aboutsummaryrefslogtreecommitdiff
path: root/src/content_mapblock.cpp
blob: c2a25037c3b842a97eed1624bbc4ee852590e749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
generated by cgit v1.2.3 (git 2.39.1) at 2024-11-13 05:19:34 +0000
 


"hl num">0));
			applyFacesShading(colors[2], v3f(1, 0, 0));
			applyFacesShading(colors[3], v3f(-1, 0, 0));
			applyFacesShading(colors[4], v3f(0, 0, 1));
			applyFacesShading(colors[5], v3f(0, 0, -1));
		}
	}

	video::S3DVertex vertices[24] = {
		// top
		video::S3DVertex(min.X, max.Y, max.Z, 0, 1, 0, colors[0], txc[0], txc[1]),
		video::S3DVertex(max.X, max.Y, max.Z, 0, 1, 0, colors[0], txc[2], txc[1]),
		video::S3DVertex(max.X, max.Y, min.Z, 0, 1, 0, colors[0], txc[2], txc[3]),
		video::S3DVertex(min.X, max.Y, min.Z, 0, 1, 0, colors[0], txc[0], txc[3]),
		// bottom
		video::S3DVertex(min.X, min.Y, min.Z, 0, -1, 0, colors[1], txc[4], txc[5]),
		video::S3DVertex(max.X, min.Y, min.Z, 0, -1, 0, colors[1], txc[6], txc[5]),
		video::S3DVertex(max.X, min.Y, max.Z, 0, -1, 0, colors[1], txc[6], txc[7]),
		video::S3DVertex(min.X, min.Y, max.Z, 0, -1, 0, colors[1], txc[4], txc[7]),
		// right
		video::S3DVertex(max.X, max.Y, min.Z, 1, 0, 0, colors[2], txc[ 8], txc[9]),
		video::S3DVertex(max.X, max.Y, max.Z, 1, 0, 0, colors[2], txc[10], txc[9]),
		video::S3DVertex(max.X, min.Y, max.Z, 1, 0, 0, colors[2], txc[10], txc[11]),
		video::S3DVertex(max.X, min.Y, min.Z, 1, 0, 0, colors[2], txc[ 8], txc[11]),
		// left
		video::S3DVertex(min.X, max.Y, max.Z, -1, 0, 0, colors[3], txc[12], txc[13]),
		video::S3DVertex(min.X, max.Y, min.Z, -1, 0, 0, colors[3], txc[14], txc[13]),
		video::S3DVertex(min.X, min.Y, min.Z, -1, 0, 0, colors[3], txc[14], txc[15]),
		video::S3DVertex(min.X, min.Y, max.Z, -1, 0, 0, colors[3], txc[12], txc[15]),
		// back
		video::S3DVertex(max.X, max.Y, max.Z, 0, 0, 1, colors[4], txc[16], txc[17]),
		video::S3DVertex(min.X, max.Y, max.Z, 0, 0, 1, colors[4], txc[18], txc[17]),
		video::S3DVertex(min.X, min.Y, max.Z, 0, 0, 1, colors[4], txc[18], txc[19]),
		video::S3DVertex(max.X, min.Y, max.Z, 0, 0, 1, colors[4], txc[16], txc[19]),
		// front
		video::S3DVertex(min.X, max.Y, min.Z, 0, 0, -1, colors[5], txc[20], txc[21]),
		video::S3DVertex(max.X, max.Y, min.Z, 0, 0, -1, colors[5], txc[22], txc[21]),
		video::S3DVertex(max.X, min.Y, min.Z, 0, 0, -1, colors[5], txc[22], txc[23]),
		video::S3DVertex(min.X, min.Y, min.Z, 0, 0, -1, colors[5], txc[20], txc[23]),
	};

	static const u8 light_indices[24] = {
		3, 7, 6, 2,
		0, 4, 5, 1,
		6, 7, 5, 4,
		3, 2, 0, 1,
		7, 3, 1, 5,
		2, 6, 4, 0
	};

	for (int face = 0; face < 6; face++) {
		int tileindex = MYMIN(face, tilecount - 1);
		const TileSpec &tile = tiles[tileindex];
		for (int j = 0; j < 4; j++) {
			video::S3DVertex &vertex = vertices[face * 4 + j];
			v2f &tcoords = vertex.TCoords;
			switch (tile.rotation) {
			case 0:
				break;
			case 1: // R90
				tcoords.rotateBy(90, irr::core::vector2df(0, 0));
				break;
			case 2: // R180
				tcoords.rotateBy(180, irr::core::vector2df(0, 0));
				break;
			case 3: // R270
				tcoords.rotateBy(270, irr::core::vector2df(0, 0));
				break;
			case 4: // FXR90
				tcoords.X = 1.0 - tcoords.X;
				tcoords.rotateBy(90, irr::core::vector2df(0, 0));
				break;
			case 5: // FXR270
				tcoords.X = 1.0 - tcoords.X;
				tcoords.rotateBy(270, irr::core::vector2df(0, 0));
				break;
			case 6: // FYR90
				tcoords.Y = 1.0 - tcoords.Y;
				tcoords.rotateBy(90, irr::core::vector2df(0, 0));
				break;
			case 7: // FYR270
				tcoords.Y = 1.0 - tcoords.Y;
				tcoords.rotateBy(270, irr::core::vector2df(0, 0));
				break;
			case 8: // FX
				tcoords.X = 1.0 - tcoords.X;
				break;
			case 9: // FY
				tcoords.Y = 1.0 - tcoords.Y;
				break;
			default:
				break;
			}
		}
	}

	if (data->m_smooth_lighting) {
		for (int j = 0; j < 24; ++j) {
			vertices[j].Color = encode_light(lights[light_indices[j]],
				f->light_source);
			if (!f->light_source)
				applyFacesShading(vertices[j].Color, vertices[j].Normal);
		}
	}

	// Add to mesh collector
	for (int k = 0; k < 6; ++k) {
		int tileindex = MYMIN(k, tilecount - 1);
		collector->append(tiles[tileindex], vertices + 4 * k, 4, quad_indices, 6);
	}
}

