aboutsummaryrefslogtreecommitdiff
path: root/src/lua/src/ltable.c
blob: ec84f4fabc513b7c765e46bda0432b571c13fb1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
** $Id: ltable.c,v 2.32.1.2 2007/12/28 15:32:23 roberto Exp $
** Lua tables (hash)
** See Copyright Notice in lua.h
*/


/*
** Implementation of tables (aka arrays, objects, or hash tables).
** Tables keep its elements in two parts: an array part and a hash part.
** Non-negative integer keys are all candidates to be kept in the array
** part. The actual size of the array is the largest `n' such that at
** least half the slots between 0 and n are in use.
** Hash uses a mix of chained scatter table with Brent's variation.
** A main invariant of these tables is that, if an element is not
** in its main position (i.e. the `original' position that its hash gives
** to it), then the colliding element is in its own main position.
** Hence even when the load factor reaches 100%, performance remains good.
*/

#include <math.h>
#include <string.h>

#define ltable_c
#define LUA_CORE

#include "lua.h"

#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "ltable.h"


/*
** max size of array part is 2^MAXBITS
*/
#if LUAI_BITSINT > 26
#define MAXBITS		26
#else
#define MAXBITS		(LUAI_BITSINT-2)
#endif

#define MAXASIZE	(1 << MAXBITS)


#define hashpow2(t,n)      (gnode(t, lmod((n), sizenode(t))))
  
#define hashstr(t,str)  hashpow2(t, (str)->tsv.hash)
#define hashboolean(t,p)        hashpow2(t, p)


/*
** for some types, it is better to avoid modulus by power of 2, as
** they tend to have many 2 factors.
*/
#define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))


#define hashpointer(t,p)	hashmod(t, IntPoint(p))


/*
** number of ints inside a lua_Number
*/
#define numints		cast_int(sizeof(lua_Number)/sizeof(int))



#define dummynode		(&dummynode_)

static const Node dummynode_ = {
  {{NULL}, LUA_TNIL},  /* value */
  {{{NULL}, LUA_TNIL, NULL}}  /* key */
};


/*
** hash for lua_Numbers
*/
static Node *hashnum (const Table *t, lua_Number n) {
  unsigned int a[numints];
  int i;
  if (luai_numeq(n, 0))  /* avoid problems with -0 */
    return gnode(t, 0);
  memcpy(a, &n, sizeof(a));
  for (i = 1; i < numints; i++) a[0] += a[i];
  return hashmod(t, a[0]);
}



/*
** returns the `main' position of an element in a table (that is, the index
** of its hash value)
*/
static Node *mainposition (const Table *t, const TValue *key) {
  switch (ttype(key)) {
    case LUA_TNUMBER:
      return hashnum(t, nvalue(key));
    case LUA_TSTRING:
      return hashstr(t, rawtsvalue(key));
    case LUA_TBOOLEAN:
      return hashboolean(t, bvalue(key));
    case LUA_TLIGHTUSERDATA:
      return hashpointer(t, pvalue(key));
    default:
      return hashpointer(t, gcvalue(key));
  }
}


/*
** returns the index for `key' if `key' is an appropriate key to live in
** the array part of the table, -1 otherwise.
*/
static int arrayindex (const TValue *key) {
  if (ttisnumber(key)) {
    lua_Number n = nvalue(key);
    int k;
    lua_number2int(k, n);
    if (luai_numeq(cast_num(k), n))
      return k;
  }
  return -1;  /* `key' did not match some condition */
}


/*
** returns the index of a `key' for table traversals. First goes all
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signalled by -1.
*/
static int findindex (lua_State *L, Table *t, StkId key) {
  int i;
  if (ttisnil(key)) return -1;  /* first iteration */
  i = arrayindex(key);
  if (0 < i && i <= t->sizearray)  /* is `key' inside array part? */
    return i-1;  /* yes; that's the index (corrected to C) */
  else {
    Node *n = mainposition(t, key);
    do {  /* check whether `key' is somewhere in the chain */
      /* key may be dead already, but it is ok to use it in `next' */
      if (luaO_rawequalObj(key2tval(n), key) ||
            (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) &&
             gcvalue(gkey(n)) == gcvalue(key))) {
        i = cast_int(n - gnode(t, 0));  /* key index in hash table */
        /* hash elements are numbered after array ones */
        return i + t->sizearray;
      }
      else n = gnext(n);
    } while (n);
    luaG_runerror(L, "invalid key to " LUA_QL("next"));  /* key not found */
    return 0;  /* to avoid warnings */
  }
}


int luaH_next (lua_State *L, Table *t, StkId key) {
  int i = findindex(L, t, key);  /* find original element */
  for (i++; i < t->sizearray; i++) {  /* try first array part */
    if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
      setnvalue(key, cast_num(i+1));
      setobj2s(L, key+1, &t->array[i]);
      return 1;
    }
  }
  for (i -= t->sizearray; i < sizenode(t); i++) {  /* then hash part */
    if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
      setobj2s(L, key, key2tval(gnode(t, i)));
      setobj2s(L, key+1, gval(gnode(t, i)));
      return 1;
    }
  }
  return 0;  /* no more elements */
}


/*
** {=============================================================
** Rehash
** ==============================================================
*/


static int computesizes (int nums[], int *narray) {
  int i;
  int twotoi;  /* 2^i */
  int a = 0;  /* number of elements smaller than 2^i */
  int na = 0;  /* number of elements to go to array part */
  int n = 0;  /* optimal size for array part */
  for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) {
    if (nums[i] > 0) {
      a += nums[i];
      if (a > twotoi/2) {  /* more than half elements present? */
        n = twotoi;  /* optimal size (till now) */
        na = a;  /* all elements smaller than n will go to array part */
      }
    }
    if (a == *narray) break;  /* all elements already counted */
  }
  *narray = n;
  lua_assert(*narray/2 <= na && na <= *narray);
  return na;
}


static int countint (const TValue *key, int *nums) {
  int k = arrayindex(key);
  if (0 < k && k <= MAXASIZE) {  /* is `key' an appropriate array index? */
    nums[ceillog2(k)]++;  /* count as such */
    return 1;
  }
  else
    return 0;
}


