summaryrefslogtreecommitdiff
path: root/src/database-sqlite3.cpp
blob: 8e1501786b84294da68a6f1feb79015f2c7a18dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

/*
	SQLite format specification:
	- Initially only replaces sectors/ and sectors2/

	If map.sqlite does not exist in the save dir
	or the block was not found in the database
	the map will try to load from sectors folder.
	In either case, map.sqlite will be created
	and all future saves will save there.

	Structure of map.sqlite:
	Tables:
		blocks
			(PK) INT pos
			BLOB data
*/


#include "database-sqlite3.h"

#include "map.h"
#include "mapsector.h"
#include "mapblock.h"
#include "serialization.h"
#include "main.h"
#include "settings.h"
#include "log.h"
#include "filesys.h"

Database_SQLite3::Database_SQLite3(ServerMap *map, std::string savedir)
{
	m_database = NULL;
	m_database_read = NULL;
	m_database_write = NULL;
	m_database_list = NULL;
	m_savedir = savedir;
	srvmap = map;
}

int Database_SQLite3::Initialized(void)
{
	return m_database ? 1 : 0;
}

void Database_SQLite3::beginSave() {
	verifyDatabase();
	if(sqlite3_exec(m_database, "BEGIN;", NULL, NULL, NULL) != SQLITE_OK)
		errorstream<<"WARNING: beginSave() failed, saving might be slow.";
}

void Database_SQLite3::endSave() {
	verifyDatabase();
	if(sqlite3_exec(m_database, "COMMIT;", NULL, NULL, NULL) != SQLITE_OK)
		errorstream<<"WARNING: endSave() failed, map might not have saved.";
}

void Database_SQLite3::createDirs(std::string path)
{
	if(fs::CreateAllDirs(path) == false)
	{
		infostream<<DTIME<<"Database_SQLite3: Failed to create directory "
				<<"\""<<path<<"\""<<std::endl;
		throw BaseException("Database_SQLite3 failed to create directory");
	}
}

void Database_SQLite3::verifyDatabase() {
	if(m_database)
		return;

	std::string dbp = m_savedir + DIR_DELIM "map.sqlite";
	bool needs_create = false;
	int d;

	// Open the database connection

	createDirs(m_savedir); // ?

	if(!fs::PathExists(dbp))
		needs_create = true;

	d = sqlite3_open_v2(dbp.c_str(), &m_database, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, NULL);
	if(d != SQLITE_OK) {
		errorstream<<"SQLite3 database failed to open: "<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot open database file");
	}

	if(needs_create)
		createDatabase();

	std::string querystr = std::string("PRAGMA synchronous = ")
			 + itos(g_settings->getU16("sqlite_synchronous"));
	d = sqlite3_exec(m_database, querystr.c_str(), NULL, NULL, NULL);
	if(d != SQLITE_OK) {
		errorstream<<"Database pragma set failed: "
				<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot set pragma");
	}

	d = sqlite3_prepare(m_database, "SELECT `data` FROM `blocks` WHERE `pos`=? LIMIT 1", -1, &m_database_read, NULL);
	if(d != SQLITE_OK) {
		errorstream<<"SQLite3 read statment failed to prepare: "<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot prepare read statement");
	}
#ifdef __ANDROID__
	d = sqlite3_prepare(m_database, "INSERT INTO `blocks` VALUES(?, ?);", -1, &m_database_write, NULL);
#else
	d = sqlite3_prepare(m_database, "REPLACE INTO `blocks` VALUES(?, ?);", -1, &m_database_write, NULL);
#endif
	if(d != SQLITE_OK) {
		errorstream<<"SQLite3 write statment failed to prepare: "<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot prepare write statement");
	}