// Gets the base lighting values for a node
void MapblockMeshGenerator::getSmoothLightFrame()
{
	for (int k = 0; k < 8; ++k) {
		u16 light = getSmoothLightTransparent(blockpos_nodes + p, light_dirs[k], data);
		frame.lightsA[k] = light & 0xff;
		frame.lightsB[k] = light >> 8;
	}
}

// Calculates vertex light level
//  vertex_pos - vertex position in the node (coordinates are clamped to [0.0, 1.0] or so)
u16 MapblockMeshGenerator::blendLight(const v3f &vertex_pos)
{
	f32 x = core::clamp(vertex_pos.X / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
	f32 y = core::clamp(vertex_pos.Y / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
	f32 z = core::clamp(vertex_pos.Z / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
	f32 lightA = 0.0;
	f32 lightB = 0.0;
	for (int k = 0; k < 8; ++k) {
		f32 dx = (k & 4) ? x : 1 - x;
		f32 dy = (k & 2) ? y : 1 - y;
		f32 dz = (k & 1) ? z : 1 - z;
		lightA += dx * dy * dz * frame.lightsA[k];
		lightB += dx * dy * dz * frame.lightsB[k];
	}
	return
		core::clamp(core::round32(lightA), 0, 255) |
		core::clamp(core::round32(lightB), 0, 255) << 8;
}

// Calculates vertex color to be used in mapblock mesh
//  vertex_pos - vertex position in the node (coordinates are clamped to [0.0, 1.0] or so)
//  tile_color - node's tile color
video::SColor MapblockMeshGenerator::blendLightColor(const v3f &vertex_pos)
{
	u16 light = blendLight(vertex_pos);
	return encode_light(light, f->light_source);
}

video::SColor MapblockMeshGenerator::blendLightColor(const v3f &vertex_pos,
	const v3f &vertex_normal)
{
	video::SColor color = blendLightColor(vertex_pos);
	if (!f->light_source)
		applyFacesShading(color, vertex_normal);
	return color;
}

void MapblockMeshGenerator::generateCuboidTextureCoords(const aabb3f &box, f32 *coords)
{
	f32 tx1 = (box.MinEdge.X / BS) + 0.5;
	f32 ty1 = (box.MinEdge.Y / BS) + 0.5;
	f32 tz1 = (box.MinEdge.Z / BS) + 0.5;
	f32 tx2 = (box.MaxEdge.X / BS) + 0.5;
	f32 ty2 = (box.MaxEdge.Y / BS) + 0.5;
	f32 tz2 = (box.MaxEdge.Z / BS) + 0.5;
	f32 txc[24] = {
		    tx1, 1 - tz2,     tx2, 1 - tz1, // up
		    tx1,     tz1,     tx2,     tz2, // down
		    tz1, 1 - ty2,     tz2, 1 - ty1, // right
		1 - tz2, 1 - ty2, 1 - tz1, 1 - ty1, // left
		1 - tx2, 1 - ty2, 1 - tx1, 1 - ty1, // back
		    tx1, 1 - ty2,     tx2, 1 - ty1, // front
	};
	for (int i = 0; i != 24; ++i)
		coords[i] = txc[i];
}

void MapblockMeshGenerator::drawAutoLightedCuboid(aabb3f box, const f32 *txc,
	TileSpec *tiles, int tile_count)
{
	f32 texture_coord_buf[24];
	f32 dx1 = box.MinEdge.X;
	f32 dy1 = box.MinEdge.Y;
	f32 dz1 = box.MinEdge.Z;
	f32 dx2 = box.MaxEdge.X;
	f32 dy2 = box.MaxEdge.Y;
	f32 dz2 = box.MaxEdge.Z;
	box.MinEdge += origin;
	box.MaxEdge += origin;
	if (!txc) {
		generateCuboidTextureCoords(box, texture_coord_buf);
		txc = texture_coord_buf;
	}
	if (!tiles) {
		tiles = &tile;
		tile_count = 1;
	}
	if (data->m_smooth_lighting) {
		u16 lights[8];
		for (int j = 0; j < 8; ++j) {
			v3f d;
			d.X = (j & 4) ? dx2 : dx1;
			d.Y = (j & 2) ? dy2 : dy1;
			d.Z = (j & 1) ? dz2 : dz1;
			lights[j] = blendLight(d);
		}
		drawCuboid(box, tiles, tile_count, lights, txc);
	} else {
		drawCuboid(box, tiles, tile_count, NULL, txc);
	}
}

void MapblockMeshGenerator::prepareLiquidNodeDrawing()
{
	getSpecialTile(0, &tile_liquid_top);
	getSpecialTile(1, &tile_liquid);

	MapNode ntop = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(p.X, p.Y + 1, p.Z));
	c_flowing = nodedef->getId(f->liquid_alternative_flowing);
	c_source = nodedef->getId(f->liquid_alternative_source);
	top_is_same_liquid = (ntop.getContent() == c_flowing) || (ntop.getContent() == c_source);

	if (data->m_smooth_lighting)
		return; // don't need to pre-compute anything in this case

	if (f->light_source != 0) {
		// If this liquid emits light and doesn't contain light, draw
		// it at what it emits, for an increased effect
		light = decode_light(f->light_source);
		light = light | (light << 8);
	} else if (nodedef->get(ntop).param_type == CPT_LIGHT) {
		// Otherwise, use the light of the node on top if possible
		light = getInteriorLight(ntop, 0, nodedef);
	}

	color_liquid_top = encode_light(light, f->light_source);
	color = encode_light(light, f->light_source);
}

void MapblockMeshGenerator::getLiquidNeighborhood()
{
	u8 range = rangelim(nodedef->get(c_flowing).liquid_range, 1, 8);

	for (int w = -1; w <= 1; w++)
	for (int u = -1; u <= 1; u++) {
		NeighborData &neighbor = liquid_neighbors[w + 1][u + 1];
		v3s16 p2 = p + v3s16(u, 0, w);
		MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
		neighbor.content = n2.getContent();
		neighbor.level = -0.5 * BS;
		neighbor.is_same_liquid = false;
		neighbor.top_is_same_liquid = false;

		if (neighbor.content == CONTENT_IGNORE)
			continue;

		if (neighbor.content == c_source) {
			neighbor.is_same_liquid = true;
			neighbor.level = 0.5 * BS;
		} else if (neighbor.content == c_flowing) {
			neighbor.is_same_liquid = true;
			u8 liquid_level = (n2.param2 & LIQUID_LEVEL_MASK);
			if (liquid_level <= LIQUID_LEVEL_MAX + 1 - range)
				liquid_level = 0;
			else
				liquid_level -= (LIQUID_LEVEL_MAX + 1 - range);
			neighbor.level = (-0.5 + (liquid_level + 0.5) / range) * BS;
		}