static int numusearray (const Table *t, int *nums) {
  int lg;
  int ttlg;  /* 2^lg */
  int ause = 0;  /* summation of `nums' */
  int i = 1;  /* count to traverse all array keys */
  for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) {  /* for each slice */
    int lc = 0;  /* counter */
    int lim = ttlg;
    if (lim > t->sizearray) {
      lim = t->sizearray;  /* adjust upper limit */
      if (i > lim)
        break;  /* no more elements to count */
    }
    /* count elements in range (2^(lg-1), 2^lg] */
    for (; i <= lim; i++) {
      if (!ttisnil(&t->array[i-1]))
        lc++;
    }
    nums[lg] += lc;
    ause += lc;
  }
  return ause;
}


static int numusehash (const Table *t, int *nums, int *pnasize) {
  int totaluse = 0;  /* total number of elements */
  int ause = 0;  /* summation of `nums' */
  int i = sizenode(t);
  while (i--) {
    Node *n = &t->node[i];
    if (!ttisnil(gval(n))) {
      ause += countint(key2tval(n), nums);
      totaluse++;
    }
  }
  *pnasize += ause;
  return totaluse;
}


static void setarrayvector (lua_State *L, Table *t, int size) {
  int i;
  luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  for (i=t->sizearray; i<size; i++)
     setnilvalue(&t->array[i]);
  t->sizearray = size;
}


static void setnodevector (lua_State *L, Table *t, int size) {
  int lsize;
  if (size == 0) {  /* no elements to hash part? */
    t->node = cast(Node *, dummynode);  /* use common `dummynode' */
    lsize = 0;
  }
  else {
    int i;
    lsize = ceillog2(size);
    if (lsize > MAXBITS)
      luaG_runerror(L, "table overflow");
    size = twoto(lsize);
    t->node = luaM_newvector(L, size, Node);
    for (i=0; i<size; i++) {
      Node *n = gnode(t, i);
      gnext(n) = NULL;
      setnilvalue(gkey(n));
      setnilvalue(gval(n));
    }
  }
  t->lsizenode = cast_byte(lsize);
  t->lastfree = gnode(t, size);  /* all positions are free */
}


static void resize (lua_State *L, Table *t, int nasize, int nhsize) {
  int i;
  int oldasize = t->sizearray;
  int oldhsize = t->lsizenode;
  Node *nold = t->node;  /* save old hash ... */
  if (nasize > oldasize)  /* array part must grow? */
    setarrayvector(L, t, nasize);
  /* create new hash part with appropriate size */
  setnodevector(L, t, nhsize);  
  if (nasize < oldasize) {  /* array part must shrink? */
    t->sizearray = nasize;
    /* re-insert elements from vanishing slice */
    for (i=nasize; i<oldasize; i++) {
      if (!ttisnil(&t->array[i]))
        setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]);
    }
    /* shrink array */
    luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  }
  /* re-insert elements from hash part */
  for (i = twoto(oldhsize) - 1; i >= 0; i--) {
    Node *old = nold+i;
    if (!ttisnil(gval(old)))
      setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old));
  }
  if (nold != dummynode)
    luaM_freearray(L, nold, twoto(oldhsize), Node);  /* free old array */
}


void luaH_resizearray (lua_State *L, Table *t, int nasize) {
  int nsize = (t->node == dummynode) ? 0 : sizenode(t);
  resize(L, t, nasize, nsize);
}


static void rehash (lua_State *L, Table *t, const TValue *ek) {
  int nasize, na;
  int nums[MAXBITS+1];  /* nums[i] = number of keys between 2^(i-1) and 2^i */
  int i;
  int totaluse;
  for (i=0; i<=MAXBITS; i++) nums[i] = 0;  /* reset counts */
  nasize = numusearray(t, nums);  /* count keys in array part */
  totaluse = nasize;  /* all those keys are integer keys */
  totaluse += numusehash(t, nums, &nasize);  /* count keys in hash part */
  /* count extra key */
  nasize += countint(ek, nums);
  totaluse++;
  /* compute new size for array part */
  na = computesizes(nums, &nasize);
  /* resize the table to new computed sizes */
  resize(L, t, nasize, totaluse - na);
}



/*
** }=============================================================
*/


Table *luaH_new (lua_State *L, int narray, int nhash) {
  Table *t = luaM_new(L, Table);
  luaC_link(L, obj2gco(t), LUA_TTABLE);
  t->metatable = NULL;
  t->flags = cast_byte(~0);
  /* temporary values (kept only if some malloc fails) */
  t->array = NULL;
  t->sizearray = 0;
  t->lsizenode = 0;
  t->node = cast(Node *, dummynode);
  setarrayvector(L, t, narray);
  setnodevector(L, t, nhash);
  return t;
}


void luaH_free (lua_State *L, Table *t) {
  if (t->node != dummynode)
    luaM_freearray(L, t->node, sizenode(t), Node);
  luaM_freearray(L, t->array, t->sizearray, TValue);
  luaM_free(L, t);
}


static Node *getfreepos (Table *t) {
  while (t->lastfree-- > t->node) {
    if (ttisnil(gkey(t->lastfree)))
      return t->lastfree;
  }
  return NULL;  /* could not find a free place */
}



/*
** inserts a new key into a hash table; first, check whether key's main 
** position is free. If not, check whether colliding node is in its main 
** position or not: if it is not, move colliding node to an empty place and 
** put new key in its main position; otherwise (colliding node is in its main 
** position), new key goes to an empty position. 
*/
static TValue *newkey (lua_State *L, Table *t, const TValue *key) {
  Node *mp = mainposition(t, key);
  if (!ttisnil(gval(mp)) || mp == dummynode) {
    Node *othern;
    Node *n = getfreepos(t);  /* get a free place */
    if (n == NULL) {  /* cannot find a free place? */
      rehash(L, t, key);  /* grow table */
      return luaH_set(L, t, key);  /* re-insert key into grown table */
    }
    lua_assert(n != dummynode);
    othern = mainposition(t, key2tval(mp));
    if (othern != mp) {  /* is colliding node out of its main position? */
      /* yes; move colliding node into free position */
      while (gnext(othern) != mp) othern = gnext(othern);  /* find previous */
      gnext(othern) = n;  /* redo the chain with `n' in place of `mp' */
      *n = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
      gnext(mp) = NULL;  /* now `mp' is free */
      setnilvalue(gval(mp));
    }
    else {  /* colliding node is in its own main position */
      /* new node will go into free position */
      gnext(n) = gnext(mp);  /* chain new position */
      gnext(mp) = n;
      mp = n;
    }
  }
  gkey(mp)->value = key->value; gkey(mp)->tt = key->tt;
  luaC_barriert(L, t, key);
  lua_assert(ttisnil(gval(mp)));
  return gval(mp);
}


