aboutsummaryrefslogtreecommitdiff
path: root/src/script/cpp_api/s_item.cpp
blob: b1916070e5baec90b5a08181e83c48afda97f4a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "cpp_api/s_item.h"
#include "cpp_api/s_internal.h"
#include "common/c_converter.h"
#include "common/c_content.h"
#include "lua_api/l_item.h"
#include "lua_api/l_inventory.h"
#include "server.h"
#include "log.h"
#include "util/pointedthing.h"
#include "inventory.h"
#include "inventorymanager.h"

#define WRAP_LUAERROR(e, detail) \
	LuaError(std::string(__FUNCTION__) + ": " + (e).what() + ". " detail)

bool ScriptApiItem::item_OnDrop(ItemStack &item,
		ServerActiveObject *dropper, v3f pos)
{
	SCRIPTAPI_PRECHECKHEADER

	int error_handler = PUSH_ERROR_HANDLER(L);

	// Push callback function on stack
	if (!getItemCallback(item.name.c_str(), "on_drop"))
		return false;

	// Call function
	LuaItemStack::create(L, item);
	objectrefGetOrCreate(L, dropper);
	pushFloatPos(L, pos);
	PCALL_RES(lua_pcall(L, 3, 1, error_handler));
	if (!lua_isnil(L, -1)) {
		try {
			item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

bool ScriptApiItem::item_OnPlace(Optional<ItemStack> &ret_item,
		ServerActiveObject *placer, const PointedThing &pointed)
{
	SCRIPTAPI_PRECHECKHEADER

	int error_handler = PUSH_ERROR_HANDLER(L);

	const ItemStack &item = *ret_item;
	// Push callback function on stack
	if (!getItemCallback(item.name.c_str(), "on_place"))
		return false;

	// Call function
	LuaItemStack::create(L, item);

	if (!placer)
		lua_pushnil(L);
	else
		objectrefGetOrCreate(L, placer);

	pushPointedThing(pointed);
	PCALL_RES(lua_pcall(L, 3, 1, error_handler));
	if (!lua_isnil(L, -1)) {
		try {
			ret_item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	} else {
		ret_item = nullopt;
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

bool ScriptApiItem::item_OnUse(Optional<ItemStack> &ret_item,
		ServerActiveObject *user, const PointedThing &pointed)
{
	SCRIPTAPI_PRECHECKHEADER

	int error_handler = PUSH_ERROR_HANDLER(L);

	const ItemStack &item = *ret_item;
	// Push callback function on stack
	if (!getItemCallback(item.name.c_str(), "on_use"))
		return false;

	// Call function
	LuaItemStack::create(L, item);
	objectrefGetOrCreate(L, user);
	pushPointedThing(pointed);
	PCALL_RES(lua_pcall(L, 3, 1, error_handler));
	if(!lua_isnil(L, -1)) {
		try {
			ret_item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	} else {
		ret_item = nullopt;
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

bool ScriptApiItem::item_OnSecondaryUse(Optional<ItemStack> &ret_item,
		ServerActiveObject *user, const PointedThing &pointed)
{
	SCRIPTAPI_PRECHECKHEADER

	int error_handler = PUSH_ERROR_HANDLER(L);

	const ItemStack &item = *ret_item;
	if (!getItemCallback(item.name.c_str(), "on_secondary_use"))
		return false;

	LuaItemStack::create(L, item);
	objectrefGetOrCreate(L, user);
	pushPointedThing(pointed);
	PCALL_RES(lua_pcall(L, 3, 1, error_handler));
	if (!lua_isnil(L, -1)) {
		try {
			ret_item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	} else {
		ret_item = nullopt;
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

bool ScriptApiItem::item_OnCraft(ItemStack &item, ServerActiveObject *user,
		const InventoryList *old_craft_grid, const InventoryLocation &craft_inv)
{
	SCRIPTAPI_PRECHECKHEADER

	int error_handler = PUSH_ERROR_HANDLER(L);

	lua_getglobal(L, "core");
	lua_getfield(L, -1, "on_craft");
	LuaItemStack::create(L, item);
	objectrefGetOrCreate(L, user);

	// Push inventory list
	std::vector<ItemStack> items;
	for (u32 i = 0; i < old_craft_grid->getSize(); i++) {
		items.push_back(old_craft_grid->getItem(i));
	}
	push_items(L, items);

	InvRef::create(L, craft_inv);
	PCALL_RES(lua_pcall(L, 4, 1, error_handler));
	if (!lua_isnil(L, -1)) {
		try {
			item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

bool ScriptApiItem::item_CraftPredict(ItemStack &item, ServerActiveObject *user,
		const InventoryList *old_craft_grid, const InventoryLocation &craft_inv)
{
	SCRIPTAPI_PRECHECKHEADER
	sanity_check(old_craft_grid);
	int error_handler = PUSH_ERROR_HANDLER(L);

	lua_getglobal(L, "core");
	lua_getfield(L, -1, "craft_predict");
	LuaItemStack::create(L, item);
	objectrefGetOrCreate(L, user);