#ifdef __ANDROID__
	d = sqlite3_prepare(m_database, "DELETE FROM `blocks` WHERE `pos`=?;", -1, &m_database_delete, NULL);
	if(d != SQLITE_OK) {
		infostream<<"WARNING: SQLite3 database delete statment failed to prepare: "<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot prepare delete statement");
	}
#endif

	d = sqlite3_prepare(m_database, "SELECT `pos` FROM `blocks`", -1, &m_database_list, NULL);
	if(d != SQLITE_OK) {
		infostream<<"SQLite3 list statment failed to prepare: "<<sqlite3_errmsg(m_database)<<std::endl;
		throw FileNotGoodException("Cannot prepare read statement");
	}

	infostream<<"ServerMap: SQLite3 database opened"<<std::endl;
}

bool Database_SQLite3::saveBlock(v3s16 blockpos, std::string &data)
{
	verifyDatabase();

#ifdef __ANDROID__
	/**
	 * Note: For some unknown reason sqlite3 fails to REPLACE blocks on android,
	 * deleting them and inserting first works.
	 */
	if (sqlite3_bind_int64(m_database_read, 1, getBlockAsInteger(blockpos)) != SQLITE_OK) {
		infostream << "WARNING: Could not bind block position for load: "
			<< sqlite3_errmsg(m_database)<<std::endl;
	}

	if (sqlite3_step(m_database_read) == SQLITE_ROW) {
		if (sqlite3_bind_int64(m_database_delete, 1, getBlockAsInteger(blockpos)) != SQLITE_OK) {
			infostream << "WARNING: Could not bind block position for delete: "
				<< sqlite3_errmsg(m_database)<<std::endl;
		}

		if (sqlite3_step(m_database_delete) != SQLITE_DONE) {
			errorstream << "WARNING: saveBlock: Block failed to delete "
				<< PP(blockpos) << ": " << sqlite3_errmsg(m_database) << std::endl;
			return false;
		}
		sqlite3_reset(m_database_delete);
	}
	sqlite3_reset(m_database_read);
#endif

	if (sqlite3_bind_int64(m_database_write, 1, getBlockAsInteger(blockpos)) != SQLITE_OK) {
		errorstream << "WARNING: saveBlock: Block position failed to bind: "
			<< PP(blockpos) << ": " << sqlite3_errmsg(m_database) << std::endl;
		sqlite3_reset(m_database_write);
		return false;
	}

	if (sqlite3_bind_blob(m_database_write, 2, (void *) data.c_str(), data.size(), NULL) != SQLITE_OK) {
		errorstream << "WARNING: saveBlock: Block data failed to bind: "
			<< PP(blockpos) << ": " << sqlite3_errmsg(m_database) << std::endl;
		sqlite3_reset(m_database_write);
		return false;
	}

	if (sqlite3_step(m_database_write) != SQLITE_DONE) {
		errorstream << "WARNING: saveBlock: Block failed to save "
			<< PP(blockpos) << ": " << sqlite3_errmsg(m_database) << std::endl;
		sqlite3_reset(m_database_write);
		return false;
	}

	sqlite3_reset(m_database_write);

	return true;
}

std::string Database_SQLite3::loadBlock(v3s16 blockpos)
{
	verifyDatabase();

	if (sqlite3_bind_int64(m_database_read, 1, getBlockAsInteger(blockpos)) != SQLITE_OK) {
		errorstream << "Could not bind block position for load: "
			<< sqlite3_errmsg(m_database)<<std::endl;
	}

	if (sqlite3_step(m_database_read) == SQLITE_ROW) {
		const char *data = (const char *) sqlite3_column_blob(m_database_read, 0);
		size_t len = sqlite3_column_bytes(m_database_read, 0);

		std::string s = "";
		if(data)
			s = std::string(data, len);

		sqlite3_step(m_database_read);
		// We should never get more than 1 row, so ok to reset
		sqlite3_reset(m_database_read);

		return s;
	}

	sqlite3_reset(m_database_read);
	return "";
}

void Database_SQLite3::createDatabase()
{
	int e;
	assert(m_database);
	e = sqlite3_exec(m_database,
		"CREATE TABLE IF NOT EXISTS `blocks` ("
			"`pos` INT NOT NULL PRIMARY KEY,"
			"`data` BLOB"
		");"
	, NULL, NULL, NULL);
	if(e != SQLITE_OK)
		throw FileNotGoodException("Could not create sqlite3 database structure");
	else
		infostream<<"ServerMap: SQLite3 database structure was created";