/*
** search function for integers
*/
const TValue *luaH_getnum (Table *t, int key) {
  /* (1 <= key && key <= t->sizearray) */
  if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray))
    return &t->array[key-1];
  else {
    lua_Number nk = cast_num(key);
    Node *n = hashnum(t, nk);
    do {  /* check whether `key' is somewhere in the chain */
      if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk))
        return gval(n);  /* that's it */
      else n = gnext(n);
    } while (n);
    return luaO_nilobject;
  }
}


/*
** search function for strings
*/
const TValue *luaH_getstr (Table *t, TString *key) {
  Node *n = hashstr(t, key);
  do {  /* check whether `key' is somewhere in the chain */
    if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key)
      return gval(n);  /* that's it */
    else n = gnext(n);
  } while (n);
  return luaO_nilobject;
}


/*
** main search function
*/
const TValue *luaH_get (Table *t, const TValue *key) {
  switch (ttype(key)) {
    case LUA_TNIL: return luaO_nilobject;
    case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key));
    case LUA_TNUMBER: {
      int k;
      lua_Number n = nvalue(key);
      lua_number2int(k, n);
      if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */
        return luaH_getnum(t, k);  /* use specialized version */
      /* else go through */
    }
    default: {
      Node *n = mainposition(t, key);
      do {  /* check whether `key' is somewhere in the chain */
        if (luaO_rawequalObj(key2tval(n), key))
          return gval(n);  /* that's it */
        else n = gnext(n);
      } while (n);
      return luaO_nilobject;
    }
  }
}


TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  const TValue *p = luaH_get(t, key);
  t->flags = 0;
  if (p != luaO_nilobject)
    return cast(TValue *, p);
  else {
    if (ttisnil(key)) luaG_runerror(L, "table index is nil");
    else if (ttisnumber(key) && luai_numisnan(nvalue(key)))
      luaG_runerror(L, "table index is NaN");
    return newkey(L, t, key);
  }
}


TValue *luaH_setnum (lua_State *L, Table *t, int key) {
  const TValue *p = luaH_getnum(t, key);
  if (p != luaO_nilobject)
    return cast(TValue *, p);
  else {
    TValue k;
    setnvalue(&k, cast_num(key));
    return newkey(L, t, &k);
  }
}


TValue *luaH_setstr (lua_State *L, Table *t, TString *key) {
  const TValue *p = luaH_getstr(t, key);
  if (p != luaO_nilobject)
    return cast(TValue *, p);
  else {
    TValue k;
    setsvalue(L, &k, key);
    return newkey(L, t, &k);
  }
}


static int unbound_search (Table *t, unsigned int j) {
  unsigned int i = j;  /* i is zero or a present index */
  j++;
  /* find `i' and `j' such that i is present and j is not */
  while (!ttisnil(luaH_getnum(t, j))) {
    i = j;
    j *= 2;
    if (j > cast(unsigned int, MAX_INT)) {  /* overflow? */
      /* table was built with bad purposes: resort to linear search */
      i = 1;
      while (!ttisnil(luaH_getnum(t, i))) i++;
      return i - 1;
    }
  }
  /* now do a binary search between them */
  while (j - i > 1) {
    unsigned int m = (i+j)/2;
    if (ttisnil(luaH_getnum(t, m))) j = m;
    else i = m;
  }
  return i;
}


/*
** Try to find a boundary in table `t'. A `boundary' is an integer index
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
*/
int luaH_getn (Table *t) {
  unsigned int j = t->sizearray;
  if (j > 0 && ttisnil(&t->array[j - 1])) {
    /* there is a boundary in the array part: (binary) search for it */
    unsigned int i = 0;
    while (j - i > 1) {
      unsigned int m = (i+j)/2;
      if (ttisnil(&t->array[m - 1])) j = m;
      else i = m;
    }
    return i;
  }
  /* else must find a boundary in hash part */
  else if (t->node == dummynode)  /* hash part is empty? */
    return j;  /* that is easy... */
  else return unbound_search(t, j);
}



#if defined(LUA_DEBUG)

Node *luaH_mainposition (const Table *t, const TValue *key) {
  return mainposition(t, key);
}

