/* Minetest Copyright (C) 2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include "connection.h" #include "serialization.h" #include "log.h" #include "porting.h" #include "network/networkpacket.h" #include "util/serialize.h" #include "util/numeric.h" #include "util/string.h" #include "settings.h" #include "profiler.h" namespace con { /******************************************************************************/ /* defines used for debugging and profiling */ /******************************************************************************/ #ifdef NDEBUG #define LOG(a) a #define PROFILE(a) #undef DEBUG_CONNECTION_KBPS #else /* this mutex is used to achieve log message consistency */ JMutex log_message_mutex; #define LOG(a) \ { \ JMutexAutoLock loglock(log_message_mutex); \ a; \ } #define PROFILE(a) a //#define DEBUG_CONNECTION_KBPS #undef DEBUG_CONNECTION_KBPS #endif static inline float CALC_DTIME(unsigned int lasttime, unsigned int curtime) { float value = ( curtime - lasttime) / 1000.0; return MYMAX(MYMIN(value,0.1),0.0); } /* maximum window size to use, 0xFFFF is theoretical maximum don't think about * touching it, the less you're away from it the more likely data corruption * will occur */ #define MAX_RELIABLE_WINDOW_SIZE 0x8000 /* starting value for window size */ #define MIN_RELIABLE_WINDOW_SIZE 0x40 #define MAX_UDP_PEERS 65535 #define PING_TIMEOUT 5.0 static u16 readPeerId(u8 *packetdata) { return readU16(&packetdata[4]); } static u8 readChannel(u8 *packetdata) { return readU8(&packetdata[6]); } BufferedPacket makePacket(Address &address, u8 *data, u32 datasize, u32 protocol_id, u16 sender_peer_id, u8 channel) { u32 packet_size = datasize + BASE_HEADER_SIZE; BufferedPacket p(packet_size); p.address = address; writeU32(&p.data[0], protocol_id); writeU16(&p.data[4], sender_peer_id); writeU8(&p.data[6], channel); memcpy(&p.data[BASE_HEADER_SIZE], data, datasize); return p; } BufferedPacket makePacket(Address &address, SharedBuffer &data, u32 protocol_id, u16 sender_peer_id, u8 channel) { return makePacket(address, *data, data.getSize(), protocol_id, sender_peer_id, channel); } SharedBuffer makeOriginalPacket( SharedBuffer data) { u32 header_size = 1; u32 packet_size = data.getSize() + header_size; SharedBuffer b(packet_size); writeU8(&(b[0]), TYPE_ORIGINAL); if (data.getSize() > 0) { memcpy(&(b[header_size]), *data, data.getSize()); } return b; } std::list > makeSplitPacket( SharedBuffer data, u32 chunksize_max, u16 seqnum) { // Chunk packets, containing the TYPE_SPLIT header std::list > chunks; u32 chunk_header_size = 7; u32 maximum_data_size = chunksize_max - chunk_header_size; u32 start = 0; u32 end = 0; u32 chunk_num = 0; u16 chunk_count = 0; do{ end = start + maximum_data_size - 1; if (end > data.getSize() - 1) end = data.getSize() - 1; u32 payload_size = end - start + 1; u32 packet_size = chunk_header_size + payload_size; SharedBuffer chunk(packet_size); writeU8(&chunk[0], TYPE_SPLIT); writeU16(&chunk[1], seqnum); // [3] u16 chunk_count is written at next stage writeU16(&chunk[5], chunk_num); memcpy(&chunk[chunk_header_size], &data[start], payload_size); chunks.push_back(chunk); chunk_count++; start = end + 1; chunk_num++; } while(end != data.getSize() - 1); for(std::list >::iterator i = chunks.begin(); i != chunks.end(); ++i) { // Write chunk_count writeU16(&((*i)[3]), chunk_count); } return chunks; } std::list > makeAutoSplitPacket( SharedBuffer data, u32 