}

void Database_SQLite3::listAllLoadableBlocks(std::list<v3s16> &dst)
{
	verifyDatabase();

	while(sqlite3_step(m_database_list) == SQLITE_ROW)
	{
		sqlite3_int64 block_i = sqlite3_column_int64(m_database_list, 0);
		v3s16 p = getIntegerAsBlock(block_i);
		//dstream<<"block_i="<<block_i<<" p="<<PP(p)<<std::endl;
		dst.push_back(p);
	}
}


#define FINALIZE_STATEMENT(statement)                                          \
	if ( statement )                                                           \
		rc = sqlite3_finalize(statement);                                      \
	if ( rc != SQLITE_OK )                                                     \
		errorstream << "Database_SQLite3::~Database_SQLite3():"                \
			<< "Failed to finalize: " << #statement << ": rc=" << rc << std::endl;

Database_SQLite3::~Database_SQLite3()
{
	int rc = SQLITE_OK;

	FINALIZE_STATEMENT(m_database_read)
	FINALIZE_STATEMENT(m_database_write)
	FINALIZE_STATEMENT(m_database_list)

	if(m_database)
		rc = sqlite3_close(m_database);

	if (rc != SQLITE_OK) {
		errorstream << "Database_SQLite3::~Database_SQLite3(): "
				<< "Failed to close database: rc=" << rc << std::endl;
	}
}
char *s): BaseException(s) {} }; class ProcessedSilentlyException : public BaseException { public: ProcessedSilentlyException(const char *s): BaseException(s) {} }; class ProcessedQueued : public BaseException { public: ProcessedQueued(const char *s): BaseException(s) {} }; class IncomingDataCorruption : public BaseException { public: IncomingDataCorruption(const char *s): BaseException(s) {} }; typedef enum MTProtocols { MTP_PRIMARY, MTP_UDP, MTP_MINETEST_RELIABLE_UDP } MTProtocols; #define SEQNUM_MAX 65535 inline bool seqnum_higher(u16 totest, u16 base) { if (totest > base) { if((totest - base) > (SEQNUM_MAX/2)) return false; else return true; } else { if((base - totest) > (SEQNUM_MAX/2)) return true; else return false; } } inline bool seqnum_in_window(u16 seqnum, u16 next,u16 window_size) { u16 window_start = next; u16 window_end = ( next + window_size ) % (SEQNUM_MAX+1); if (window_start < window_end) { return ((seqnum >= window_start) && (seqnum < window_end)); } else { return ((seqnum < window_end) || (seqnum >= window_start)); } } struct BufferedPacket { BufferedPacket(u8 *a_data, u32 a_size): data(a_data, a_size), time(0.0), totaltime(0.0), absolute_send_time(-1), resend_count(0) {} BufferedPacket(u32 a_size): data(a_size), time(0.0), totaltime(0.0), absolute_send_time(-1), resend_count(0) {} SharedBuffer<u8> data; // Data of the packet, including headers float time; // Seconds from buffering the packet or re-sending float totaltime; // Seconds from buffering the packet unsigned int absolute_send_time; Address address; // Sender or destination unsigned int resend_count; }; // This adds the base headers to the data and makes a packet out of it BufferedPacket makePacket(Address &address, u8 *data, u32 datasize, u32 protocol_id, u16 sender_peer_id, u8 channel); BufferedPacket makePacket(Address &address, SharedBuffer<u8> &data, u32 protocol_id, u16 sender_peer_id, u8 channel); // Add the TYPE_ORIGINAL header to the data SharedBuffer<u8> makeOriginalPacket( SharedBuffer<u8> data); // Split data in chunks and add TYPE_SPLIT headers to them std::list<SharedBuffer<u8> > makeSplitPacket( SharedBuffer<u8> data, u32 