		// Check node above neighbor.
		// NOTE: This doesn't get executed if neighbor
		//       doesn't exist
		p2.Y++;
		n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
		if (n2.getContent() == c_source || n2.getContent() == c_flowing)
			neighbor.top_is_same_liquid = true;
	}
}

void MapblockMeshGenerator::calculateCornerLevels()
{
	for (int k = 0; k < 2; k++)
	for (int i = 0; i < 2; i++)
		corner_levels[k][i] = getCornerLevel(i, k);
}

f32 MapblockMeshGenerator::getCornerLevel(int i, int k)
{
	float sum = 0;
	int count = 0;
	int air_count = 0;
	for (int dk = 0; dk < 2; dk++)
	for (int di = 0; di < 2; di++) {
		NeighborData &neighbor_data = liquid_neighbors[k + dk][i + di];
		content_t content = neighbor_data.content;

		// If top is liquid, draw starting from top of node
		if (neighbor_data.top_is_same_liquid)
			return 0.5 * BS;

		// Source always has the full height
		if (content == c_source)
			return 0.5 * BS;

		// Flowing liquid has level information
		if (content == c_flowing) {
			sum += neighbor_data.level;
			count++;
		} else if (content == CONTENT_AIR) {
			air_count++;
			if (air_count >= 2)
				return -0.5 * BS + 0.2;
		}
	}
	if (count > 0)
		return sum / count;
	return 0;
}

void MapblockMeshGenerator::drawLiquidSides()
{
	struct LiquidFaceDesc {
		v3s16 dir; // XZ
		v3s16 p[2]; // XZ only; 1 means +, 0 means -
	};
	struct UV {
		int u, v;
	};
	static const LiquidFaceDesc base_faces[4] = {
		{v3s16( 1, 0,  0), {v3s16(1, 0, 1), v3s16(1, 0, 0)}},
		{v3s16(-1, 0,  0), {v3s16(0, 0, 0), v3s16(0, 0, 1)}},
		{v3s16( 0, 0,  1), {v3s16(0, 0, 1), v3s16(1, 0, 1)}},
		{v3s16( 0, 0, -1), {v3s16(1, 0, 0), v3s16(0, 0, 0)}},
	};
	static const UV base_vertices[4] = {
		{0, 1},
		{1, 1},
		{1, 0},
		{0, 0}
	};

	for (const auto &face : base_faces) {
		const NeighborData &neighbor = liquid_neighbors[face.dir.Z + 1][face.dir.X + 1];

		// No face between nodes of the same liquid, unless there is node
		// at the top to which it should be connected. Again, unless the face
		// there would be inside the liquid
		if (neighbor.is_same_liquid) {
			if (!top_is_same_liquid)
				continue;
			if (neighbor.top_is_same_liquid)
				continue;
		}

		const ContentFeatures &neighbor_features = nodedef->get(neighbor.content);
		// Don't draw face if neighbor is blocking the view
		if (neighbor_features.solidness == 2)
			continue;

		video::S3DVertex vertices[4];
		for (int j = 0; j < 4; j++) {
			const UV &vertex = base_vertices[j];
			const v3s16 &base = face.p[vertex.u];
			v3f pos;
			pos.X = (base.X - 0.5) * BS;
			pos.Z = (base.Z - 0.5) * BS;
			if (vertex.v)
				pos.Y = neighbor.is_same_liquid ? corner_levels[base.Z][base.X] : -0.5 * BS;
			else
				pos.Y =     !top_is_same_liquid ? corner_levels[base.Z][base.X] :  0.5 * BS;
			if (data->m_smooth_lighting)
				color = blendLightColor(pos);
			pos += origin;
			vertices[j] = video::S3DVertex(pos.X, pos.Y, pos.Z, 0, 0, 0, color, vertex.u, vertex.v);
		};
		collector->append(tile_liquid, vertices, 4, quad_indices, 6);
	}
}

void MapblockMeshGenerator::drawLiquidTop()
{
	// To get backface culling right, the vertices need to go
	// clockwise around the front of the face. And we happened to
	// calculate corner levels in exact reverse order.
	static const int corner_resolve[4][2] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};

	video::S3DVertex vertices[4] = {
		video::S3DVertex(-BS / 2, 0,  BS / 2, 0, 0, 0, color_liquid_top, 0, 1),
		video::S3DVertex( BS / 2, 0,  BS / 2, 0, 0, 0, color_liquid_top, 1, 1),
		video::S3DVertex( BS / 2, 0, -BS / 2, 0, 0, 0, color_liquid_top, 1, 0),
		video::S3DVertex(-BS / 2, 0, -BS / 2, 0, 0, 0, color_liquid_top, 0, 0),
	};

	for (int i = 0; i < 4; i++) {
		int u = corner_resolve[i][0];
		int w = corner_resolve[i][1];
		vertices[i].Pos.Y += corner_levels[w][u];
		if (data->m_smooth_lighting)
			vertices[i].Color = blendLightColor(vertices[i].Pos);
		vertices[i].Pos += origin;
	}

