &staticbox, const aabb3f &movingbox,
		const v3f &speed, f32 *dtime)
{
	//TimeTaker tt("axisAlignedCollision");

	aabb3f relbox(
			(movingbox.MaxEdge.X - movingbox.MinEdge.X) + (staticbox.MaxEdge.X - staticbox.MinEdge.X),						// sum of the widths
			(movingbox.MaxEdge.Y - movingbox.MinEdge.Y) + (staticbox.MaxEdge.Y - staticbox.MinEdge.Y),
			(movingbox.MaxEdge.Z - movingbox.MinEdge.Z) + (staticbox.MaxEdge.Z - staticbox.MinEdge.Z),
			std::max(movingbox.MaxEdge.X, staticbox.MaxEdge.X) - std::min(movingbox.MinEdge.X, staticbox.MinEdge.X),	//outer bounding 'box' dimensions
			std::max(movingbox.MaxEdge.Y, staticbox.MaxEdge.Y) - std::min(movingbox.MinEdge.Y, staticbox.MinEdge.Y),
			std::max(movingbox.MaxEdge.Z, staticbox.MaxEdge.Z) - std::min(movingbox.MinEdge.Z, staticbox.MinEdge.Z)
	);

	const f32 dtime_max = *dtime;
	f32 inner_margin;		// the distance of clipping recovery
	f32 distance;
	f32 time;


	if (speed.Y) {
		distance = relbox.MaxEdge.Y - relbox.MinEdge.Y;
		*dtime = distance / std::abs(speed.Y);
		time = std::max(*dtime, 0.0f);

		if (*dtime <= dtime_max) {
			inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Y - staticbox.MinEdge.Y), -2.0f);

			if ((speed.Y > 0 && staticbox.MinEdge.Y - movingbox.MaxEdge.Y > inner_margin) ||
				(speed.Y < 0 && movingbox.MinEdge.Y - staticbox.MaxEdge.Y > inner_margin)) {
				if (
					(std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
						- std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
						- relbox.MinEdge.X < 0) &&
						(std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
							- std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
							- relbox.MinEdge.Z < 0)
					)
					return COLLISION_AXIS_Y;
			}
		}
		else {
			return COLLISION_AXIS_NONE;
		}
	}

	// NO else if here

	if (speed.X) {
		distance = relbox.MaxEdge.X - relbox.MinEdge.X;
		*dtime = distance / std::abs(speed.X);
		time = std::max(*dtime, 0.0f);

		if (*dtime <= dtime_max) {
			inner_margin = std::max(-0.5f * (staticbox.MaxEdge.X - staticbox.MinEdge.X), -2.0f);

			if ((speed.X > 0 && staticbox.MinEdge.X - movingbox.MaxEdge.X > inner_margin) ||
				(speed.X < 0 && movingbox.MinEdge.X - staticbox.MaxEdge.X > inner_margin)) {
				if (
					(std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
						- std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
						- relbox.MinEdge.Y < 0) &&
						(std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
							- std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
							- relbox.MinEdge.Z < 0)
					) 
					return COLLISION_AXIS_X;
			}
		} else {
			return COLLISION_AXIS_NONE;
		}
	}

	// NO else if here

	if (speed.Z) {
		distance = relbox.MaxEdge.Z - relbox.MinEdge.Z;
		*dtime = distance / std::abs(speed.Z);
		time = std::max(*dtime, 0.0f);

		if (*dtime <= dtime_max) {
			inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Z - staticbox.MinEdge.Z), -2.0f);

			if ((speed.Z > 0 && staticbox.MinEdge.Z - movingbox.MaxEdge.Z > inner_margin) ||
				(speed.Z < 0 && movingbox.MinEdge.Z - staticbox.MaxEdge.Z > inner_margin)) {
				if (
					(std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
						- std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
						- relbox.MinEdge.X < 0) &&
						(std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
							- std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
							- relbox.MinEdge.Y < 0)
					) 
					return COLLISION_AXIS_Z;
			}
		}
	}

	return COLLISION_AXIS_NONE;
}

// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
		const std::vector<NearbyCollisionInfo> &cinfo,
		const aabb3f &movingbox,
		f32 y_increase, f32 d)
{
	//TimeTaker tt("wouldCollideWithCeiling");

	assert(y_increase >= 0);	// pre-condition

	for (const auto &it : cinfo) {
		const aabb3f &staticbox = it.box;
		if ((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
				(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
				(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
				(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
				(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
				(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
			return true;
	}

	return false;
}

static inline void getNeighborConnectingFace(const v3s16 &p,
	const NodeDefManager *nodedef, Map *map, MapNode n, int v, int *neighbors)
{
	MapNode n2 = map->getNode(p);
	if (nodedef->nodeboxConnects(n, n2, v))
		*neighbors |= v;
}

collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
		f32 pos_max_d, const aabb3f &box_0,
		f32 stepheight, f32 dtime,
		v3f *pos_f, v3f *speed_f,
		v3f accel_f, ActiveObject *self,
		bool collideWithObjects)
{
	static bool time_notification_done = false;
	Map *map = &env->getMap();

