aboutsummaryrefslogtreecommitdiff
path: root/src/mg_ore.h
blob: 67ca9a849630f03d1ad5801ab157ecf4e10874e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
Minetest
Copyright (C) 2010-2013 kwolekr, Ryan Kwolek <kwolekr@minetest.net>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#ifndef MG_ORE_HEADER
#define MG_ORE_HEADER

#include "util/string.h"
#include "mapgen.h"

struct NoiseParams;
class Noise;
class Mapgen;
class MMVManip;

/////////////////// Ore generation flags

// Use absolute value of height to determine ore placement
#define OREFLAG_ABSHEIGHT 0x01
#define OREFLAG_USE_NOISE 0x08

#define ORE_RANGE_ACTUAL 1
#define ORE_RANGE_MIRROR 2


enum OreType {
	ORE_TYPE_SCATTER,
	ORE_TYPE_SHEET,
	ORE_TYPE_BLOB,
	ORE_TYPE_VEIN,
};

extern FlagDesc flagdesc_ore[];

class Ore : public GenElement, public NodeResolver {
public:
	static const bool NEEDS_NOISE = false;

	content_t c_ore;                  // the node to place
	std::vector<content_t> c_wherein; // the nodes to be placed in
	u32 clust_scarcity; // ore cluster has a 1-in-clust_scarcity chance of appearing at a node
	s16 clust_num_ores; // how many ore nodes are in a chunk
	s16 clust_size;     // how large (in nodes) a chunk of ore is
	s16 y_min;
	s16 y_max;
	u8 ore_param2;		// to set node-specific attributes
	u32 flags;          // attributes for this ore
	float nthresh;      // threshhold for noise at which an ore is placed
	NoiseParams np;     // noise for distribution of clusters (NULL for uniform scattering)
	Noise *noise;

	Ore();
	virtual ~Ore();

	virtual void resolveNodeNames(NodeResolveInfo *nri);

	size_t placeOre(Mapgen *mg, u32 blockseed, v3s16 nmin, v3s16 nmax);
	virtual void generate(MMVManip *vm, int mapseed, u32 blockseed,
		v3s16 nmin, v3s16 nmax) = 0;
};

class OreScatter : public Ore {
public:
	static const bool NEEDS_NOISE = false;

	virtual void generate(MMVManip *vm, int mapseed, u32 blockseed,
		v3s16 nmin, v3s16 nmax);
};

class OreSheet : public Ore {
public:
	static const bool NEEDS_NOISE = true;

	virtual void generate(MMVManip *vm, int mapseed, u32 blockseed,
		v3s16 nmin, v3s16 nmax);
};

class OreBlob : public Ore {
public:
	static const bool NEEDS_NOISE = true;

	virtual void generate(MMVManip *vm, int mapseed, u32 blockseed,
		v3s16 nmin, v3s16 nmax);
};

class OreVein : public Ore {
public:
	static const bool NEEDS_NOISE = true;

	float random_factor;
	Noise *noise2;

	OreVein();
	virtual ~OreVein();

	virtual void generate(MMVManip *vm, int mapseed, u32 blockseed,
		v3s16 nmin, v3s16 nmax);
};

class OreManager : public GenElementManager {
public:
	static const char *ELEMENT_TITLE;
	static const size_t ELEMENT_LIMIT = 0x10000;

	OreManager(IGameDef *gamedef);
	~OreManager() {}

	Ore *create(int type)
	{
		switch (type) {
		case ORE_TYPE_SCATTER:
			return new OreScatter;
		case ORE_TYPE_SHEET:
			return new OreSheet;
		case ORE_TYPE_BLOB:
			return new OreBlob;
		case ORE_TYPE_VEIN:
			return new OreVein;
		default:
			return NULL;
		}
	}

	void clear();

	size_t placeAllOres(Mapgen *mg, u32 blockseed, v3s16 nmin, v3s16 nmax);
};