	// Default downwards-flowing texture animation goes from
	// -Z towards +Z, thus the direction is +Z.
	// Rotate texture to make animation go in flow direction
	// Positive if liquid moves towards +Z
	f32 dz = (corner_levels[0][0] + corner_levels[0][1]) -
	         (corner_levels[1][0] + corner_levels[1][1]);
	// Positive if liquid moves towards +X
	f32 dx = (corner_levels[0][0] + corner_levels[1][0]) -
	         (corner_levels[0][1] + corner_levels[1][1]);
	f32 tcoord_angle = atan2(dz, dx) * core::RADTODEG;
	v2f tcoord_center(0.5, 0.5);
	v2f tcoord_translate(blockpos_nodes.Z + p.Z, blockpos_nodes.X + p.X);
	tcoord_translate.rotateBy(tcoord_angle);
	tcoord_translate.X -= floor(tcoord_translate.X);
	tcoord_translate.Y -= floor(tcoord_translate.Y);

	for (video::S3DVertex &vertex : vertices) {
		vertex.TCoords.rotateBy(tcoord_angle, tcoord_center);
		vertex.TCoords += tcoord_translate;
	}

	std::swap(vertices[0].TCoords, vertices[2].TCoords);

	collector->append(tile_liquid_top, vertices, 4, quad_indices, 6);
}

void MapblockMeshGenerator::drawLiquidNode()
{
	prepareLiquidNodeDrawing();
	getLiquidNeighborhood();
	calculateCornerLevels();
	drawLiquidSides();
	if (!top_is_same_liquid)
		drawLiquidTop();
}

void MapblockMeshGenerator::drawGlasslikeNode()
{
	useTile(0, 0, 0);

	for (int face = 0; face < 6; face++) {
		// Check this neighbor
		v3s16 dir = g_6dirs[face];
		v3s16 neighbor_pos = blockpos_nodes + p + dir;
		MapNode neighbor = data->m_vmanip.getNodeNoExNoEmerge(neighbor_pos);
		// Don't make face if neighbor is of same type
		if (neighbor.getContent() == n.getContent())
			continue;
		// Face at Z-
		v3f vertices[4] = {
			v3f(-BS / 2,  BS / 2, -BS / 2),
			v3f( BS / 2,  BS / 2, -BS / 2),
			v3f( BS / 2, -BS / 2, -BS / 2),
			v3f(-BS / 2, -BS / 2, -BS / 2),
		};

		for (v3f &vertex : vertices) {
			switch (face) {
				case D6D_ZP:
					vertex.rotateXZBy(180); break;
				case D6D_YP:
					vertex.rotateYZBy( 90); break;
				case D6D_XP:
					vertex.rotateXZBy( 90); break;
				case D6D_ZN:
					vertex.rotateXZBy(  0); break;
				case D6D_YN:
					vertex.rotateYZBy(-90); break;
				case D6D_XN:
					vertex.rotateXZBy(-90); break;
			}
		}
		drawQuad(vertices, dir);
	}
}

void MapblockMeshGenerator::drawGlasslikeFramedNode()
{
	TileSpec tiles[6];
	for (int face = 0; face < 6; face++)
		getTile(g_6dirs[face], &tiles[face]);

	TileSpec glass_tiles[6];
	if (tiles[1].layers[0].texture &&
			tiles[2].layers[0].texture &&
			tiles[3].layers[0].texture) {
		glass_tiles[0] = tiles[4];
		glass_tiles[1] = tiles[0];
		glass_tiles[2] = tiles[4];
		glass_tiles[3] = tiles[4];
		glass_tiles[4] = tiles[3];
		glass_tiles[5] = tiles[4];
	} else {
		for (auto &glass_tile : glass_tiles)
			glass_tile = tiles[4];
	}

	u8 param2 = n.getParam2();
	bool H_merge = !(param2 & 128);
	bool V_merge = !(param2 & 64);
	param2 &= 63;

	static const float a = BS / 2;
	static const float g = a - 0.003;
	static const float b = .876 * ( BS / 2 );

	static const aabb3f frame_edges[FRAMED_EDGE_COUNT] = {
		aabb3f( b,  b, -a,  a,  a,  a), // y+
		aabb3f(-a,  b, -a, -b,  a,  a), // y+
		aabb3f( b, -a, -a,  a, -b,  a), // y-
		aabb3f(-a, -a, -a, -b, -b,  a), // y-
		aabb3f( b, -a,  b,  a,  a,  a), // x+
		aabb3f( b, -a, -a,  a,  a, -b), // x+
		aabb3f(-a, -a,  b, -b,  a,  a), // x-
		aabb3f(-a, -a, -a, -b,  a, -b), // x-
		aabb3f(-a,  b,  b,  a,  a,  a), // z+
		aabb3f(-a, -a,  b,  a, -b,  a), // z+
		aabb3f(-a, -a, -a,  a, -b, -b), // z-
		aabb3f(-a,  b, -a,  a,  a, -b), // z-
	};
	static const aabb3f glass_faces[6] = {
		aabb3f(-g, -g,  g,  g,  g,  g), // z+
		aabb3f(-g,  g, -g,  g,  g,  g), // y+
		aabb3f( g, -g, -g,  g,  g,  g), // x+
		aabb3f(-g, -g, -g,  g,  g, -g), // z-
		aabb3f(-g, -g, -g,  g, -g,  g), // y-
		aabb3f(-g, -g, -g, -g,  g,  g), // x-
	};

	// tables of neighbour (connect if same type and merge allowed),
	// checked with g_26dirs

	// 1 = connect, 0 = face visible
	bool nb[FRAMED_NEIGHBOR_COUNT] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

	// 1 = check
	static const bool check_nb_vertical   [FRAMED_NEIGHBOR_COUNT] = {0,1,0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
	static const bool check_nb_horizontal [FRAMED_NEIGHBOR_COUNT] = {1,0,1,1,0,1, 0,0,0,0, 1,1,1,1, 0,0,0,0};
	static const bool check_nb_all        [FRAMED_NEIGHBOR_COUNT] = {1,1,1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1};
	const bool *check_nb = check_nb_all;

	// neighbours checks for frames visibility
	if (H_merge || V_merge) {
		if (!H_merge)
			check_nb = check_nb_vertical; // vertical-only merge
		if (!V_merge)
			check_nb = check_nb_horizontal; // horizontal-only merge
		content_t current = n.getContent();
		for (int i = 0; i < FRAMED_NEIGHBOR_COUNT; i++) {
			if (!check_nb[i])
				continue;
			v3s16 n2p = blockpos_nodes + p + g_26dirs[i];
			MapNode n2 = data->m_vmanip.getNodeNoEx(n2p);
			content_t n2c = n2.getContent();
			if (n2c == current || n2c == CONTENT_IGNORE)
				nb[i] = 1;
		}
	}