int luaH_isdummy (Node *n) { return n == dummynode; }

#endif
::map<std::string, u32> m_name_to_id; // The two former containers are behind this mutex JMutex m_atlaspointer_cache_mutex; // Main texture atlas. This is filled at startup and is then not touched. video::IImage *m_main_atlas_image; video::ITexture *m_main_atlas_texture; // Queued texture fetches (to be processed by the main thread) RequestQueue<std::string, u32, u8, u8> m_get_texture_queue; }; IWritableTextureSource* createTextureSource(IrrlichtDevice *device) { return new TextureSource(device); } TextureSource::TextureSource(IrrlichtDevice *device): m_device(device), m_main_atlas_image(NULL), m_main_atlas_texture(NULL) { assert(m_device); m_atlaspointer_cache_mutex.Init(); m_main_thread = get_current_thread_id(); // Add a NULL AtlasPointer as the first index, named "" m_atlaspointer_cache.push_back(SourceAtlasPointer("")); m_name_to_id[""] = 0; } TextureSource::~TextureSource() { } u32 TextureSource::getTextureId(const std::string &name) { //infostream<<"getTextureId(): \""<<name<<"\""<<std::endl; { /* See if texture already exists */ JMutexAutoLock lock(m_atlaspointer_cache_mutex); core::map<std::string, u32>::Node *n; n = m_name_to_id.find(name); if(n != NULL) { return n->getValue(); } } /* Get texture */ if(get_current_thread_id() == m_main_thread) { return getTextureIdDirect(name); } else { infostream<<"getTextureId(): Queued: name=\""<<name<<"\""<<std::endl; // We're gonna ask the result to be put into here ResultQueue<std::string, u32, u8, u8> result_queue; // Throw a request in m_get_texture_queue.add(name, 0, 0, &result_queue); infostream<<"Waiting for texture from main thread, name=\"" <<name<<"\""<<std::endl; try { // Wait result for a second GetResult<std::string, u32, u8, u8> result = result_queue.pop_front(1000); // Check that at least something worked OK assert(result.key == name); return result.item; } catch(ItemNotFoundException &e) { infostream<<"Waiting for texture timed out."<<std::endl; return 0; } } infostream<<"getTextureId(): Failed"<<std::endl; return 0; } // Draw a progress bar on the image void make_progressbar(float value, video::IImage *image); // Brighten image void brighten(video::IImage *image); /* Generate image based on a string like "stone.png" or "[crack0". if baseimg is NULL, it is created. Otherwise stuff is made on it. */ bool generate_image(std::string part_of_name, video::IImage *& baseimg, IrrlichtDevice *device, SourceImageCache *sourcecache); /* Generates an image from a full string like "stone.png^mineral_coal.png^[crack0". This is used by buildMainAtlas(). */ video::IImage* generate_image_from_scratch(std::string name, IrrlichtDevice *device, SourceImageCache *sourcecache); /* This method generates all the textures */ u32 TextureSource::getTextureIdDirect(const std::string &name) { //infostream<<"getTextureIdDirect(): name=\""<<name<<"\""<<std::endl; // Empty name means texture 0 if(name == "") { infostream<<"getTextureIdDirect(): name is empty"<<std::endl; return 0; } /* Calling only allowed from main thread */ if(get_current_thread_id() != m_main_thread) { errorstream<<"TextureSource::getTextureIdDirect() " "called not from main thread"<<std::endl; return 0; } /* See if texture already exists */ { JMutexAutoLock lock(m_atlaspointer_cache_mutex); core::map<std::string, u32>::Node *n; n = m_name_to_id.find(name); if(n != NULL) { /*infostream<<"getTextureIdDirect(): \""<<name <<"\" found in cache"<<std::endl;*/ return n->getValue(); } } /*infostream<<"getTextureIdDirect(): \""<<name <<"\" NOT found in cache. Creating it."<<std::endl;*/ /* Get the base image */ char separator = '^'; /* This is set to the id of the base image. If left 0, there is no base image and a completely new image is made. */ u32 base_image_id = 0; // Find last meta separator in name s32 last_separator_position = -1; for(s32 i=name.size()-1; i>=0; i--) { if(name[i] == separator) { last_separator_position = i; break; } } /* If separator was found, construct the base name and make the base image using a recursive call */ std::string base_image_name; if(last_separator_position != -1) { // Construct base name base_image_name = name.substr(0, last_separator_position); /*infostream<<"getTextureIdDirect(): Calling itself recursively" " to get base image of \""<<name<<"\" = \"" <<base_image_name<<"\""<<std::endl;*/ base_image_id = getTextureIdDirect(base_image_name); } //infostream<<"base_image_id="<<base_image_id<<std::endl; video::IVideoDriver* driver = m_device->getVideoDriver(); assert(driver); video::ITexture *t = NULL; /* An image will be built from files and then converted into a texture. */ video::IImage *baseimg = NULL; // If a base image was found, copy it to baseimg if(base_image_id != 0) { JMutexAutoLock lock(m_atlaspointer_cache_mutex); SourceAtlasPointer ap = m_atlaspointer_cache[base_image_id]; video::IImage *image = ap.atlas_img; if(image == NULL) { infostream<<"getTextureIdDirect(): WARNING: NULL image in " <<"cache: \""<<base_image_name<<"\"" <<std::endl; } else { core::dimension2d<u32> dim = ap.intsize; baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); core::position2d<s32> pos_to(0,0); core::position2d<s32> pos_from = ap.intpos; image->copyTo( baseimg, // target v2s32(0,0), // position in target core::rect<s32>(pos_from, dim) // from ); /*infostream<<"getTextureIdDirect(): Loaded \"" <<base_image_name<<"\" from image cache" <<std::endl;*/ } } /* Parse out the last part of the name of the image and act according to it */ std::string last_part_of_name = name.substr(last_separator_position+1); //infostream<<"last_part_of_name=\""<<last_part_of_name<<"\""<<std::endl; // Generate image according to part of name if(!generate_image(last_part_of_name, baseimg, m_device, &m_sourcecache)) { errorstream<<"getTextureIdDirect(): " "failed to generate \""<<last_part_of_name<<"\"" <<std::endl; } // If no resulting image, print a warning if(baseimg == NULL) { errorstream<<"getTextureIdDirect(): baseimg is NULL (attempted to" " create texture \""<<name<<"\""<<std::endl; } if(baseimg != NULL) { // Create texture from resulting image t = driver->addTexture(name.c_str(), baseimg); } /* Add texture to caches (add NULL textures too) */ JMutexAutoLock lock(m_atlaspointer_cache_mutex); u32 id = m_atlaspointer_cache.size(); AtlasPointer ap(id); ap.atlas = t; ap.pos = v2f(0,0); ap.size = v2f(1,1); ap.tiled = 0; core::dimension2d<u32> baseimg_dim(0,0); if(baseimg) baseimg_dim = baseimg->getDimension(); SourceAtlasPointer nap(name, ap, baseimg, v2s32(0,0), baseimg_dim); m_atlaspointer_cache.push_back(nap); m_name_to_id.insert(name, id); /*infostream<<"getTextureIdDirect(): " <<"Returning id="<<id<<" for name \""<<name<<"\""<<std::endl;*/ return id; } std::string TextureSource::getTextureName(u32 id) { JMutexAutoLock lock(m_atlaspointer_cache_mutex); if(id >= m_atlaspointer_cache.size()) { errorstream<<"TextureSource::getTextureName(): id="<<id <<" >= m_atlaspointer_cache.size()=" <<m_atlaspointer_cache.size()<<std::endl; return ""; } return m_atlaspointer_cache[id].name; } AtlasPointer TextureSource::getTexture(u32 id) { JMutexAutoLock lock(m_atlaspointer_cache_mutex); if(id >= m_atlaspointer_cache.size()) return AtlasPointer(0, NULL); return m_atlaspointer_cache[id].a; } void TextureSource::updateAP(AtlasPointer &ap) { AtlasPointer ap2 = getTexture(ap.id); ap = ap2; } void TextureSource::processQueue() { /* Fetch textures */ if(m_get_texture_queue.size() > 0) { GetRequest<std::string, u32, u8, u8> request = m_get_texture_queue.pop(); /*infostream<<"TextureSource::processQueue(): " <<"got texture request with " <<"name=\""<<request.key<<"\"" <<std::endl;*/ GetResult<std::string, u32, u8, u8> result; result.key = request.key; result.callers = request.callers; result.item = getTextureIdDirect(request.key); request.dest->push_back(result); } } void TextureSource::insertSourceImage(const std::string &name, video::IImage *img) { //infostream<<"TextureSource::insertSourceImage(): name="<<name<<std::endl; assert(get_current_thread_id() == m_main_thread); m_sourcecache.insert(name, img, true, m_device->getVideoDriver()); } void TextureSource::rebuildImagesAndTextures() { JMutexAutoLock lock(m_atlaspointer_cache_mutex); /*// Oh well... just clear everything, they'll load sometime. m_atlaspointer_cache.clear(); m_name_to_id.clear();*/ video::IVideoDriver* driver = m_device->getVideoDriver(); // Remove source images from textures to disable inheriting textures // from existing textures /*for(u32 i=0; i<m_atlaspointer_cache.size(); i++){ SourceAtlasPointer *sap = &m_atlaspointer_cache[i]; sap->atlas_img->drop(); sap->atlas_img = NULL; }*/ // Recreate textures for(u32 i=0; i<m_atlaspointer_cache.size(); i++){ SourceAtlasPointer *sap = &m_atlaspointer_cache[i]; video::IImage *img = generate_image_from_scratch(sap->name, m_device, &m_sourcecache); // Create texture from resulting image video::ITexture *t = NULL; if(img) t = driver->addTexture(sap->name.c_str(), img); // Replace texture sap->a.atlas = t; sap->a.pos = v2f(0,0); sap->a.size = v2f(1,1); sap->a.tiled = 0; sap->atlas_img = img; sap->intpos = v2s32(0,0); sap->intsize = img->getDimension(); } } void TextureSource::buildMainAtlas(class IGameDef *gamedef) { assert(gamedef->tsrc() == this); INodeDefManager *ndef = gamedef->ndef(); infostream<<"TextureSource::buildMainAtlas()"<<std::endl; //return; // Disable (for testing) video::IVideoDriver* driver = m_device->getVideoDriver(); assert(driver); JMutexAutoLock lock(m_atlaspointer_cache_mutex); // Create an image of the right size core::dimension2d<u32> atlas_dim(1024,1024); video::IImage *atlas_img = driver->createImage(video::ECF_A8R8G8B8, atlas_dim); //assert(atlas_img); if(atlas_img == NULL) { errorstream<<"TextureSource::buildMainAtlas(): Failed to create atlas " "image; not building texture atlas."<<std::endl; return; } /* Grab list of stuff to include in the texture atlas from the main content features */ core::map<std::string, bool> sourcelist; for(u16 j=0; j<MAX_CONTENT+1; j++) { if(j == CONTENT_IGNORE || j == CONTENT_AIR) continue; const ContentFeatures &f = ndef->get(j); for(std::set<std::string>::const_iterator i = f.used_texturenames.begin(); i != f.used_texturenames.end(); i++) { std::string name = *i; sourcelist[name] = true; if(f.often_contains_mineral){ for(int k=1; k<MINERAL_COUNT; k++){ std::string mineraltexture = mineral_block_texture(k); std::string fulltexture = name + "^" + mineraltexture; sourcelist[fulltexture] = true; } } } } infostream<<"Creating texture atlas out of textures: "; for(core::map<std::string, bool>::Iterator i = sourcelist.getIterator(); i.atEnd() == false; i++) { std::string name = i.getNode()->getKey(); infostream<<"\""<<name<<"\" "; } infostream<<std::endl; // Padding to disallow texture bleeding s32 padding = 16; s32 column_width = 256; s32 column_padding = 16; /* First pass: generate almost everything */ core::position2d<s32> pos_in_atlas(0,0); pos_in_atlas.Y = padding; for(core::map<std::string, bool>::Iterator i = sourcelist.getIterator(); i.atEnd() == false; i++) { std::string name = i.getNode()->getKey(); // Generate image by name video::IImage *img2 = generate_image_from_scratch(name, m_device, &m_sourcecache); if(img2 == NULL) { errorstream<<"TextureSource::buildMainAtlas(): " <<"Couldn't generate image \""<<name<<"\""<<std::endl; continue; } core::dimension2d<u32> dim = img2->getDimension(); // Don't add to atlas if image is large core::dimension2d<u32> max_size_in_atlas(32,32); if(dim.Width > max_size_in_atlas.Width || dim.Height > max_size_in_atlas.Height) { infostream<<"TextureSource::buildMainAtlas(): Not adding " <<"\""<<name<<"\" because image is large"<<std::endl; continue; } // Wrap columns and stop making atlas if atlas is full if(pos_in_atlas.Y + dim.Height > atlas_dim.Height) { if(pos_in_atlas.X > (s32)atlas_dim.Width - 256 - padding){ errorstream<<"TextureSource::buildMainAtlas(): " <<"Atlas is full, not adding more textures." <<std::endl; break; } pos_in_atlas.Y = padding; pos_in_atlas.X += column_width + column_padding; } /*infostream<<"TextureSource::buildMainAtlas(): Adding \""<<name <<"\" to texture