	ScopeProfiler sp(g_profiler, "collisionMoveSimple()", SPT_AVG);

	collisionMoveResult result;

	/*
		Calculate new velocity
	*/
	if (dtime > 0.5f) {
		if (!time_notification_done) {
			time_notification_done = true;
			infostream << "collisionMoveSimple: maximum step interval exceeded,"
					" lost movement details!"<<std::endl;
		}
		dtime = 0.5f;
	} else {
		time_notification_done = false;
	}
	*speed_f += accel_f * dtime;

	// If there is no speed, there are no collisions
	if (speed_f->getLength() == 0)
		return result;

	// Limit speed for avoiding hangs
	speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
	speed_f->X = rangelim(speed_f->X, -5000, 5000);
	speed_f->Z = rangelim(speed_f->Z, -5000, 5000);

	*speed_f = truncate(*speed_f, 10000.0f);

	/*
		Collect node boxes in movement range
	*/
	std::vector<NearbyCollisionInfo> cinfo;
	{
	//TimeTaker tt2("collisionMoveSimple collect boxes");
	ScopeProfiler sp2(g_profiler, "collisionMoveSimple(): collect boxes", SPT_AVG);

	v3f newpos_f = *pos_f + *speed_f * dtime;
	v3f minpos_f(
		MYMIN(pos_f->X, newpos_f.X),
		MYMIN(pos_f->Y, newpos_f.Y) + 0.01f * BS, // bias rounding, player often at +/-n.5
		MYMIN(pos_f->Z, newpos_f.Z)
	);
	v3f maxpos_f(
		MYMAX(pos_f->X, newpos_f.X),
		MYMAX(pos_f->Y, newpos_f.Y),
		MYMAX(pos_f->Z, newpos_f.Z)
	);
	v3s16 min = floatToInt(minpos_f + box_0.MinEdge, BS) - v3s16(1, 1, 1);
	v3s16 max = floatToInt(maxpos_f + box_0.MaxEdge, BS) + v3s16(1, 1, 1);

	bool any_position_valid = false;

	v3s16 p;
	for (p.X = min.X; p.X <= max.X; p.X++)
	for (p.Y = min.Y; p.Y <= max.Y; p.Y++)
	for (p.Z = min.Z; p.Z <= max.Z; p.Z++) {
		bool is_position_valid;
		MapNode n = map->getNode(p, &is_position_valid);

		if (is_position_valid && n.getContent() != CONTENT_IGNORE) {
			// Object collides into walkable nodes

			any_position_valid = true;
			const NodeDefManager *nodedef = gamedef->getNodeDefManager();
			const ContentFeatures &f = nodedef->get(n);

			if (!f.walkable)
				continue;

			int n_bouncy_value = itemgroup_get(f.groups, "bouncy");

			int neighbors = 0;
			if (f.drawtype == NDT_NODEBOX &&
				f.node_box.type == NODEBOX_CONNECTED) {
				v3s16 p2 = p;

				p2.Y++;
				getNeighborConnectingFace(p2, nodedef, map, n, 1, &neighbors);

				p2 = p;
				p2.Y--;
				getNeighborConnectingFace(p2, nodedef, map, n, 2, &neighbors);

				p2 = p;
				p2.Z--;
				getNeighborConnectingFace(p2, nodedef, map, n, 4, &neighbors);

				p2 = p;
				p2.X--;
				getNeighborConnectingFace(p2, nodedef, map, n, 8, &neighbors);

				p2 = p;
				p2.Z++;
				getNeighborConnectingFace(p2, nodedef, map, n, 16, &neighbors);

				p2 = p;
				p2.X++;
				getNeighborConnectingFace(p2, nodedef, map, n, 32, &neighbors);
			}
			std::vector<aabb3f> nodeboxes;
			n.getCollisionBoxes(gamedef->ndef(), &nodeboxes, neighbors);