	// edge visibility

	static const u8 nb_triplet[FRAMED_EDGE_COUNT][3] = {
		{1, 2,  7}, {1, 5,  6}, {4, 2, 15}, {4, 5, 14},
		{2, 0, 11}, {2, 3, 13}, {5, 0, 10}, {5, 3, 12},
		{0, 1,  8}, {0, 4, 16}, {3, 4, 17}, {3, 1,  9},
	};

	tile = tiles[1];
	for (int edge = 0; edge < FRAMED_EDGE_COUNT; edge++) {
		bool edge_invisible;
		if (nb[nb_triplet[edge][2]])
			edge_invisible = nb[nb_triplet[edge][0]] & nb[nb_triplet[edge][1]];
		else
			edge_invisible = nb[nb_triplet[edge][0]] ^ nb[nb_triplet[edge][1]];
		if (edge_invisible)
			continue;
		drawAutoLightedCuboid(frame_edges[edge]);
	}

	for (int face = 0; face < 6; face++) {
		if (nb[face])
			continue;
		tile = glass_tiles[face];
		drawAutoLightedCuboid(glass_faces[face]);
	}

	// Optionally render internal liquid level defined by param2
	// Liquid is textured with 1 tile defined in nodedef 'special_tiles'
	if (param2 > 0 && f->param_type_2 == CPT2_GLASSLIKE_LIQUID_LEVEL &&
			f->special_tiles[0].layers[0].texture) {
		// Internal liquid level has param2 range 0 .. 63,
		// convert it to -0.5 .. 0.5
		float vlev = (param2 / 63.0) * 2.0 - 1.0;
		getSpecialTile(0, &tile);
		drawAutoLightedCuboid(aabb3f(-(nb[5] ? g : b),
		                             -(nb[4] ? g : b),
		                             -(nb[3] ? g : b),
		                              (nb[2] ? g : b),
		                              (nb[1] ? g : b) * vlev,
		                              (nb[0] ? g : b)));
	}
}

void MapblockMeshGenerator::drawAllfacesNode()
{
	static const aabb3f box(-BS / 2, -BS / 2, -BS / 2, BS / 2, BS / 2, BS / 2);
	useTile(0, 0, 0);
	drawAutoLightedCuboid(box);
}

void MapblockMeshGenerator::drawTorchlikeNode()
{
	u8 wall = n.getWallMounted(nodedef);
	u8 tileindex = 0;
	switch (wall) {
		case DWM_YP: tileindex = 1; break; // ceiling
		case DWM_YN: tileindex = 0; break; // floor
		default:     tileindex = 2; // side (or invalid—should we care?)
	}
	useTile(tileindex, MATERIAL_FLAG_CRACK_OVERLAY, MATERIAL_FLAG_BACKFACE_CULLING);

	float size = BS / 2 * f->visual_scale;
	v3f vertices[4] = {
		v3f(-size,  size, 0),
		v3f( size,  size, 0),
		v3f( size, -size, 0),
		v3f(-size, -size, 0),
	};

	for (v3f &vertex : vertices) {
		switch (wall) {
			case DWM_YP:
				vertex.rotateXZBy(-45); break;
			case DWM_YN:
				vertex.rotateXZBy( 45); break;
			case DWM_XP:
				vertex.rotateXZBy(  0); break;
			case DWM_XN:
				vertex.rotateXZBy(180); break;
			case DWM_ZP:
				vertex.rotateXZBy( 90); break;
			case DWM_ZN:
				vertex.rotateXZBy(-90); break;
		}
	}
	drawQuad(vertices);
}

void MapblockMeshGenerator::drawSignlikeNode()
{
	u8 wall = n.getWallMounted(nodedef);
	useTile(0, MATERIAL_FLAG_CRACK_OVERLAY, MATERIAL_FLAG_BACKFACE_CULLING);
	static const float offset = BS / 16;
	float size = BS / 2 * f->visual_scale;
	// Wall at X+ of node
	v3f vertices[4] = {
		v3f(BS / 2 - offset,  size,  size),
		v3f(BS / 2 - offset,  size, -size),
		v3f(BS / 2 - offset, -size, -size),
		v3f(BS / 2 - offset, -size,  size),
	};

	for (v3f &vertex : vertices) {
		switch (wall) {
			case DWM_YP:
				vertex.rotateXYBy( 90); break;
			case DWM_YN:
				vertex.rotateXYBy(-90); break;
			case DWM_XP:
				vertex.rotateXZBy(  0); break;
			case DWM_XN:
				vertex.rotateXZBy(180); break;
			case DWM_ZP:
				vertex.rotateXZBy( 90); break;
			case DWM_ZN:
				vertex.rotateXZBy(-90); break;
		}
	}
	drawQuad(vertices);
}

void MapblockMeshGenerator::drawPlantlikeQuad(float rotation, float quad_offset,
	bool offset_top_only)
{
	v3f vertices[4] = {
		v3f(-scale, -BS / 2 + 2.0 * scale * plant_height, 0),
		v3f( scale, -BS / 2 + 2.0 * scale * plant_height, 0),
		v3f( scale, -BS / 2, 0),
		v3f(-scale, -BS / 2, 0),
	};
	if (random_offset_Y) {
		PseudoRandom yrng(face_num++ | p.X << 16 | p.Z << 8 | p.Y << 24);
		offset.Y = -BS * ((yrng.next() % 16 / 16.0) * 0.125);
	}
	int offset_count = offset_top_only ? 2 : 4;
	for (int i = 0; i < offset_count; i++)
		vertices[i].Z += quad_offset;

	for (v3f &vertex : vertices) {
		vertex.rotateXZBy(rotation + rotate_degree);
		vertex += offset;
	}
	drawQuad(vertices, v3s16(0, 0, 0), plant_height);
}

void MapblockMeshGenerator::drawPlantlike()
{
	draw_style = PLANT_STYLE_CROSS;
	scale = BS / 2 * f->visual_scale;
	offset = v3f(0, 0, 0);
	rotate_degree = 0;
	random_offset_Y = false;
	face_num = 0;
	plant_height = 1.0;