atlas"<<std::endl;*/ // Tile it a few times in the X direction u16 xwise_tiling = column_width / dim.Width; if(xwise_tiling > 16) // Limit to 16 (more gives no benefit) xwise_tiling = 16; for(u32 j=0; j<xwise_tiling; j++) { // Copy the copy to the atlas /*img2->copyToWithAlpha(atlas_img, pos_in_atlas + v2s32(j*dim.Width,0), core::rect<s32>(v2s32(0,0), dim), video::SColor(255,255,255,255), NULL);*/ img2->copyTo(atlas_img, pos_in_atlas + v2s32(j*dim.Width,0), core::rect<s32>(v2s32(0,0), dim), NULL); } // Copy the borders a few times to disallow texture bleeding for(u32 side=0; side<2; side++) // top and bottom for(s32 y0=0; y0<padding; y0++) for(s32 x0=0; x0<(s32)xwise_tiling*(s32)dim.Width; x0++) { s32 dst_y; s32 src_y; if(side==0) { dst_y = y0 + pos_in_atlas.Y + dim.Height; src_y = pos_in_atlas.Y + dim.Height - 1; } else { dst_y = -y0 + pos_in_atlas.Y-1; src_y = pos_in_atlas.Y; } s32 x = x0 + pos_in_atlas.X; video::SColor c = atlas_img->getPixel(x, src_y); atlas_img->setPixel(x,dst_y,c); } img2->drop(); /* Add texture to caches */ bool reuse_old_id = false; u32 id = m_atlaspointer_cache.size(); // Check old id without fetching a texture core::map<std::string, u32>::Node *n; n = m_name_to_id.find(name); // If it exists, we will replace the old definition if(n){ id = n->getValue(); reuse_old_id = true; /*infostream<<"TextureSource::buildMainAtlas(): " <<"Replacing old AtlasPointer"<<std::endl;*/ } // Create AtlasPointer AtlasPointer ap(id); ap.atlas = NULL; // Set on the second pass ap.pos = v2f((float)pos_in_atlas.X/(float)atlas_dim.Width, (float)pos_in_atlas.Y/(float)atlas_dim.Height); ap.size = v2f((float)dim.Width/(float)atlas_dim.Width, (float)dim.Width/(float)atlas_dim.Height); ap.tiled = xwise_tiling; // Create SourceAtlasPointer and add to containers SourceAtlasPointer nap(name, ap, atlas_img, pos_in_atlas, dim); if(reuse_old_id) m_atlaspointer_cache[id] = nap; else m_atlaspointer_cache.push_back(nap); m_name_to_id[name] = id; // Increment position pos_in_atlas.Y += dim.Height + padding * 2; } /* Make texture */ video::ITexture *t = driver->addTexture("__main_atlas__", atlas_img); assert(t); /* Second pass: set texture pointer in generated AtlasPointers */ for(core::map<std::string, bool>::Iterator i = sourcelist.getIterator(); i.atEnd() == false; i++) { std::string name = i.getNode()->getKey(); if(m_name_to_id.find(name) == NULL) continue; u32 id = m_name_to_id[name]; //infostream<<"id of name "<<name<<" is "<<id<<std::endl; m_atlaspointer_cache[id].a.atlas = t; } /* Write image to file so that it can be inspected */ /*std::string atlaspath = porting::path_userdata + DIR_DELIM + "generated_texture_atlas.png"; infostream<<"Removing and writing texture atlas for inspection to " <<atlaspath<<std::endl; fs::RecursiveDelete(atlaspath); driver->writeImageToFile(atlas_img, atlaspath.c_str());*/ } video::IImage* generate_image_from_scratch(std::string name, IrrlichtDevice *device, SourceImageCache *sourcecache) { /*infostream<<"generate_image_from_scratch(): " "\""<<name<<"\""<<std::endl;*/ video::IVideoDriver* driver = device->getVideoDriver(); assert(driver); /* Get the base image */ video::IImage *baseimg = NULL; char separator = '^'; // Find last meta separator in name s32 last_separator_position = -1; for(s32 i=name.size()-1; i>=0; i--) { if(name[i] == separator) { last_separator_position = i; break; } } /*infostream<<"generate_image_from_scratch(): " <<"last_separator_position="<<last_separator_position <<std::endl;*/ /* If separator was found, construct the base name and make the base image using a recursive call */ std::string base_image_name; if(last_separator_position != -1) { // Construct base name base_image_name = name.substr(0, last_separator_position); /*infostream<<"generate_image_from_scratch(): Calling itself recursively" " to get base image of \""<<name<<"\" = \"" <<base_image_name<<"\""<<std::endl;*/ baseimg = generate_image_from_scratch(base_image_name, device, sourcecache); } /* Parse out the last part of the name of the image and act according to it */ std::string last_part_of_name = name.substr(last_separator_position+1); //infostream<<"last_part_of_name=\""<<last_part_of_name<<"\""<<std::endl; // Generate image according to part of name if(!generate_image(last_part_of_name, baseimg, device, sourcecache)) { errorstream<<"generate_image_from_scratch(): " "failed to generate \""<<last_part_of_name<<"\"" <<std::endl; return NULL; } return baseimg; } bool generate_image(std::string part_of_name, video::IImage *& baseimg, IrrlichtDevice *device, SourceImageCache *sourcecache) { video::IVideoDriver* driver = device->getVideoDriver(); assert(driver); // Stuff starting with [ are special commands if(part_of_name.size() == 0 || part_of_name[0] != '[') { video::IImage *image = sourcecache->getOrLoad(part_of_name, device); if(image == NULL) { if(part_of_name != ""){ errorstream<<"generate_image(): Could not load image \"" <<part_of_name<<"\""<<" while building texture"<<std::endl; errorstream<<"generate_image(): Creating a dummy" <<" image for \""<<part_of_name<<"\""<<std::endl; } // Just create a dummy image //core::dimension2d<u32> dim(2,2); core::dimension2d<u32> dim(1,1); image = driver->createImage(video::ECF_A8R8G8B8, dim); assert(image); /*image->setPixel(0,0, video::SColor(255,255,0,0)); image->setPixel(1,0, video::SColor(255,0,255,0)); image->setPixel(0,1, video::SColor(255,0,0,255)); image->setPixel(1,1, video::SColor(255,255,0,255));*/ image->setPixel(0,0, video::SColor(255,myrand()%256, myrand()%256,myrand()%256)); /*image->setPixel(1,0, video::SColor(255,myrand()%256, myrand()%256,myrand()%256)); image->setPixel(0,1, video::SColor(255,myrand()%256, myrand()%256,myrand()%256)); image->setPixel(1,1, video::SColor(255,myrand()%256, myrand()%256,myrand()%256));*/ } // If base image is NULL, load as base. if(baseimg == NULL) { //infostream<<"Setting "<<part_of_name<<" as base"<<std::endl; /* Copy it this way to get an alpha channel. Otherwise images with alpha cannot be blitted on images that don't have alpha in the original file. */ core::dimension2d<u32> dim = image->getDimension(); baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); image->copyTo(baseimg); image->drop(); } // Else blit on base. else { //infostream<<"Blitting "<<part_of_name<<" on base"<<std::endl; // Size of the copied area core::dimension2d<u32> dim = image->getDimension(); //core::dimension2d<u32> dim(16,16); // Position to copy the blitted to in the base image core::position2d<s32> pos_to(0,0); // Position to copy the blitted from in the blitted image core::position2d<s32> pos_from(0,0); // Blit image->copyToWithAlpha(baseimg, pos_to, core::rect<s32>(pos_from, dim), video::SColor(255,255,255,255), NULL); // Drop image image->drop(); } } else { // A special texture modification /*infostream<<"generate_image(): generating special " <<"modification \""<<part_of_name<<"\"" <<std::endl;*/ /* This is the simplest of all; it just adds stuff to the name so that a separate texture is created. It is used to make textures for stuff that doesn't want to implement getting the texture from a bigger texture atlas. */ if(part_of_name == "[forcesingle") { // If base image is NULL, create a random color if(baseimg == NULL) { core::dimension2d<u32> dim(1,1); baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); assert(baseimg); baseimg->setPixel(0,0, video::SColor(255,myrand()%256, myrand()%256,myrand()%256)); } } /* [crackN Adds a cracking texture */ else if(part_of_name.substr(0,6) == "[crack") { if(baseimg == NULL) { errorstream<<"generate_image(): baseimg==NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } // Crack image number u16 progression = stoi(part_of_name.substr(6)); // Size of the base image core::dimension2d<u32> dim_base = baseimg->getDimension(); /* Load crack image. It is an image with a number of cracking stages horizontally tiled. */ video::IImage *img_crack = sourcecache->getOrLoad("crack.png", device); if(img_crack) { // Dimension of original image core::dimension2d<u32> dim_crack = img_crack->getDimension(); // Count of crack stages u32 crack_count = dim_crack.Height / dim_crack.Width; // Limit progression if(progression > crack_count-1) progression = crack_count-1; // Dimension of a single scaled crack stage core::dimension2d<u32> dim_crack_scaled_single( dim_base.Width, dim_base.Height ); // Dimension of scaled size core::dimension2d<u32> dim_crack_scaled( dim_crack_scaled_single.Width, dim_crack_scaled_single.Height * crack_count ); // Create scaled crack image video::IImage *img_crack_scaled = driver->createImage( video::ECF_A8R8G8B8, dim_crack_scaled); if(img_crack_scaled) { // Scale crack image by copying img_crack->copyToScaling(img_crack_scaled); // Position to copy the crack from core::position2d<s32> pos_crack_scaled( 0, dim_crack_scaled_single.Height * progression ); // This tiling does nothing currently but is useful for(u32 y0=0; y0<dim_base.Height / dim_crack_scaled_single.Height; y0++) for(u32 x0=0; x0<dim_base.Width / dim_crack_scaled_single.Width; x0++) { // Position to copy the crack to in the base image core::position2d<s32> pos_base( x0*dim_crack_scaled_single.Width, y0*dim_crack_scaled_single.Height ); // Rectangle to copy the crack from on the scaled image core::rect<s32> rect_crack_scaled( pos_crack_scaled, dim_crack_scaled_single ); // Copy it img_crack_scaled->copyToWithAlpha(baseimg, pos_base, rect_crack_scaled, video::SColor(255,255,255,255), NULL); } img_crack_scaled->drop(); } img_crack->drop(); } } /* [combine:WxH:X,Y=filename:X,Y=filename2 Creates a bigger texture from an amount of smaller ones */ else if(part_of_name.substr(0,8) == "[combine") { Strfnd sf(part_of_name); sf.next(":"); u32 w0 = stoi(sf.next("x")); u32 h0 = stoi(sf.next(":")); infostream<<"combined w="<<w0<<" h="<<h0<<std::endl; core::dimension2d<u32> dim(w0,h0); baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); while(sf.atend() == false) { u32 x = stoi(sf.next(",")); u32 y = stoi(sf.next("=")); std::string filename = sf.next(":"); infostream<<"Adding \""<<filename <<"\" to combined ("<<x<<","<<y<<")" <<std::endl; video::IImage *img = sourcecache->getOrLoad(filename, device); if(img) { core::dimension2d<u32> dim = img->getDimension(); infostream<<"Size "<<dim.Width <<"x"<<dim.Height<<std::endl; core::position2d<s32> pos_base(x, y); video::IImage *img2 = driver->createImage(video::ECF_A8R8G8B8, dim); img->copyTo(img2); img->drop(); img2->copyToWithAlpha(baseimg, pos_base, core::rect<s32>(v2s32(0,0), dim), video::SColor(255,255,255,255), NULL); img2->drop(); } else { infostream<<"img==NULL"<<std::endl; } } } /* [progressbarN Adds a progress bar, 0.0 <= N <= 1.0 */ else if(part_of_name.substr(0,12) == "[progressbar") { if(baseimg == NULL) { errorstream<<"generate_image(): baseimg==NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } float value = stof(part_of_name.substr(12)); make_progressbar(value, baseimg); } /* "[brighten" */ else if(part_of_name.substr(0,9) == "[brighten") { if(baseimg == NULL) { errorstream<<"generate_image(): baseimg==NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } brighten(baseimg); } /* "[noalpha" Make image completely opaque. Used for the leaves texture when in old leaves mode, so that the transparent parts don't look completely black when simple alpha channel is used for rendering. */ else if(part_of_name.substr(0,8) == "[noalpha") { if(baseimg == NULL) { errorstream<<"generate_image(): baseimg==NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } core::dimension2d<u32> dim = baseimg->getDimension(); // Set alpha to full for(u32 y=0; y<dim.Height; y++) for(u32 x=0; x<dim.Width; x++) { video::SColor c = baseimg->getPixel(x,y); c.setAlpha(255); baseimg->setPixel(x,y,c); } } /* "[makealpha:R,G,B" Convert one color to transparent. */ else if(part_of_name.substr(0,11) == "[makealpha:") { if(baseimg == NULL) { errorstream<<"generate_image(): baseimg==NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } Strfnd sf(part_of_name.substr(11)); u32 r1 = stoi(sf.next(",")); u32 g1 = stoi(sf.next(",")); u32 b1 = stoi(sf.next("")); std::string filename = sf.next(""); core::dimension2d<u32> dim = baseimg->getDimension(); /*video::IImage *oldbaseimg = baseimg; baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); oldbaseimg->copyTo(baseimg); oldbaseimg->drop();*/ // Set alpha to full for(u32 y=0; y<dim.Height; y++) for(u32 x=0; x<dim.Width; x++) { video::SColor c = baseimg->getPixel(x,y); u32 r = c.getRed(); u32 g = c.getGreen(); u32 b = c.getBlue(); if(!