			// Calculate float position only once
			v3f posf = intToFloat(p, BS);
			for (auto box : nodeboxes) {
				box.MinEdge += posf;
				box.MaxEdge += posf;
				cinfo.emplace_back(false, n_bouncy_value, p, box);
			}
		} else {
			// Collide with unloaded nodes (position invalid) and loaded
			// CONTENT_IGNORE nodes (position valid)
			aabb3f box = getNodeBox(p, BS);
			cinfo.emplace_back(true, 0, p, box);
		}
	}

	// Do not move if world has not loaded yet, since custom node boxes
	// are not available for collision detection.
	// This also intentionally occurs in the case of the object being positioned
	// solely on loaded CONTENT_IGNORE nodes, no matter where they come from.
	if (!any_position_valid) {
		*speed_f = v3f(0, 0, 0);
		return result;
	}

	} // tt2

	if(collideWithObjects)
	{
		/* add object boxes to cinfo */

		std::vector<ActiveObject*> objects;
#ifndef SERVER
		ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
		if (c_env != 0) {
			// Calculate distance by speed, add own extent and 1.5m of tolerance
			f32 distance = speed_f->getLength() * dtime +
				box_0.getExtent().getLength() + 1.5f * BS;
			std::vector<DistanceSortedActiveObject> clientobjects;
			c_env->getActiveObjects(*pos_f, distance, clientobjects);

			for (auto &clientobject : clientobjects) {
				// Do collide with everything but itself and the parent CAO
				if (!self || (self != clientobject.obj &&
						self != clientobject.obj->getParent())) {
					objects.push_back((ActiveObject*) clientobject.obj);
				}
			}
		}
		else
#endif
		{
			ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
			if (s_env != NULL) {
				// Calculate distance by speed, add own extent and 1.5m of tolerance
				f32 distance = speed_f->getLength() * dtime +
					box_0.getExtent().getLength() + 1.5f * BS;

				// search for objects which are not us, or we are not its parent
				// we directly use the callback to populate the result to prevent
				// a useless result loop here
				auto include_obj_cb = [self, &objects] (ServerActiveObject *obj) {
					if (!obj->isGone() &&
						(!self || (self != obj && self != obj->getParent()))) {
						objects.push_back((ActiveObject *)obj);
					}
					return false;
				};

				std::vector<ServerActiveObject *> s_objects;
				s_env->getObjectsInsideRadius(s_objects, *pos_f, distance, include_obj_cb);
			}
		}

		for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
				iter != objects.end(); ++iter) {
			ActiveObject *object = *iter;

			if (object && object->collideWithObjects()) {
				aabb3f object_collisionbox;
				if (object->getCollisionBox(&object_collisionbox))
					cinfo.emplace_back(object, 0, object_collisionbox);
			}
		}
#ifndef SERVER
		if (self && c_env) {
			LocalPlayer *lplayer = c_env->getLocalPlayer();
			if (lplayer->getParent() == nullptr) {
				aabb3f lplayer_collisionbox = lplayer->getCollisionbox();
				v3f lplayer_pos = lplayer->getPosition();
				lplayer_collisionbox.MinEdge += lplayer_pos;
				lplayer_collisionbox.MaxEdge += lplayer_pos;
				ActiveObject *obj = (ActiveObject*) lplayer->getCAO();
				cinfo.emplace_back(obj, 0, lplayer_collisionbox);
			}
		}
#endif
	} //tt3

	/*
		Collision detection
	*/

	f32 d = 0.0f;

	int loopcount = 0;

	while(dtime > BS * 1e-10f) {
		// Avoid infinite loop
		loopcount++;
		if (loopcount >= 100) {
			warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
			break;
		}

		aabb3f movingbox = box_0;
		movingbox.MinEdge += *pos_f;
		movingbox.MaxEdge += *pos_f;

		CollisionAxis nearest_collided = COLLISION_AXIS_NONE;
		f32 nearest_dtime = dtime;
		int nearest_boxindex = -1;

		/*
			Go through every nodebox, find nearest collision
		*/
		for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
			const NearbyCollisionInfo &box_info = cinfo[boxindex];
			// Ignore if already stepped up this nodebox.
			if (box_info.is_step_up)
				continue;