chunksize_max, u16 seqnum); // Depending on size, make a TYPE_ORIGINAL or TYPE_SPLIT packet // Increments split_seqnum if a split packet is made std::list<SharedBuffer<u8> > makeAutoSplitPacket( SharedBuffer<u8> data, u32 chunksize_max, u16 &split_seqnum); // Add the TYPE_RELIABLE header to the data SharedBuffer<u8> makeReliablePacket( SharedBuffer<u8> data, u16 seqnum); struct IncomingSplitPacket { IncomingSplitPacket() { time = 0.0; reliable = false; } // Key is chunk number, value is data without headers std::map<u16, SharedBuffer<u8> > chunks; u32 chunk_count; float time; // Seconds from adding bool reliable; // If true, isn't deleted on timeout bool allReceived() { return (chunks.size() == chunk_count); } }; /* === NOTES === A packet is sent through a channel to a peer with a basic header: TODO: Should we have a receiver_peer_id also? Header (7 bytes): [0] u32 protocol_id [4] u16 sender_peer_id [6] u8 channel sender_peer_id: Unique to each peer. value 0 (PEER_ID_INEXISTENT) is reserved for making new connections value 1 (PEER_ID_SERVER) is reserved for server these constants are defined in constants.h channel: The lower the number, the higher the priority is. Only channels 0, 1 and 2 exist. */ #define BASE_HEADER_SIZE 7 #define CHANNEL_COUNT 3 /* Packet types: CONTROL: This is a packet used by the protocol. - When this is processed, nothing is handed to the user. Header (2 byte): [0] u8 type [1] u8 controltype controltype and data description: CONTROLTYPE_ACK [2] u16 seqnum CONTROLTYPE_SET_PEER_ID [2] u16 peer_id_new CONTROLTYPE_PING - There is no actual reply, but this can be sent in a reliable packet to get a reply CONTROLTYPE_DISCO */ #define TYPE_CONTROL 0 #define CONTROLTYPE_ACK 0 #define CONTROLTYPE_SET_PEER_ID 1 #define CONTROLTYPE_PING 2 #define CONTROLTYPE_DISCO 3 #define CONTROLTYPE_ENABLE_BIG_SEND_WINDOW 4 /* ORIGINAL: This is a plain packet with no control and no error checking at all. - When this is processed, it is directly handed to the user. Header (1 byte): [0] u8 type */ #define TYPE_ORIGINAL 1 #define ORIGINAL_HEADER_SIZE 1 /* SPLIT: These are sequences of packets forming one bigger piece of data. - When processed and all the packet_nums 0...packet_count-1 are present (this should be buffered), the resulting data shall be directly handed to the user. - If the data fails to come up in a reasonable time, the buffer shall be silently discarded. - These can be sent as-is or atop of a RELIABLE packet stream. Header (7 bytes): [0] u8 type [1] u16 seqnum [3] u16 chunk_count [5] u16 chunk_num */ #define TYPE_SPLIT 2 /* RELIABLE: Delivery of all RELIABLE packets shall be forced by ACKs, and they shall be delivered in the same order as sent. This is done with a buffer in the receiving and transmitting end. - When this is processed, the contents of each packet is recursively processed as packets. Header (3 bytes): [0] u8 type [1] u16 seqnum */ #define TYPE_RELIABLE 3 #define RELIABLE_HEADER_SIZE 3 #define SEQNUM_INITIAL 65500 /* A buffer which stores reliable packets and sorts them internally for fast access to the smallest one. */ typedef std::list<BufferedPacket>::iterator RPBSearchResult; class ReliablePacketBuffer { public: ReliablePacketBuffer(); bool getFirstSeqnum(u16& result); BufferedPacket popFirst(); BufferedPacket