	switch (f->param_type_2) {
	case CPT2_MESHOPTIONS:
		draw_style = PlantlikeStyle(n.param2 & MO_MASK_STYLE);
		if (n.param2 & MO_BIT_SCALE_SQRT2)
			scale *= 1.41421;
		if (n.param2 & MO_BIT_RANDOM_OFFSET) {
			PseudoRandom rng(p.X << 8 | p.Z | p.Y << 16);
			offset.X = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
			offset.Z = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
		}
		if (n.param2 & MO_BIT_RANDOM_OFFSET_Y)
			random_offset_Y = true;
		break;

	case CPT2_DEGROTATE:
		rotate_degree = n.param2 * 2;
		break;

	case CPT2_LEVELED:
		plant_height = n.param2 / 16.0;
		break;

	default:
		break;
	}

	switch (draw_style) {
	case PLANT_STYLE_CROSS:
		drawPlantlikeQuad(46);
		drawPlantlikeQuad(-44);
		break;

	case PLANT_STYLE_CROSS2:
		drawPlantlikeQuad(91);
		drawPlantlikeQuad(1);
		break;

	case PLANT_STYLE_STAR:
		drawPlantlikeQuad(121);
		drawPlantlikeQuad(241);
		drawPlantlikeQuad(1);
		break;

	case PLANT_STYLE_HASH:
		drawPlantlikeQuad(  1, BS / 4);
		drawPlantlikeQuad( 91, BS / 4);
		drawPlantlikeQuad(181, BS / 4);
		drawPlantlikeQuad(271, BS / 4);
		break;

	case PLANT_STYLE_HASH2:
		drawPlantlikeQuad(  1, -BS / 2, true);
		drawPlantlikeQuad( 91, -BS / 2, true);
		drawPlantlikeQuad(181, -BS / 2, true);
		drawPlantlikeQuad(271, -BS / 2, true);
		break;
	}
}

void MapblockMeshGenerator::drawPlantlikeNode()
{
	useTile();
	drawPlantlike();
}

void MapblockMeshGenerator::drawPlantlikeRootedNode()
{
	useTile(0, MATERIAL_FLAG_CRACK_OVERLAY, 0, true);
	origin += v3f(0.0, BS, 0.0);
	p.Y++;
	if (data->m_smooth_lighting) {
		getSmoothLightFrame();
	} else {
		MapNode ntop = data->m_vmanip.getNodeNoEx(blockpos_nodes + p);
		light = getInteriorLight(ntop, 1, nodedef);
	}
	drawPlantlike();
	p.Y--;
}

void MapblockMeshGenerator::drawFirelikeQuad(float rotation, float opening_angle,
	float offset_h, float offset_v)
{
	v3f vertices[4] = {
		v3f(-scale, -BS / 2 + scale * 2, 0),
		v3f( scale, -BS / 2 + scale * 2, 0),
		v3f( scale, -BS / 2, 0),
		v3f(-scale, -BS / 2, 0),
	};

	for (v3f &vertex : vertices) {
		vertex.rotateYZBy(opening_angle);
		vertex.Z += offset_h;
		vertex.rotateXZBy(rotation);
		vertex.Y += offset_v;
	}
	drawQuad(vertices);
}

void MapblockMeshGenerator::drawFirelikeNode()
{
	useTile();
	scale = BS / 2 * f->visual_scale;

	// Check for adjacent nodes
	bool neighbors = false;
	bool neighbor[6] = {0, 0, 0, 0, 0, 0};
	content_t current = n.getContent();
	for (int i = 0; i < 6; i++) {
		v3s16 n2p = blockpos_nodes + p + g_6dirs[i];
		MapNode n2 = data->m_vmanip.getNodeNoEx(n2p);
		content_t n2c = n2.getContent();
		if (n2c != CONTENT_IGNORE && n2c != CONTENT_AIR && n2c != current) {
			neighbor[i] = true;
			neighbors = true;
		}
	}
	bool drawBasicFire = neighbor[D6D_YN] || !neighbors;
	bool drawBottomFire = neighbor[D6D_YP];

	if (drawBasicFire || neighbor[D6D_ZP])
		drawFirelikeQuad(0, -10, 0.4 * BS);
	else if (drawBottomFire)
		drawFirelikeQuad(0, 70, 0.47 * BS, 0.484 * BS);

	if (drawBasicFire || neighbor[D6D_XN])
		drawFirelikeQuad(90, -10, 0.4 * BS);
	else if (drawBottomFire)
		drawFirelikeQuad(90, 70, 0.47 * BS, 0.484 * BS);

	if (drawBasicFire || neighbor[D6D_ZN])
		drawFirelikeQuad(180, -10, 0.4 * BS);
	else if (drawBottomFire)
		drawFirelikeQuad(180, 70, 0.47 * BS, 0.484 * BS);

	if (drawBasicFire || neighbor[D6D_XP])
		drawFirelikeQuad(270, -10, 0.4 * BS);
	else if (drawBottomFire)
		drawFirelikeQuad(270, 70, 0.47 * BS, 0.484 * BS);

	if (drawBasicFire) {
		drawFirelikeQuad(45, 0, 0.0);
		drawFirelikeQuad(-45, 0, 0.0);
	}
}

void MapblockMeshGenerator::drawFencelikeNode()
{
	useTile(0, 0, 0);
	TileSpec tile_nocrack = tile;

	for (auto &layer : tile_nocrack.layers)
		layer.material_flags &= ~MATERIAL_FLAG_CRACK;

	// Put wood the right way around in the posts
	TileSpec tile_rot = tile;
	tile_rot.rotation = 1;

	static const f32 post_rad = BS / 8;
	static const f32 bar_rad  = BS / 16;
	static const f32 bar_len  = BS / 2 - post_rad;

	// The post - always present
	static const aabb3f post(-post_rad, -BS / 2, -post_rad,
	                          post_rad,  BS / 2,  post_rad);
	static const f32 postuv[24] = {
		0.375, 0.375, 0.625, 0.625,
		0.375, 0.375, 0.625, 0.625,
		0.000, 0.000, 0.250, 1.000,
		0.250, 0.000, 0.500, 1.000,
		0.500, 0.000, 0.750, 1.000,
		0.750, 0.000, 1.000, 1.000,
	};
	tile = tile_rot;
	drawAutoLightedCuboid(post, postuv);

	tile = tile_nocrack;