chunksize_max, u16 &split_seqnum) { u32 original_header_size = 1; std::list > list; if (data.getSize() + original_header_size > chunksize_max) { list = makeSplitPacket(data, chunksize_max, split_seqnum); split_seqnum++; return list; } else { list.push_back(makeOriginalPacket(data)); } return list; } SharedBuffer makeReliablePacket( SharedBuffer data, u16 seqnum) { u32 header_size = 3; u32 packet_size = data.getSize() + header_size; SharedBuffer b(packet_size); writeU8(&b[0], TYPE_RELIABLE); writeU16(&b[1], seqnum); memcpy(&b[header_size], *data, data.getSize()); return b; } /* ReliablePacketBuffer */ ReliablePacketBuffer::ReliablePacketBuffer(): m_list_size(0) {} void ReliablePacketBuffer::print() { JMutexAutoLock listlock(m_list_mutex); LOG(dout_con<<"Dump of ReliablePacketBuffer:" << std::endl); unsigned int index = 0; for(std::list::iterator i = m_list.begin(); i != m_list.end(); ++i) { u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1])); LOG(dout_con<::iterator i = m_list.begin(); for(; i != m_list.end(); ++i) { u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1])); /*dout_con<<"findPacket(): finding seqnum="<data[BASE_HEADER_SIZE+1])); m_oldest_non_answered_ack = s; } m_list.erase(r); --m_list_size; if (m_list_size == 0) { m_oldest_non_answered_ack = 0; } else { m_oldest_non_answered_ack = readU16(&(*m_list.begin()).data[BASE_HEADER_SIZE+1]); } return p; } void ReliablePacketBuffer::insert(BufferedPacket &p,u16 next_expected) { JMutexAutoLock listlock(m_list_mutex); FATAL_ERROR_IF(p.data.getSize() < BASE_HEADER_SIZE+3, "Invalid data size"); u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]); sanity_check(type == TYPE_RELIABLE); u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]); sanity_check(seqnum_in_window(seqnum, next_expected, MAX_RELIABLE_WINDOW_SIZE)); sanity_check(seqnum != next_expected); ++m_list_size; sanity_check(m_list_size <= SEQNUM_MAX+1); // FIXME: Handle the error? // Find the right place for the packet and insert it there // If list is empty, just add it if (m_list.empty()) { m_list.push_back(p); m_oldest_non_answered_ack = seqnum; // Done. return; } // Otherwise find the right place std::list::iterator i = m_list.begin(); // Find the first packet in the list which has a higher seqnum u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1])); /* case seqnum is smaller then next_expected seqnum */ /* this is true e.g. on wrap around */ if (seqnum < next_expected) { while(((s < seqnum) || (s >= next_expected)) && (i != m_list.end())) { i++; if (i != m_list.end()) s = readU16(&(i->data[BASE_HEADER_SIZE+1])); } } /* non wrap around case (at least for incoming and next_expected */ else { while(((s < seqnum) && (s >= next_expected)) && (i != m_list.end())) { i++; if (i != m_list.end()) s = readU16(&(i->data[BASE_HEADER_SIZE+1])); } } if (s == seqnum) { if ( (readU16(&(i->data[BASE_HEADER_SIZE+1])) != seqnum) || (i->data.getSize() != p.data.getSize()) || (i->address != p.address) ) { /* if this happens your maximum transfer window may be to big */ fprintf(stderr, "Duplicated seqnum %d non matching packet detected:\n", seqnum); fprintf(stderr, "Old: seqnum: %05d size: %04d, address: %s\n", readU16(&(i->data[BASE_HEADER_SIZE+1])),i->data.getSize(), i->address.serializeString().c_str()); fprintf(stderr, "New: seqnum: %05d size: %04u, address: %s\n", readU16(&(p.data[BASE_HEADER_SIZE+1])),p.data.getSize(), p.address.serializeString().c_str()); throw