popSeqnum(u16 seqnum); void insert(BufferedPacket &p,u16 next_expected); void incrementTimeouts(float dtime); std::list<BufferedPacket> getTimedOuts(float timeout, unsigned int max_packets); void print(); bool empty(); bool containsPacket(u16 seqnum); RPBSearchResult notFound(); u32 size(); private: RPBSearchResult findPacket(u16 seqnum); std::list<BufferedPacket> m_list; u32 m_list_size; u16 m_oldest_non_answered_ack; JMutex m_list_mutex; }; /* A buffer for reconstructing split packets */ class IncomingSplitBuffer { public: ~IncomingSplitBuffer(); /* Returns a reference counted buffer of length != 0 when a full split packet is constructed. If not, returns one of length 0. */ SharedBuffer<u8> insert(BufferedPacket &p, bool reliable); void removeUnreliableTimedOuts(float dtime, float timeout); private: // Key is seqnum std::map<u16, IncomingSplitPacket*> m_buf; JMutex m_map_mutex; }; struct OutgoingPacket { u16 peer_id; u8 channelnum; SharedBuffer<u8> data; bool reliable; bool ack; OutgoingPacket(u16 peer_id_, u8 channelnum_, SharedBuffer<u8> data_, bool reliable_,bool ack_=false): peer_id(peer_id_), channelnum(channelnum_), data(data_), reliable(reliable_), ack(ack_) { } }; enum ConnectionCommandType{ CONNCMD_NONE, CONNCMD_SERVE, CONNCMD_CONNECT, CONNCMD_DISCONNECT, CONNCMD_DISCONNECT_PEER, CONNCMD_SEND, CONNCMD_SEND_TO_ALL, CONCMD_ACK, CONCMD_CREATE_PEER, CONCMD_DISABLE_LEGACY }; struct ConnectionCommand { enum ConnectionCommandType type; Address address; u16 peer_id; u8 channelnum; Buffer<u8> data; bool reliable; bool raw; ConnectionCommand(): type(CONNCMD_NONE), peer_id(PEER_ID_INEXISTENT), reliable(false), raw(false) {} void serve(Address address_) { type = CONNCMD_SERVE; address = address_; } void connect(Address address_) { type = CONNCMD_CONNECT; address = address_; } void disconnect() { type = CONNCMD_DISCONNECT; } void disconnect_peer(u16 peer_id_) { type = CONNCMD_DISCONNECT_PEER; peer_id = peer_id_; } void send(u16 peer_id_, u8 channelnum_, SharedBuffer<u8> data_, bool reliable_) { type = CONNCMD_SEND; peer_id = peer_id_; channelnum = channelnum_; data = data_; reliable = reliable_; } void sendToAll(u8 channelnum_, SharedBuffer<u8> data_, bool reliable_) { type = CONNCMD_SEND_TO_ALL; channelnum = channelnum_; data = data_; reliable = reliable_; } void ack(u16 peer_id_, u8 channelnum_, SharedBuffer<u8> data_) { type = CONCMD_ACK; peer_id = peer_id_; channelnum = channelnum_; data = data_; reliable = false; } void createPeer(u16 peer_id_, SharedBuffer<u8> data_) { type = CONCMD_CREATE_PEER; peer_id = peer_id_; data = data_; channelnum = 0; reliable = true; raw = true; } void disableLegacy(u16 peer_id_, SharedBuffer<u8> data_) { type = CONCMD_DISABLE_LEGACY; peer_id = peer_id_; data = data_; channelnum = 0; reliable = true; raw = true; } }; class Channel { public: u16 readNextIncomingSeqNum(); u16 incNextIncomingSeqNum(); u16 getOutgoingSequenceNumber(bool& successfull); u16 readOutgoingSequenceNumber(); bool putBackSequenceNumber(u16); u16 readNextSplitSeqNum(); void setNextSplitSeqNum(u16 seqnum); // This is for buffering the incoming packets that are coming in // the wrong order ReliablePacketBuffer incoming_reliables; // This is for buffering the sent packets so that the sender can // re-send them if no ACK is received ReliablePacketBuffer