	// Now a section of fence, +X, if there's a post there
	v3s16 p2 = p;
	p2.X++;
	MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
	const ContentFeatures *f2 = &nodedef->get(n2);
	if (f2->drawtype == NDT_FENCELIKE) {
		static const aabb3f bar_x1(BS / 2 - bar_len,  BS / 4 - bar_rad, -bar_rad,
		                           BS / 2 + bar_len,  BS / 4 + bar_rad,  bar_rad);
		static const aabb3f bar_x2(BS / 2 - bar_len, -BS / 4 - bar_rad, -bar_rad,
		                           BS / 2 + bar_len, -BS / 4 + bar_rad,  bar_rad);
		static const f32 xrailuv[24] = {
			0.000, 0.125, 1.000, 0.250,
			0.000, 0.250, 1.000, 0.375,
			0.375, 0.375, 0.500, 0.500,
			0.625, 0.625, 0.750, 0.750,
			0.000, 0.500, 1.000, 0.625,
			0.000, 0.875, 1.000, 1.000,
		};
		drawAutoLightedCuboid(bar_x1, xrailuv);
		drawAutoLightedCuboid(bar_x2, xrailuv);
	}

	// Now a section of fence, +Z, if there's a post there
	p2 = p;
	p2.Z++;
	n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
	f2 = &nodedef->get(n2);
	if (f2->drawtype == NDT_FENCELIKE) {
		static const aabb3f bar_z1(-bar_rad,  BS / 4 - bar_rad, BS / 2 - bar_len,
		                            bar_rad,  BS / 4 + bar_rad, BS / 2 + bar_len);
		static const aabb3f bar_z2(-bar_rad, -BS / 4 - bar_rad, BS / 2 - bar_len,
		                            bar_rad, -BS / 4 + bar_rad, BS / 2 + bar_len);
		static const f32 zrailuv[24] = {
			0.1875, 0.0625, 0.3125, 0.3125, // cannot rotate; stretch
			0.2500, 0.0625, 0.3750, 0.3125, // for wood texture instead
			0.0000, 0.5625, 1.0000, 0.6875,
			0.0000, 0.3750, 1.0000, 0.5000,
			0.3750, 0.3750, 0.5000, 0.5000,
			0.6250, 0.6250, 0.7500, 0.7500,
		};
		drawAutoLightedCuboid(bar_z1, zrailuv);
		drawAutoLightedCuboid(bar_z2, zrailuv);
	}
}

bool MapblockMeshGenerator::isSameRail(v3s16 dir)
{
	MapNode node2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p + dir);
	if (node2.getContent() == n.getContent())
		return true;
	const ContentFeatures &def2 = nodedef->get(node2);
	return ((def2.drawtype == NDT_RAILLIKE) &&
		(def2.getGroup(raillike_groupname) == raillike_group));
}

void MapblockMeshGenerator::drawRaillikeNode()
{
	static const v3s16 direction[4] = {
		v3s16( 0, 0,  1),
		v3s16( 0, 0, -1),
		v3s16(-1, 0,  0),
		v3s16( 1, 0,  0),
	};
	static const int slope_angle[4] = {0, 180, 90, -90};

	enum RailTile {
		straight,
		curved,
		junction,
		cross,
	};
	struct RailDesc {
		int tile_index;
		int angle;
	};
	static const RailDesc rail_kinds[16] = {
		                   // +x -x -z +z
		                   //-------------
		{straight,   0}, //  .  .  .  .
		{straight,   0}, //  .  .  . +Z
		{straight,   0}, //  .  . -Z  .
		{straight,   0}, //  .  . -Z +Z
		{straight,  90}, //  . -X  .  .
		{  curved, 180}, //  . -X  . +Z
		{  curved, 270}, //  . -X -Z  .
		{junction, 180}, //  . -X -Z +Z
		{straight,  90}, // +X  .  .  .
		{  curved,  90}, // +X  .  . +Z
		{  curved,   0}, // +X  . -Z  .
		{junction,   0}, // +X  . -Z +Z
		{straight,  90}, // +X -X  .  .
		{junction,  90}, // +X -X  . +Z
		{junction, 270}, // +X -X -Z  .
		{   cross,   0}, // +X -X -Z +Z
	};

	raillike_group = nodedef->get(n).getGroup(raillike_groupname);

	int code = 0;
	int angle;
	int tile_index;
	bool sloped = false;
	for (int dir = 0; dir < 4; dir++) {
		bool rail_above = isSameRail(direction[dir] + v3s16(0, 1, 0));
		if (rail_above) {
			sloped = true;
			angle = slope_angle[dir];
		}
		if (rail_above ||
				isSameRail(direction[dir]) ||
				isSameRail(direction[dir] + v3s16(0, -1, 0)))
			code |= 1 << dir;
	}

	if (sloped) {
		tile_index = straight;
	} else {
		tile_index = rail_kinds[code].tile_index;
		angle = rail_kinds[code].angle;
	}

	useTile(tile_index, MATERIAL_FLAG_CRACK_OVERLAY, MATERIAL_FLAG_BACKFACE_CULLING);

	static const float offset = BS / 64;
	static const float size   = BS / 2;
	float y2 = sloped ? size : -size;
	v3f vertices[4] = {
		v3f(-size,    y2 + offset,  size),
		v3f( size,    y2 + offset,  size),
		v3f( size, -size + offset, -size),
		v3f(-size, -size + offset, -size),
	};
	if (angle)
		for (v3f &vertex : vertices)
			vertex.rotateXZBy(angle);
	drawQuad(vertices);
}

void MapblockMeshGenerator::drawNodeboxNode()
{
	static const v3s16 tile_dirs[6] = {
		v3s16(0, 1, 0),
		v3s16(0, -1, 0),
		v3s16(1, 0, 0),
		v3s16(-1, 0, 0),
		v3s16(0, 0, 1),
		v3s16(0, 0, -1)
	};