#endif
>(); } Clouds::Clouds(scene::ISceneManager* mgr, s32 id, u32 seed ): scene::ISceneNode(mgr->getRootSceneNode(), mgr, id), m_seed(seed) { m_material.setFlag(video::EMF_LIGHTING, false); //m_material.setFlag(video::EMF_BACK_FACE_CULLING, false); m_material.setFlag(video::EMF_BACK_FACE_CULLING, true); m_material.setFlag(video::EMF_BILINEAR_FILTER, false); m_material.setFlag(video::EMF_FOG_ENABLE, true); m_material.setFlag(video::EMF_ANTI_ALIASING, true); //m_material.MaterialType = video::EMT_TRANSPARENT_VERTEX_ALPHA; m_material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL; m_params.height = 120; m_params.density = 0.4f; m_params.thickness = 16.0f; m_params.color_bright = video::SColor(229, 240, 240, 255); m_params.color_ambient = video::SColor(255, 0, 0, 0); m_params.speed = v2f(0.0f, -2.0f); readSettings(); g_settings->registerChangedCallback("enable_3d_clouds", &cloud_3d_setting_changed, this); updateBox(); } Clouds::~Clouds() { g_settings->deregisterChangedCallback("enable_3d_clouds", &cloud_3d_setting_changed, this); } void Clouds::OnRegisterSceneNode() { if(IsVisible) { SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT); //SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID); } ISceneNode::OnRegisterSceneNode(); } void Clouds::render() { if (m_params.density <= 0.0f) return; // no need to do anything video::IVideoDriver* driver = SceneManager->getVideoDriver(); if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_TRANSPARENT) //if(SceneManager->getSceneNodeRenderPass() != scene::ESNRP_SOLID) return; ScopeProfiler sp(g_profiler, "Clouds::render()", SPT_AVG); int num_faces_to_draw = m_enable_3d ? 6 : 1; m_material.setFlag(video::EMF_BACK_FACE_CULLING, m_enable_3d); driver->setTransform(video::ETS_WORLD, AbsoluteTransformation); driver->setMaterial(m_material); /* Clouds move from Z+ towards Z- */ const float cloud_full_radius = cloud_size * m_cloud_radius_i; v2f camera_pos_2d(m_camera_pos.X, m_camera_pos.Z); // Position of cloud noise origin from the camera v2f cloud_origin_from_camera_f = m_origin - camera_pos_2d; // The center point of drawing in the noise v2f center_of_drawing_in_noise_f = -cloud_origin_from_camera_f; // The integer center point of drawing in the noise v2s16 center_of_drawing_in_noise_i( std::floor(center_of_drawing_in_noise_f.X / cloud_size), std::floor(center_of_drawing_in_noise_f.Y / cloud_size) ); // The world position of the integer center point of drawing in the noise v2f world_center_of_drawing_in_noise_f = v2f( center_of_drawing_in_noise_i.X * cloud_size, center_of_drawing_in_noise_i.Y * cloud_size ) + m_origin; /*video::SColor c_top(128,b*240,b*240,b*255); video::SColor c_side_1(128,b*230,b*230,b*255); video::SColor c_side_2(128,b*220,b*220,b*245); video::SColor c_bottom(128,b*205,b*205,b*230);*/ video::SColorf c_top_f(m_color); video::SColorf c_side_1_f(m_color); video::SColorf c_side_2_f(m_color); video::SColorf c_bottom_f(m_color); c_side_1_f.r *= 0.95; c_side_1_f.g *= 0.95; c_side_1_f.b *= 0.95; c_side_2_f.r *= 0.90; c_side_2_f.g *= 0.90; c_side_2_f.b *= 0.90; c_bottom_f.r *= 0.80; c_bottom_f.g *= 0.80; c_bottom_f.b *= 0.80; video::SColor c_top = c_top_f.toSColor(); video::SColor c_side_1 = c_side_1_f.toSColor(); video::SColor c_side_2 = c_side_2_f.toSColor(); video::SColor c_bottom = c_bottom_f.toSColor(); // Get fog parameters for setting them back later video::SColor fog_color(0,0,0,0); video::E_FOG_TYPE fog_type = video::EFT_FOG_LINEAR; f32 fog_start = 0; f32 fog_end = 0; f32 fog_density = 0; bool fog_pixelfog = false; bool fog_rangefog = false; driver->getFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); // Set our own fog driver->setFog(fog_color, fog_type, cloud_full_radius * 0.5, cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog); // Read noise std::vector<bool> grid(m_cloud_radius_i * 2 * m_cloud_radius_i * 2); std::vector<video::S3DVertex> vertices; vertices.reserve(16 * m_cloud_radius_i * m_cloud_radius_i); for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) { u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i; for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) { u32 i = si + xi; grid[i] = gridFilled( xi + center_of_drawing_in_noise_i.X, zi + center_of_drawing_in_noise_i.Y ); } } #define GETINDEX(x, z, radius) (((z)+(radius))*(radius)*2 + (x)+(radius)) #define INAREA(x, z, radius) \ ((x) >= -(radius) && (x) < (radius) && (z) >= -(radius) && (z) < (radius)) for (s16 zi0= -m_cloud_radius_i; zi0 < m_cloud_radius_i; zi0++) for (s16 