outgoing_reliables_sent; //queued reliable packets Queue<BufferedPacket> queued_reliables; //queue commands prior splitting to packets Queue<ConnectionCommand> queued_commands; IncomingSplitBuffer incoming_splits; Channel(); ~Channel(); void UpdatePacketLossCounter(unsigned int count); void UpdatePacketTooLateCounter(); void UpdateBytesSent(unsigned int bytes,unsigned int packages=1); void UpdateBytesLost(unsigned int bytes); void UpdateBytesReceived(unsigned int bytes); void UpdateTimers(float dtime, bool legacy_peer); const float getCurrentDownloadRateKB() { JMutexAutoLock lock(m_internal_mutex); return cur_kbps; }; const float getMaxDownloadRateKB() { JMutexAutoLock lock(m_internal_mutex); return max_kbps; }; const float getCurrentLossRateKB() { JMutexAutoLock lock(m_internal_mutex); return cur_kbps_lost; }; const float getMaxLossRateKB() { JMutexAutoLock lock(m_internal_mutex); return max_kbps_lost; }; const float getCurrentIncomingRateKB() { JMutexAutoLock lock(m_internal_mutex); return cur_incoming_kbps; }; const float getMaxIncomingRateKB() { JMutexAutoLock lock(m_internal_mutex); return max_incoming_kbps; }; const float getAvgDownloadRateKB() { JMutexAutoLock lock(m_internal_mutex); return avg_kbps; }; const float getAvgLossRateKB() { JMutexAutoLock lock(m_internal_mutex); return avg_kbps_lost; }; const float getAvgIncomingRateKB() { JMutexAutoLock lock(m_internal_mutex); return avg_incoming_kbps; }; const unsigned int getWindowSize() const { return window_size; }; void setWindowSize(unsigned int size) { window_size = size; }; private: JMutex m_internal_mutex; int window_size; u16 next_incoming_seqnum; u16 next_outgoing_seqnum; u16 next_outgoing_split_seqnum; unsigned int current_packet_loss; unsigned int current_packet_too_late; unsigned int current_packet_successfull; float packet_loss_counter; unsigned int current_bytes_transfered; unsigned int current_bytes_received; unsigned int current_bytes_lost; float max_kbps; float cur_kbps; float avg_kbps; float max_incoming_kbps; float cur_incoming_kbps; float avg_incoming_kbps; float max_kbps_lost; float cur_kbps_lost; float avg_kbps_lost; float bpm_counter; unsigned int rate_samples; }; class Peer; enum PeerChangeType { PEER_ADDED, PEER_REMOVED }; struct PeerChange { PeerChangeType type; u16 peer_id; bool timeout; }; class PeerHandler { public: PeerHandler() { } virtual ~PeerHandler() { } /* This is called after the Peer has been inserted into the Connection's peer container. */ virtual void peerAdded(Peer *peer) = 0; /* This is called before the Peer has been removed from the Connection's peer container. */ virtual void deletingPeer(Peer *peer, bool timeout) = 0; }; class PeerHelper { public: PeerHelper(); PeerHelper(Peer* peer); ~PeerHelper(); PeerHelper& operator=(Peer* peer); Peer* operator->() const; bool operator!(); Peer* operator&() const; bool operator!