	// we have this order for some reason...
	static const v3s16 connection_dirs[6] = {
		v3s16( 0,  1,  0), // top
		v3s16( 0, -1,  0), // bottom
		v3s16( 0,  0, -1), // front
		v3s16(-1,  0,  0), // left
		v3s16( 0,  0,  1), // back
		v3s16( 1,  0,  0), // right
	};

	TileSpec tiles[6];
	for (int face = 0; face < 6; face++) {
		// Handles facedir rotation for textures
		getTile(tile_dirs[face], &tiles[face]);
	}

	// locate possible neighboring nodes to connect to
	int neighbors_set = 0;
	if (f->node_box.type == NODEBOX_CONNECTED) {
		for (int dir = 0; dir != 6; dir++) {
			int flag = 1 << dir;
			v3s16 p2 = blockpos_nodes + p + connection_dirs[dir];
			MapNode n2 = data->m_vmanip.getNodeNoEx(p2);
			if (nodedef->nodeboxConnects(n, n2, flag))
				neighbors_set |= flag;
		}
	}

	std::vector<aabb3f> boxes;
	n.getNodeBoxes(nodedef, &boxes, neighbors_set);
	for (const auto &box : boxes)
		drawAutoLightedCuboid(box, NULL, tiles, 6);
}

void MapblockMeshGenerator::drawMeshNode()
{
	u8 facedir = 0;
	scene::IMesh* mesh;
	bool private_mesh; // as a grab/drop pair is not thread-safe

	if (f->param_type_2 == CPT2_FACEDIR ||
			f->param_type_2 == CPT2_COLORED_FACEDIR) {
		facedir = n.getFaceDir(nodedef);
	} else if (f->param_type_2 == CPT2_WALLMOUNTED ||
			f->param_type_2 == CPT2_COLORED_WALLMOUNTED) {
		// Convert wallmounted to 6dfacedir.
		// When cache enabled, it is already converted.
		facedir = n.getWallMounted(nodedef);
		if (!enable_mesh_cache)
			facedir = wallmounted_to_facedir[facedir];
	}

	if (!data->m_smooth_lighting && f->mesh_ptr[facedir]) {
		// use cached meshes
		private_mesh = false;
		mesh = f->mesh_ptr[facedir];
	} else if (f->mesh_ptr[0]) {
		// no cache, clone and rotate mesh
		private_mesh = true;
		mesh = cloneMesh(f->mesh_ptr[0]);
		rotateMeshBy6dFacedir(mesh, facedir);
		recalculateBoundingBox(mesh);
		meshmanip->recalculateNormals(mesh, true, false);
	} else
		return;

	int mesh_buffer_count = mesh->getMeshBufferCount();
	for (int j = 0; j < mesh_buffer_count; j++) {
		useTile(j);
		scene::IMeshBuffer *buf = mesh->getMeshBuffer(j);
		video::S3DVertex *vertices = (video::S3DVertex *)buf->getVertices();
		int vertex_count = buf->getVertexCount();

		if (data->m_smooth_lighting) {
			// Mesh is always private here. So the lighting is applied to each
			// vertex right here.
			for (int k = 0; k < vertex_count; k++) {
				video::S3DVertex &vertex = vertices[k];
				vertex.Color = blendLightColor(vertex.Pos, vertex.Normal);
				vertex.Pos += origin;
			}
			collector->append(tile, vertices, vertex_count,
				buf->getIndices(), buf->getIndexCount());
		} else {
			// Don't modify the mesh, it may not be private here.
			// Instead, let the collector process colors, etc.
			collector->append(tile, vertices, vertex_count,
				buf->getIndices(), buf->getIndexCount(), origin,
				color, f->light_source);
		}
	}
	if (private_mesh)
		mesh->drop();
}

// also called when the drawtype is known but should have been pre-converted
void MapblockMeshGenerator::errorUnknownDrawtype()
{
	infostream << "Got drawtype " << f->drawtype << std::endl;
	FATAL_ERROR("Unknown drawtype");
}

void MapblockMeshGenerator::drawNode()
{
	// skip some drawtypes early
	switch (f->drawtype) {
		case NDT_NORMAL:   // Drawn by MapBlockMesh
		case NDT_AIRLIKE:  // Not drawn at all
		case NDT_LIQUID:   // Drawn by MapBlockMesh
			return;
		default:
			break;
	}
	origin = intToFloat(p, BS);
	if (data->m_smooth_lighting)
		getSmoothLightFrame();
	else
		light = getInteriorLight(n, 1, nodedef);
	switch (f->drawtype) {
		case NDT_FLOWINGLIQUID:     drawLiquidNode(); break;
		case NDT_GLASSLIKE:         drawGlasslikeNode(); break;
		case NDT_GLASSLIKE_FRAMED:  drawGlasslikeFramedNode(); break;
		case NDT_ALLFACES:          drawAllfacesNode(); break;
		case NDT_TORCHLIKE:         drawTorchlikeNode(); break;
		case NDT_SIGNLIKE:          drawSignlikeNode(); break;
		case NDT_PLANTLIKE:         drawPlantlikeNode(); break;
		case NDT_PLANTLIKE_ROOTED:  drawPlantlikeRootedNode(); break;
		case NDT_FIRELIKE:          drawFirelikeNode(); break;
		case NDT_FENCELIKE:         drawFencelikeNode(); break;
		case NDT_RAILLIKE:          drawRaillikeNode(); break;
		case NDT_NODEBOX:           drawNodeboxNode(); break;
		case NDT_MESH:              drawMeshNode(); break;
		default:                    errorUnknownDrawtype(); break;
	}
}

/*
	TODO: Fix alpha blending for special nodes
	Currently only the last element rendered is blended correct
*/
void MapblockMeshGenerator::generate()
{
	for (p.Z = 0; p.Z < MAP_BLOCKSIZE; p.Z++)
	for (p.Y = 0; p.Y < MAP_BLOCKSIZE; p.Y++)
	for (p.X = 0; p.X < MAP_BLOCKSIZE; p.X++) {
		n = data->m_vmanip.getNodeNoEx(blockpos_nodes + p);
		f = &nodedef->get(n);
		drawNode();
	}
}