1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/*
Copyright (C) 2015 Aaron Suen <warr1024@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "imagefilters.h"
#include "util/numeric.h"
#include <math.h>
/* Fill in RGB values for transparent pixels, to correct for odd colors
* appearing at borders when blending. This is because many PNG optimizers
* like to discard RGB values of transparent pixels, but when blending then
* with non-transparent neighbors, their RGB values will shpw up nonetheless.
*
* This function modifies the original image in-place.
*
* Parameter "threshold" is the alpha level below which pixels are considered
* transparent. Should be 127 for 3d where alpha is threshold, but 0 for
* 2d where alpha is blended.
*/
void imageCleanTransparent(video::IImage *src, u32 threshold)
{
core::dimension2d<u32> dim = src->getDimension();
// Walk each pixel looking for fully transparent ones.
// Note: loop y around x for better cache locality.
for (u32 ctry = 0; ctry < dim.Height; ctry++)
for (u32 ctrx = 0; ctrx < dim.Width; ctrx++) {
// Ignore opaque pixels.
irr::video::SColor c = src->getPixel(ctrx, ctry);
if (c.getAlpha() > threshold)
continue;
// Sample size and total weighted r, g, b values.
u32 ss = 0, sr = 0, sg = 0, sb = 0;
// Walk each neighbor pixel (clipped to image bounds).
for (u32 sy = (ctry < 1) ? 0 : (ctry - 1);
sy <= (ctry + 1) && sy < dim.Height; sy++)
for (u32 sx = (ctrx < 1) ? 0 : (ctrx - 1);
sx <= (ctrx + 1) && sx < dim.Width; sx++) {
// Ignore transparent pixels.
irr::video::SColor d = src->getPixel(sx, sy);
if (d.getAlpha() <= threshold)
continue;
// Add RGB values weighted by alpha.
u32 a = d.getAlpha();
ss += a;
sr += a * d.getRed();
sg += a * d.getGreen();
sb += a * d.getBlue();
}
// If we found any neighbor RGB data, set pixel to average
// weighted by alpha.
if (ss > 0) {
c.setRed(sr / ss);
c.setGreen(sg / ss);
c.setBlue(sb / ss);
src->setPixel(ctrx, ctry, c);
}
}
}
/* Scale a region of an image into another image, using nearest-neighbor with
* anti-aliasing; treat pixels as crisp rectangles, but blend them at boundaries
* to prevent non-integer scaling ratio artifacts. Note that this may cause
* some blending at the edges where pixels don't line up perfectly, but this
* filter is designed to produce the most accurate results for both upscaling
* and downscaling.
*/
void imageScaleNNAA(video::IImage *src, const core::rect<s32> &srcrect, video::IImage *dest)
{
double sx, sy, minsx, maxsx, minsy, maxsy, area, ra, ga, ba, aa, pw, ph, pa;
u32 dy, dx;
video::SColor pxl;
// Cache rectsngle boundaries.
double sox = srcrect.UpperLeftCorner.X * 1.0;
double soy = srcrect.UpperLeftCorner.Y * 1.0;
double sw = srcrect.getWidth() * 1.0;
double sh = srcrect.getHeight() * 1.0;
// Walk each destination image pixel.
// Note: loop y around x for better cache locality.
core::dimension2d<u32> dim = dest->getDimension();
for (dy = 0; dy < dim.Height; dy++)
for (dx = 0; dx < dim.Width; dx++) {
// Calculate floating-point source rectangle bounds.
// Do some basic clipping, and for mirrored/flipped rects,
// make sure min/max are in the right order.
minsx = sox + (dx * sw / dim.Width);
minsx = rangelim(minsx, 0, sw);
maxsx = minsx + sw / dim.Width;
maxsx = rangelim(maxsx, 0, sw);
if (minsx > maxsx)
SWAP(double, minsx, maxsx);
minsy = soy + (dy * sh / dim.Height);
minsy = rangelim(minsy, 0, sh);
maxsy = minsy + sh / dim.Height;
maxsy = rangelim(maxsy, 0, sh);
if (minsy > maxsy)
SWAP(double, minsy, maxsy);
// Total area, and integral of r, g, b values over that area,
// initialized to zero, to be summed up in next loops.
area = 0;
ra = 0;
ga = 0;
ba = 0;
aa = 0;
// Loop over the integral pixel positions described by those bounds.
for (sy = floor(minsy); sy < maxsy; sy++)
for (sx = floor(minsx); sx < maxsx; sx++) {
// Calculate width, height, then area of dest pixel
// that's covered by this source pixel.
pw = 1;
if (minsx > sx)
pw += sx - minsx;
if (maxsx < (sx + 1))
pw += maxsx - sx - 1;
ph = 1;
if (minsy > sy)
ph += sy - minsy;
if (maxsy < (sy + 1))
ph += maxsy - sy - 1;
pa = pw * ph;
// Get source pixel and add it to totals, weighted
// by covered area and alpha.
pxl = src->getPixel((u32)sx, (u32)sy);
area += pa;
ra += pa * pxl.getRed();
ga += pa * pxl.getGreen();
ba += pa * pxl.getBlue();
aa += pa * pxl.getAlpha();
}
// Set the destination image pixel to the average color.
if (area > 0) {
pxl.setRed(ra / area + 0.5);
pxl.setGreen(ga / area + 0.5);
pxl.setBlue(ba / area + 0.5);
pxl.setAlpha(aa / area + 0.5);
} else {
pxl.setRed(0);
pxl.setGreen(0);
pxl.setBlue(0);
pxl.setAlpha(0);
}
dest->setPixel(dx, dy, pxl);
}
}
|