=(void* ptr); private: Peer* m_peer; }; class Connection; typedef enum { MIN_RTT, MAX_RTT, AVG_RTT, MIN_JITTER, MAX_JITTER, AVG_JITTER } rtt_stat_type; typedef enum { CUR_DL_RATE, AVG_DL_RATE, CUR_INC_RATE, AVG_INC_RATE, CUR_LOSS_RATE, AVG_LOSS_RATE, } rate_stat_type; class Peer { public: friend class PeerHelper; Peer(Address address_,u16 id_,Connection* connection) : id(id_), m_increment_packets_remaining(9), m_increment_bytes_remaining(0), m_pending_deletion(false), m_connection(connection), address(address_), m_ping_timer(0.0), m_last_rtt(-1.0), m_usage(0), m_timeout_counter(0.0), m_last_timeout_check(porting::getTimeMs()), m_has_sent_with_id(false) { m_rtt.avg_rtt = -1.0; m_rtt.jitter_avg = -1.0; m_rtt.jitter_max = 0.0; m_rtt.max_rtt = 0.0; m_rtt.jitter_min = FLT_MAX; m_rtt.min_rtt = FLT_MAX; }; virtual ~Peer() { JMutexAutoLock usage_lock(m_exclusive_access_mutex); assert(m_usage == 0); }; // Unique id of the peer u16 id; void Drop(); virtual void PutReliableSendCommand(ConnectionCommand &c, unsigned int max_packet_size) {}; virtual bool isActive() { return false; }; virtual bool getAddress(MTProtocols type, Address& toset) = 0; void ResetTimeout() {JMutexAutoLock lock(m_exclusive_access_mutex); m_timeout_counter=0.0; }; bool isTimedOut(float timeout); void setSentWithID() { JMutexAutoLock lock(m_exclusive_access_mutex); m_has_sent_with_id = true; }; bool hasSentWithID() { JMutexAutoLock lock(m_exclusive_access_mutex); return m_has_sent_with_id; }; unsigned int m_increment_packets_remaining; unsigned int m_increment_bytes_remaining; virtual u16 getNextSplitSequenceNumber(u8 channel) { return 0; }; virtual void setNextSplitSequenceNumber(u8 channel, u16 seqnum) {}; virtual SharedBuffer<u8> addSpiltPacket(u8 channel, BufferedPacket toadd, bool reliable) { fprintf(stderr,"Peer: addSplitPacket called, this is supposed to be never called!\n"); return SharedBuffer<u8>(0); }; virtual bool Ping(float dtime, SharedBuffer<u8>& data) { return false; }; virtual float getStat(rtt_stat_type type) const { switch (type) { case MIN_RTT: return m_rtt.min_rtt; case MAX_RTT: return m_rtt.max_rtt; case AVG_RTT: return m_rtt.avg_rtt; case MIN_JITTER: return m_rtt.jitter_min; case MAX_JITTER: return m_rtt.jitter_max; case AVG_JITTER: return m_rtt.jitter_avg; } return -1; } protected: virtual void reportRTT(float rtt) {}; void RTTStatistics(float rtt, std::string profiler_id="", unsigned int num_samples=1000); bool IncUseCount(); void DecUseCount(); JMutex m_exclusive_access_mutex; bool m_pending_deletion; Connection* m_connection; // Address of the peer Address address; // Ping timer float m_ping_timer; private: struct rttstats { float jitter_min; float jitter_max; float jitter_avg; float min_rtt; float max_rtt; float avg_rtt; }; rttstats m_rtt; float m_last_rtt; // current usage count unsigned int m_usage; // Seconds from last receive float m_timeout_counter; u32 m_last_timeout_check; bool m_has_sent_with_id; }; class UDPPeer : public Peer { public: friend class PeerHelper; friend class ConnectionReceiveThread; friend class ConnectionSendThread; friend class Connection; UDPPeer(u16 a_id, Address a_address, Connection* connection); virtual ~UDPPeer() {}; void PutReliableSendCommand(ConnectionCommand &c, unsigned int max_packet_size); bool isActive() { return ((hasSentWithID()) && (!m_pending_deletion)); }; bool getAddress(MTProtocols type, Address& toset); void setNonLegacyPeer(); bool getLegacyPeer() { return m_legacy_peer; } u16 getNextSplitSequenceNumber(u8 channel); void setNextSplitSequenceNumber(u8 channel, u16 seqnum); SharedBuffer<u8> addSpiltPacket(u8 channel, BufferedPacket toadd, bool reliable); protected: /* Calculates avg_rtt and resend_timeout. rtt=-1 only recalculates resend_timeout