IncomingDataCorruption("duplicated packet isn't same as original one"); } sanity_check(readU16(&(i->data[BASE_HEADER_SIZE+1])) == seqnum); sanity_check(i->data.getSize() == p.data.getSize()); sanity_check(i->address == p.address); /* nothing to do this seems to be a resent packet */ /* for paranoia reason data should be compared */ --m_list_size; } /* insert or push back */ else if (i != m_list.end()) { m_list.insert(i, p); } else { m_list.push_back(p); } /* update last packet number */ m_oldest_non_answered_ack = readU16(&(*m_list.begin()).data[BASE_HEADER_SIZE+1]); } void ReliablePacketBuffer::incrementTimeouts(float dtime) { JMutexAutoLock listlock(m_list_mutex); for(std::list::iterator i = m_list.begin(); i != m_list.end(); ++i) { i->time += dtime; i->totaltime += dtime; } } std::list ReliablePacketBuffer::getTimedOuts(float timeout, unsigned int max_packets) { JMutexAutoLock listlock(m_list_mutex); std::list timed_outs; for(std::list::iterator i = m_list.begin(); i != m_list.end(); ++i) { if (i->time >= timeout) { timed_outs.push_back(*i); //this packet will be sent right afterwards reset timeout here i->time = 0.0; if (timed_outs.size() >= max_packets) break; } } return timed_outs; } /* IncomingSplitBuffer */ IncomingSplitBuffer::~IncomingSplitBuffer() { JMutexAutoLock listlock(m_map_mutex); for(std::map::iterator i = m_buf.begin(); i != m_buf.end(); ++i) { delete i->second; } } /* This will throw a GotSplitPacketException when a full split packet is constructed. */ SharedBuffer IncomingSplitBuffer::insert(BufferedPacket &p, bool reliable) { JMutexAutoLock listlock(m_map_mutex); u32 headersize = BASE_HEADER_SIZE + 7; FATAL_ERROR_IF(p.data.getSize() < headersize, "Invalid data size"); u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]); sanity_check(type == TYPE_SPLIT); u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]); u16 chunk_count = readU16(&p.data[BASE_HEADER_SIZE+3]); u16 chunk_num = readU16(&p.data[BASE_HEADER_SIZE+5]); // Add if doesn't exist if (m_buf.find(seqnum) == m_buf.end()) { IncomingSplitPacket *sp = new IncomingSplitPacket(); sp->chunk_count = chunk_count; sp->reliable = reliable; m_buf[seqnum] = sp; } IncomingSplitPacket *sp = m_buf[seqnum]; // TODO: These errors should be thrown or something? Dunno. if (chunk_count != sp->chunk_count) LOG(derr_con<<"Connection: WARNING: chunk_count="<chunk_count="<chunk_count <reliable) LOG(derr_con<<"Connection: WARNING: reliable="<reliable="<reliable <chunks.find(chunk_num) != sp->chunks.end()) return SharedBuffer(); // Cut chunk data out of packet u32 chunkdatasize = p.data.getSize() - headersize; SharedBuffer chunkdata(chunkdatasize); memcpy(*chunkdata, &(p.data[headersize]), chunkdatasize); // Set chunk data in buffer sp->chunks[chunk_num] = chunkdata; // If not all chunks are received, return empty buffer if (sp->allReceived() == false) return SharedBuffer(); // Calculate total size u32 totalsize = 0; for(std::map >::iterator i = sp->chunks.begin(); i != sp->chunks.end(); ++i) { totalsize += i->second.getSize(); } SharedBuffer fulldata(totalsize); // Copy chunks to data buffer u32 start = 0; for(u32 chunk_i=0; chunk_ichunk_count; chunk_i++) { SharedBuffer buf = sp->chunks[chunk_i]; u16 chunkdatasize = buf.getSize(); memcpy(&fulldata[start], *buf, chunkdatasize); start += chunkdatasize;; } // Remove sp from buffer m_buf.erase(seqnum); delete sp; return fulldata; } void IncomingSplitBuffer::removeUnreliableTimedOuts(float