xi0= -m_cloud_radius_i; xi0 < m_cloud_radius_i; xi0++) { s16 zi = zi0; s16 xi = xi0; // Draw from back to front for proper transparency if(zi >= 0) zi = m_cloud_radius_i - zi - 1; if(xi >= 0) xi = m_cloud_radius_i - xi - 1; u32 i = GETINDEX(xi, zi, m_cloud_radius_i); if (!grid[i]) continue; v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f; video::S3DVertex v[4] = { video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 1), video::S3DVertex(0,0,0, 0,0,0, c_top, 1, 0), video::S3DVertex(0,0,0, 0,0,0, c_top, 0, 0) }; const f32 rx = cloud_size / 2.0f; // if clouds are flat, the top layer should be at the given height const f32 ry = m_enable_3d ? m_params.thickness * BS : 0.0f; const f32 rz = cloud_size / 2; for(int i=0; i<num_faces_to_draw; i++) { switch(i) { case 0: // top for (video::S3DVertex &vertex : v) { vertex.Normal.set(0,1,0); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set( rx, ry, rz); v[3].Pos.set( rx, ry,-rz); break; case 1: // back if (INAREA(xi, zi - 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set(-rx, ry,-rz); v[1].Pos.set( rx, ry,-rz); v[2].Pos.set( rx, 0,-rz); v[3].Pos.set(-rx, 0,-rz); break; case 2: //right if (INAREA(xi + 1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(1,0,0); } v[0].Pos.set( rx, ry,-rz); v[1].Pos.set( rx, ry, rz); v[2].Pos.set( rx, 0, rz); v[3].Pos.set( rx, 0,-rz); break; case 3: // front if (INAREA(xi, zi + 1, m_cloud_radius_i)) { u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_1; vertex.Normal.set(0,0,-1); } v[0].Pos.set( rx, ry, rz); v[1].Pos.set(-rx, ry, rz); v[2].Pos.set(-rx, 0, rz); v[3].Pos.set( rx, 0, rz); break; case 4: // left if (INAREA(xi-1, zi, m_cloud_radius_i)) { u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i); if(grid[j]) continue; } for (video::S3DVertex &vertex : v) { vertex.Color = c_side_2; vertex.Normal.set(-1,0,0); } v[0].Pos.set(-rx, ry, rz); v[1].Pos.set(-rx, ry,-rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set(-rx, 0, rz); break; case 5: // bottom for (video::S3DVertex &vertex : v) { vertex.Color = c_bottom; vertex.Normal.set(0,-1,0); } v[0].Pos.set( rx, 0, rz); v[1].Pos.set(-rx, 0, rz); v[2].Pos.set(-rx, 0,-rz); v[3].Pos.set( rx, 0,-rz); break; } v3f pos(p0.X, m_params.height * BS, p0.Y); pos -= intToFloat(m_camera_offset, BS); for (video::S3DVertex &vertex : v) { vertex.Pos += pos; vertices.push_back(vertex); } } } int quad_count = vertices.size() / 4; std::vector<u16> indices; indices.reserve(quad_count * 6); for (int k = 0; k < quad_count; k++) { indices.push_back(4 * k + 0); indices.push_back(4 * k + 1); indices.push_back(4 * k + 2); indices.push_back(4 * k + 2); indices.push_back(4 * k + 3); indices.push_back(4 * k + 0); } driver->drawVertexPrimitiveList(vertices.data(), vertices.size(), indices.data(), 2 * quad_count, video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT); // Restore fog settings driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density, fog_pixelfog, fog_rangefog); } void Clouds::step(float dtime) { m_origin = m_origin + dtime * BS * m_params.speed; } void Clouds::update(const v3f &camera_p, const video::SColorf &color_diffuse) { video::SColorf ambient(m_params.color_ambient); video::SColorf bright(m_params.color_bright); m_camera_pos = camera_p; m_color.r = core::clamp(color_diffuse.r * bright.r, ambient.r, 1.0f); m_color.g = core::clamp(color_diffuse.g * bright.g, ambient.g, 1.0f); m_color.b = core::clamp(color_diffuse.b * bright.b, ambient.b, 1.0f); m_color.a = bright.a; // is the camera inside the cloud mesh? m_camera_inside_cloud = false; // default if (m_enable_3d) { float camera_height = camera_p.Y - BS * m_camera_offset.Y; if (camera_height >= m_box.MinEdge.Y && camera_height <= m_box.MaxEdge.Y) { v2f camera_in_noise; camera_in_noise.X = floor((camera_p.X - m_origin.X) / cloud_size + 0.5); camera_in_noise.Y = floor((camera_p.Z - m_origin.Y) / cloud_size + 0.5); bool filled = gridFilled(camera_in_noise.X, camera_in_noise.Y); m_camera_inside_cloud = filled; } } } void Clouds::readSettings() { m_cloud_radius_i = g_settings->getU16("cloud_radius"); m_enable_3d = g_settings->getBool("enable_3d_clouds"); } bool Clouds::gridFilled(int x, int y) const { float cloud_size_noise = cloud_size / (BS * 200.f); float noise = noise2d_perlin( (float)x * cloud_size_noise, (float)y * cloud_size_noise, m_seed, 3, 0.5); // normalize to 0..1 (given 3 octaves) static constexpr const float noise_bound = 1.0f + 0.5f + 0.25f; float density = noise / noise_bound * 0.5f + 0.5f; return (density < m_params.density); }