	//Push inventory list
	std::vector<ItemStack> items;
	for (u32 i = 0; i < old_craft_grid->getSize(); i++) {
		items.push_back(old_craft_grid->getItem(i));
	}
	push_items(L, items);

	InvRef::create(L, craft_inv);
	PCALL_RES(lua_pcall(L, 4, 1, error_handler));
	if (!lua_isnil(L, -1)) {
		try {
			item = read_item(L, -1, getServer()->idef());
		} catch (LuaError &e) {
			throw WRAP_LUAERROR(e, "item=" + item.name);
		}
	}
	lua_pop(L, 2);  // Pop item and error handler
	return true;
}

// Retrieves core.registered_items[name][callbackname]
// If that is nil or on error, return false and stack is unchanged
// If that is a function, returns true and pushes the
// function onto the stack
// If core.registered_items[name] doesn't exist, core.nodedef_default
// is tried instead so unknown items can still be manipulated to some degree
bool ScriptApiItem::getItemCallback(const char *name, const char *callbackname,
		const v3s16 *p)
{
	lua_State* L = getStack();

	lua_getglobal(L, "core");
	lua_getfield(L, -1, "registered_items");
	lua_remove(L, -2); // Remove core
	luaL_checktype(L, -1, LUA_TTABLE);
	lua_getfield(L, -1, name);
	lua_remove(L, -2); // Remove registered_items
	// Should be a table
	if (lua_type(L, -1) != LUA_TTABLE) {
		// Report error and clean up
		errorstream << "Item \"" << name << "\" not defined";
		if (p)
			errorstream << " at position " << PP(*p);
		errorstream << std::endl;
		lua_pop(L, 1);

		// Try core.nodedef_default instead
		lua_getglobal(L, "core");
		lua_getfield(L, -1, "nodedef_default");
		lua_remove(L, -2);
		luaL_checktype(L, -1, LUA_TTABLE);
	}

	setOriginFromTable(-1);

	lua_getfield(L, -1, callbackname);
	lua_remove(L, -2); // Remove item def
	// Should be a function or nil
	if (lua_type(L, -1) == LUA_TFUNCTION) {
		return true;
	}

	if (!lua_isnil(L, -1)) {
		errorstream << "Item \"" << name << "\" callback \""
			<< callbackname << "\" is not a function" << std::endl;
	}
	lua_pop(L, 1);
	return false;
}

void ScriptApiItem::pushPointedThing(const PointedThing &pointed, bool hitpoint)
{
	lua_State* L = getStack();