(r == r1 && g == g1 && b == b1)) continue; c.setAlpha(0); baseimg->setPixel(x,y,c); } } /* [inventorycube{topimage{leftimage{rightimage In every subimage, replace ^ with &. Create an "inventory cube". NOTE: This should be used only on its own. Example (a grass block (not actually used in game): "[inventorycube{grass.png{mud.png&grass_side.png{mud.png&grass_side.png" */ else if(part_of_name.substr(0,14) == "[inventorycube") { if(baseimg != NULL) { errorstream<<"generate_image(): baseimg!=NULL " <<"for part_of_name=\""<<part_of_name <<"\", cancelling."<<std::endl; return false; } str_replace_char(part_of_name, '&', '^'); Strfnd sf(part_of_name); sf.next("{"); std::string imagename_top = sf.next("{"); std::string imagename_left = sf.next("{"); std::string imagename_right = sf.next("{"); #if 1 // TODO: Create cube with different textures on different sides if(driver->queryFeature(video::EVDF_RENDER_TO_TARGET) == false) { errorstream<<"generate_image(): EVDF_RENDER_TO_TARGET" " not supported. Creating fallback image"<<std::endl; baseimg = generate_image_from_scratch( imagename_top, device, sourcecache); return true; } u32 w0 = 64; u32 h0 = 64; //infostream<<"inventorycube w="<<w0<<" h="<<h0<<std::endl; core::dimension2d<u32> dim(w0,h0); // Generate images for the faces of the cube video::IImage *img_top = generate_image_from_scratch( imagename_top, device, sourcecache); video::IImage *img_left = generate_image_from_scratch( imagename_left, device, sourcecache); video::IImage *img_right = generate_image_from_scratch( imagename_right, device, sourcecache); assert(img_top && img_left && img_right); // Create textures from images video::ITexture *texture_top = driver->addTexture( (imagename_top + "__temp__").c_str(), img_top); video::ITexture *texture_left = driver->addTexture( (imagename_left + "__temp__").c_str(), img_left); video::ITexture *texture_right = driver->addTexture( (imagename_right + "__temp__").c_str(), img_right); assert(texture_top && texture_left && texture_right); // Drop images img_top->drop(); img_left->drop(); img_right->drop(); // Create render target texture video::ITexture *rtt = NULL; std::string rtt_name = part_of_name + "_RTT"; rtt = driver->addRenderTargetTexture(dim, rtt_name.c_str(), video::ECF_A8R8G8B8); assert(rtt); // Set render target driver->setRenderTarget(rtt, true, true, video::SColor(0,0,0,0)); // Get a scene manager scene::ISceneManager *smgr_main = device->getSceneManager(); assert(smgr_main); scene::ISceneManager *smgr = smgr_main->createNewSceneManager(); assert(smgr); /* Create scene: - An unit cube is centered at 0,0,0 - Camera looks at cube from Y+, Z- towards Y-, Z+ */ scene::IMesh* cube = createCubeMesh(v3f(1, 1, 1)); setMeshColor(cube, video::SColor(255, 255, 255, 255)); scene::IMeshSceneNode* cubenode = smgr->addMeshSceneNode(cube, NULL, -1, v3f(0,0,0), v3f(0,45,0), v3f(1,1,1), true); cube->drop(); // Set texture of cube cubenode->getMaterial(0).setTexture(0, texture_top); cubenode->getMaterial(1).setTexture(0, texture_top); cubenode->getMaterial(2).setTexture(0, texture_right); cubenode->getMaterial(3).setTexture(0, texture_right); cubenode->getMaterial(4).setTexture(0, texture_left); cubenode->getMaterial(5).setTexture(0, texture_left); cubenode->setMaterialFlag(video::EMF_LIGHTING, true); cubenode->setMaterialFlag(video::EMF_ANTI_ALIASING, true); cubenode->setMaterialFlag(video::EMF_BILINEAR_FILTER, true); scene::ICameraSceneNode* camera = smgr->addCameraSceneNode(0, v3f(0, 1.0, -1.5), v3f(0, 0, 0)); // Set orthogonal projection core::CMatrix4<f32> pm; pm.buildProjectionMatrixOrthoLH(1.65, 1.65, 0, 100); camera->setProjectionMatrix(pm, true); /*scene::ILightSceneNode *light =*/ smgr->addLightSceneNode(0, v3f(-50, 100, -75), video::SColorf(0.5,0.5,0.5), 1000); smgr->setAmbientLight(video::SColorf(0.2,0.2,0.2)); // Render scene driver->beginScene(true, true, video::SColor(0,0,0,0)); smgr->drawAll(); driver->endScene(); // NOTE: The scene nodes should not be dropped, otherwise // smgr->drop() segfaults /*cube->drop(); camera->drop(); light->drop();*/ // Drop scene manager smgr->drop(); // Unset render target driver->setRenderTarget(0, true, true, 0); // Free textures of images driver->removeTexture(texture_top); driver->removeTexture(texture_left); driver->removeTexture(texture_right); // Create image of render target video::IImage *image = driver->createImage(rtt, v2s32(0,0), dim); assert(image); baseimg = driver->createImage(video::ECF_A8R8G8B8, dim); if(image) { image->copyTo(baseimg); image->drop(); } #endif } else { errorstream<<"generate_image(): Invalid " " modification: \""<<part_of_name<<"\""<<std::endl; } } return true; } void make_progressbar(float value, video::IImage *image) { if(image == NULL) return; core::dimension2d<u32> size = image->getDimension(); u32 barheight = size.Height/16; u32 barpad_x = size.Width/16; u32 barpad_y = size.Height/16; u32 barwidth = size.Width - barpad_x*2; v2u32 barpos(barpad_x, size.Height - barheight - barpad_y); u32 barvalue_i = (u32)(((float)barwidth * value) + 0.5); video::SColor active(255,255,0,0); video::SColor inactive(255,0,0,0); for(u32 x0=0; x0<barwidth; x0++) { video::SColor *c; if(x0 < barvalue_i) c = &active; else c = &inactive; u32 x = x0 + barpos.X; for(u32 y=barpos.Y; y<barpos.Y+barheight; y++) { image->setPixel(x,y, *c); } } } void brighten(video::IImage *image) { if(image == NULL) return; core::dimension2d<u32> dim = image->getDimension(); for(u32 y=0; y<dim.Height; y++) for(u32 x=0; x<dim.Width; x++) { video::SColor c = image->getPixel(x,y); c.setRed(0.5 * 255 + 0.5 * (float)c.getRed()); c.setGreen(0.5 * 255 + 0.5 * (float)c.getGreen()); c.setBlue(0.5 * 255 + 0.5 * (float)c.getBlue()); image->setPixel(x,y,c); } }