			// Find nearest collision of the two boxes (raytracing-like)
			f32 dtime_tmp = nearest_dtime;
			CollisionAxis collided = axisAlignedCollision(box_info.box,
					movingbox, *speed_f, &dtime_tmp);

			if (collided == -1 || dtime_tmp >= nearest_dtime)
				continue;

			nearest_dtime = dtime_tmp;
			nearest_collided = collided;
			nearest_boxindex = boxindex;
		}

		if (nearest_collided == COLLISION_AXIS_NONE) {
			// No collision with any collision box.
			*pos_f += truncate(*speed_f * dtime, 100.0f);
			dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
		} else {
			// Otherwise, a collision occurred.
			NearbyCollisionInfo &nearest_info = cinfo[nearest_boxindex];
			const aabb3f& cbox = nearest_info.box;

			//movingbox except moved to the horizontal position it would be after step up
			aabb3f stepbox = movingbox;
			stepbox.MinEdge.X += speed_f->X * dtime;
			stepbox.MinEdge.Z += speed_f->Z * dtime;
			stepbox.MaxEdge.X += speed_f->X * dtime;
			stepbox.MaxEdge.Z += speed_f->Z * dtime;
			// Check for stairs.
			bool step_up = (nearest_collided != COLLISION_AXIS_Y) && // must not be Y direction
					(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
					(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
					(!wouldCollideWithCeiling(cinfo, stepbox,
							cbox.MaxEdge.Y - movingbox.MinEdge.Y,
							d));

			// Get bounce multiplier
			float bounce = -(float)nearest_info.bouncy / 100.0f;

			// Move to the point of collision and reduce dtime by nearest_dtime
			if (nearest_dtime < 0) {
				// Handle negative nearest_dtime
				if (!step_up) {
					if (nearest_collided == COLLISION_AXIS_X)
						pos_f->X += speed_f->X * nearest_dtime;
					if (nearest_collided == COLLISION_AXIS_Y)
						pos_f->Y += speed_f->Y * nearest_dtime;
					if (nearest_collided == COLLISION_AXIS_Z)
						pos_f->Z += speed_f->Z * nearest_dtime;
				}
			} else {
				*pos_f += truncate(*speed_f * nearest_dtime, 100.0f);
				dtime -= nearest_dtime;
			}

			bool is_collision = true;
			if (nearest_info.is_unloaded)
				is_collision = false;

			CollisionInfo info;
			if (nearest_info.isObject())
				info.type = COLLISION_OBJECT;
			else
				info.type = COLLISION_NODE;

			info.node_p = nearest_info.position;
			info.object = nearest_info.obj;
			info.old_speed = *speed_f;
			info.plane = nearest_collided;

			// Set the speed component that caused the collision to zero
			if (step_up) {
				// Special case: Handle stairs
				nearest_info.is_step_up = true;
				is_collision = false;
			} else if (nearest_collided == COLLISION_AXIS_X) {
				if (fabs(speed_f->X) > BS * 3)
					speed_f->X *= bounce;
				else
					speed_f->X = 0;
				result.collides = true;
			} else if (nearest_collided == COLLISION_AXIS_Y) {
				if(fabs(speed_f->Y) > BS * 3)
					speed_f->Y *= bounce;
				else
					speed_f->Y = 0;
				result.collides = true;
			} else if (nearest_collided == COLLISION_AXIS_Z) {
				if (fabs(speed_f->Z) > BS * 3)
					speed_f->Z *= bounce;
				else
					speed_f->Z = 0;
				result.collides = true;
			}

			info.new_speed = *speed_f;
			if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1f * BS)
				is_collision = false;

			if (is_collision) {
				info.axis = nearest_collided;
				result.collisions.push_back(info);
			}
		}
	}

	/*
		Final touches: Check if standing on ground, step up stairs.
	*/
	aabb3f box = box_0;
	box.MinEdge += *pos_f;
	box.MaxEdge += *pos_f;
	for (const auto &box_info : cinfo) {
		const aabb3f &cbox = box_info.box;

		/*
			See if the object is touching ground.

			Object touches ground if object's minimum Y is near node's
			maximum Y and object's X-Z-area overlaps with the node's
			X-Z-area.
		*/

		if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
				cbox.MaxEdge.Z - d > box.MinEdge.Z &&
				cbox.MinEdge.Z + d < box.MaxEdge.Z) {
			if (box_info.is_step_up) {
				pos_f->Y += cbox.MaxEdge.Y - box.MinEdge.Y;
				box = box_0;
				box.MinEdge += *pos_f;
				box.MaxEdge += *pos_f;
			}
			if (std::fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.05f) {
				result.touching_ground = true;

				if (box_info.isObject())
					result.standing_on_object = true;
			}
		}
	}

	return result;
}