	push_pointed_thing(L, pointed, false, hitpoint);
}

> 13) ^ n; n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff; return 1.f - (float)(int)n / 0x40000000; } inline float dotProduct(float vx, float vy, float wx, float wy) { return vx * wx + vy * wy; } inline float linearInterpolation(float v0, float v1, float t) { return v0 + (v1 - v0) * t; } inline float biLinearInterpolation( float v00, float v10, float v01, float v11, float x, float y) { float tx = easeCurve(x); float ty = easeCurve(y); float u = linearInterpolation(v00, v10, tx); float v = linearInterpolation(v01, v11, tx); return linearInterpolation(u, v, ty); } inline float biLinearInterpolationNoEase( float v00, float v10, float v01, float v11, float x, float y) { float u = linearInterpolation(v00, v10, x); float v = linearInterpolation(v01, v11, x); return linearInterpolation(u, v, y); } float triLinearInterpolation( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float tx = easeCurve(x); float ty = easeCurve(y); float tz = easeCurve(z); float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty); return linearInterpolation(u, v, tz); } float triLinearInterpolationNoEase( float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111, float x, float y, float z) { float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y); float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y); return linearInterpolation(u, v, z); } float noise2d_gradient(float x, float y, int seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; // Get values for corners of square float v00 = noise2d(x0, y0, seed); float v10 = noise2d(x0+1, y0, seed); float v01 = noise2d(x0, y0+1, seed); float v11 = noise2d(x0+1, y0+1, seed); // Interpolate if (eased) return biLinearInterpolation(v00, v10, v01, v11, xl, yl); else return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl); } float noise3d_gradient(float x, float y, float z, int seed, bool eased) { // Calculate the integer coordinates int x0 = myfloor(x); int y0 = myfloor(y); int z0 = myfloor(z); // Calculate the remaining part of the coordinates float xl = x - (float)x0; float yl = y - (float)y0; float zl = z - (float)z0; // Get values for corners of cube float v000 = noise3d(x0, y0, z0, seed); float v100 = noise3d(x0 + 1, y0, z0, seed); float v010 = noise3d(x0, y0 + 1, z0, seed); float v110 = noise3d(x0 + 1, y0 + 1, z0, seed); float v001 = noise3d(x0, y0, z0 + 1, seed); float v101 = noise3d(x0 + 1, y0, z0 + 1, seed); float v011 = noise3d(x0, y0 + 1, z0 + 1, seed); float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed); // Interpolate if (eased) { return triLinearInterpolation( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } else { return triLinearInterpolationNoEase( v000, v100, v010, v110, v001, v101, v011, v111, xl, yl, zl); } } float noise2d_perlin(float x, float y, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise2d_gradient(x * f, y * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise2d_perlin_abs(float x, float y, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin(float x, float y, float z, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased); f *= 2.0; g *= persistence; } return a; } float noise3d_perlin_abs(float x, float y, float z, int seed, int octaves, float persistence, bool eased) { float a = 0; float f = 1.0; float g = 1.0; for (int i = 0; i < octaves; i++) { a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased)); f *= 2.0; g *= persistence; } return a; } float contour(float v) { v = fabs(v); if (v >= 1.0) return 0.0; return (1.0 - v); } ///////////////////////// [ New noise ] //////////////////////////// float NoisePerlin2D(NoiseParams *np, float x, float y, int seed) { float a = 0; float f = 1.0; float g = 1.0; x /= np->spread.X; y /= np->spread.Y; seed += np->seed; for (size_t i = 0; i < np->octaves; i++) { float noiseval = noise2d_gradient(x * f, y * f, seed + i, np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED)); if (np->flags & NOISE_FLAG_ABSVALUE) noiseval = fabs(noiseval); a += g * noiseval; f *= np->lacunarity; g *= np->persist; } return np->offset + a * np->scale; } float NoisePerlin3D(NoiseParams *np, float x, float y, float z, int seed) { float a = 0; float f = 1.0; float g = 1.0; x /= np->spread.X; y /= np->spread.Y; z /= np->spread.Z; seed += np->seed; for (size_t i = 0; i < np->octaves; i++) { float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i, np->flags & NOISE_FLAG_EASED); if (np->flags & NOISE_FLAG_ABSVALUE) noiseval = fabs(noiseval); a += g * noiseval; f *= np->lacunarity; g *= np->persist; } return np->offset + a * np->scale; } Noise::Noise(NoiseParams *np_, int seed, u32 sx, u32 sy, u32 sz) { memcpy(&np, np_, sizeof(np)); this->seed = seed; this->sx = sx; this->sy = sy; this->sz = sz; this->persist_buf = NULL; this->gradient_buf = NULL; this->result = NULL; allocBuffers(); } Noise::~Noise() { delete[] gradient_buf; delete[] persist_buf; delete[] noise_buf; delete[] result; } void Noise::allocBuffers() { if (sx < 1) sx = 1; if (sy < 1) sy = 1; if (sz < 1) sz = 1; this->noise_buf = NULL; resizeNoiseBuf(sz > 1); delete[] gradient_buf; delete[] persist_buf; delete[] result; try { size_t bufsize = sx * sy * sz; this->persist_buf = NULL; this->gradient_buf = new float[bufsize]; this->result = new float[bufsize]; } catch (std::bad_alloc &e) { throw InvalidNoiseParamsException(); } } void Noise::setSize(u32 sx, u32 sy, u32 sz) { this->sx = sx; this->sy = sy; this->sz = sz; allocBuffers(); } void Noise::setSpreadFactor(v3f spread) { this->np.spread = spread; resizeNoiseBuf(sz > 1); } void Noise::setOctaves(int octaves) { this->np.octaves = octaves; resizeNoiseBuf(sz > 1); } void Noise::resizeNoiseBuf(bool is3d) { //maximum possible spread value factor float ofactor = (np.lacunarity > 1.0) ? pow(np.lacunarity, np.octaves - 1) : np.lacunarity; // noise lattice point count // (int)(sz * spread * ofactor) is # of lattice points crossed due to length float num_noise_points_x = sx * ofactor / np.spread.X; float num_noise_points_y = sy * ofactor / np.spread.Y; float num_noise_points_z = sz * ofactor / np.spread.Z; // protect against obviously invalid parameters if (num_noise_points_x > 1000000000.f || num_noise_points_y > 1000000000.f || num_noise_points_z > 1000000000.f) throw InvalidNoiseParamsException(); // + 2 for the two initial endpoints // + 1 for potentially crossing a boundary due to offset size_t nlx = (size_t)ceil(num_noise_points_x) + 3; size_t nly = (size_t)ceil(num_noise_points_y) + 3; size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1; delete[] noise_buf; try { noise_buf = new float[nlx * nly * nlz]; } catch (std::bad_alloc &e) { throw InvalidNoiseParamsException(); } } /* * NB: This algorithm is not optimal in terms of space complexity. The entire * integer lattice of noise points could be done as 2 lines instead, and for 3D, * 2 lines + 2 planes. * However, this would require the noise calls to be interposed with the * interpolation loops, which may trash the icache, leading to lower overall * performance. * Another optimization that could save half as many noise calls is to carry over * values from the previous noise lattice as midpoints in the new lattice for the * next octave. */ #define idx(x, y) ((y) * nlx + (x)) void Noise::gradientMap2D( float x, float y, float step_x, float step_y, int seed) { float v00, v01, v10, v11, u, v, orig_u;