dtime, float timeout) { std::list remove_queue; { JMutexAutoLock listlock(m_map_mutex); for(std::map::iterator i = m_buf.begin(); i != m_buf.end(); ++i) { IncomingSplitPacket *p = i->second; // Reliable ones are not removed by timeout if (p->reliable == true) continue; p->time += dtime; if (p->time >= timeout) remove_queue.push_back(i->first); } } for(std::list::iterator j = remove_queue.begin(); j != remove_queue.end(); ++j) { JMutexAutoLock listlock(m_map_mutex); LOG(dout_con<<"NOTE: Removing timed out unreliable split packet"< window_size) { successful = false; return 0; } } else { // ugly cast but this one is required in order to tell compiler we // know about difference of two unsigned may be negative in general // but we already made sure it won't happen in this case if ((next_outgoing_seqnum + (u16)(SEQNUM_MAX - lowest_unacked_seqnumber)) > window_size) { successful = false; return 0; } } } next_outgoing_seqnum++; return retval; } u16 Channel::readOutgoingSequenceNumber() { JMutexAutoLock internal(m_internal_mutex); return next_outgoing_seqnum; } bool Channel::putBackSequenceNumber(u16 seqnum) { if (((seqnum + 1) % (SEQNUM_MAX+1)) == next_outgoing_seqnum) { next_outgoing_seqnum = seqnum; return true; } return false; } void Channel::UpdateBytesSent(unsigned int bytes, unsigned int packets) { JMutexAutoLock internal(m_internal_mutex); current_bytes_transfered += bytes; current_packet_successfull += packets; } void Channel::UpdateBytesReceived(unsigned int bytes) { JMutexAutoLock internal(m_internal_mutex); current_bytes_received += bytes; } void Channel::UpdateBytesLost(unsigned int bytes) { JMutexAutoLock internal(m_internal_mutex); current_bytes_lost += bytes; } void Channel::UpdatePacketLossCounter(unsigned int count) { JMutexAutoLock internal(m_internal_mutex); current_packet_loss += count; } void Channel::UpdatePacketTooLateCounter() { JMutexAutoLock internal(m_internal_mutex); current_packet_too_late++; } void Channel::UpdateTimers(float dtime,bool legacy_peer) { bpm_counter += dtime; packet_loss_counter += dtime; if (packet_loss_counter > 1.0) { packet_loss_counter -= 1.0; unsigned int packet_loss = 11; /* use a neutral value for initialization */ unsigned int packets_successfull = 0; //unsigned int packet_too_late = 0; bool reasonable_amount_of_data_transmitted = false; { JMutexAutoLock internal(m_internal_mutex); packet_loss = current_packet_loss; //packet_too_late = current_packet_too_late; packets_successfull = current_packet_successfull; if (current_bytes_transfered > (unsigned int) (window_size*512/2)) { reasonable_amount_of_data_transmitted = true; } current_packet_loss = 0; current_packet_too_late = 0; current_packet_successfull = 0; } /* dynamic window size is only available for non legacy peers */ if (!legacy_peer) { float successfull_to_lost_ratio = 0.0; bool done = false; if (packets_successfull > 0) { successfull_to_lost_ratio = packet_loss/packets_successfull; } else if (packet_loss > 0) { window_size = MYMAX( (window_size - 10), MIN_RELIABLE_WINDOW_SIZE); done = true; } if (!done) { if ((successfull_to_lost_ratio < 0.01) && (window_size < MAX_RELIABLE_WINDOW_SIZE)) { /* don't even think about increasing if we didn't even * use major parts of our window */ if (reasonable_amount_of_data_transmitted) window_size = MYMIN( (window_size + 100), MAX_RELIABLE_WINDOW_SIZE); } else if ((successfull_to_lost_ratio < 0.05) && (window_size < MAX_RELIABLE_WINDOW_SIZE)) { /* don't even think about increasing if we didn't even * use major parts of our window */ if (reasonable_amount_of_data_transmitted) window_size = MYMIN( (window_size + 50), MAX_RELIABLE_WINDOW_SIZE); } else if (successfull_to_lost_ratio > 0.15) { window_size = MYMAX( (window_size - 100), MIN_RELIABLE_WINDOW_SIZE); } else if (successfull_to_lost_ratio > 0.1) { window_size = MYMAX( (window_size - 50), MIN_RELIABLE_WINDOW_SIZE); } } } } if (bpm_counter > 10.0) { { JMutexAutoLock internal(m_internal_mutex); cur_kbps = (((float) current_bytes_transfered)/bpm_counter)/1024.0; current_bytes_transfered = 0; cur_kbps_lost = (((float) current_bytes_lost)/bpm_counter)/1024.0; current_bytes_lost = 0; cur_incoming_kbps = (((float) current_bytes_received)/bpm_counter)/1024.0; current_bytes_received = 0; bpm_counter = 0; } if (cur_kbps > max_kbps) { max_kbps = cur_kbps; } if (cur_kbps_lost > max_kbps_lost) { max_kbps_lost = cur_kbps_lost; } if (cur_incoming_kbps > max_incoming_kbps) { max_incoming_kbps = cur_incoming_kbps; } rate_samples = MYMIN(rate_samples+1,10); float old_fraction = ((float) (rate_samples-1) )/( (float) rate_samples); avg_kbps = avg_kbps * old_fraction + cur_kbps * (1.0 - old_fraction); avg_kbps_lost = avg_kbps_lost * old_fraction + cur_kbps_lost * (1.0 - old_fraction); avg_incoming_kbps = avg_incoming_kbps * old_fraction + cur_incoming_kbps * (1.0 - old_fraction); } } /* Peer */ PeerHelper::PeerHelper() : m_peer(0) {} PeerHelper::PeerHelper(Peer* peer) : m_peer(peer) { if (peer != NULL) { if (!peer->IncUseCount()) { m_peer = 0; } } } PeerHelper::~PeerHelper() { if (m_peer != 0) m_peer->DecUseCount(); m_peer = 0; } PeerHelper& PeerHelper::operator=(Peer* peer) { m_peer = peer; if (peer != NULL) { if (!peer->IncUseCount()) { m_peer = 0; } } return *this; } Peer* PeerHelper::operator->() const { return m_peer; } Peer* PeerHelper::operator&() const { return m_peer; } bool PeerHelper::operator!() { return ! m_peer; } bool PeerHelper::operator!=(void* ptr) { return ((void*) m_peer != ptr); } bool Peer::IncUseCount() { JMutexAutoLock lock(m_exclusive_access_mutex); if (!m_pending_deletion) { this->m_usage++; return true; } return false; } void Peer::DecUseCount() { { JMutexAutoLock lock(m_exclusive_access_mutex); sanity_check(m_usage > 0); m_usage--; if (!((m_pending_deletion) && (m_usage == 0))) return; } delete this; } void Peer::RTTStatistics(float rtt, std::string profiler_id, unsigned int num_samples) { if (m_last_rtt > 0) { /* set min max values */ if (rtt < m_rtt.min_rtt) m_rtt.min_rtt = rtt; if (rtt >= m_rtt.max_rtt) m_rtt.max_rtt = rtt; /* do average calculation */ if (m_rtt.avg_rtt < 0.0) m_rtt.avg_rtt = rtt; else m_rtt.avg_rtt = m_rtt.avg_rtt * (num_samples/(num_samples-1)) + rtt * (1/num_samples); /* do jitter calculation */ //just use some neutral value at beginning float jitter = m_rtt.jitter_min; if (rtt > m_last_rtt) jitter = rtt-m_last_rtt; if (rtt <= m_last_rtt) jitter = m_last_rtt - rtt; if (jitter < m_rtt.jitter_min) m_rtt.jitter_min = jitter; if (jitter >= m_rtt.jitter_max) m_rtt.jitter_max = jitter; if (m_rtt.jitter_avg < 0.0) m_rtt.jitter_avg = jitter; else m_rtt.jitter_avg = m_rtt.jitter_avg * (num_samples/(num_samples-1)) + jitter * (1/num_samples); if (profiler_id != "") { g_profiler->graphAdd(profiler_id + "_rtt", rtt); g_profiler->graphAdd(profiler_id + "_jitter", jitter); } } /* save values required for next loop */ m_last_rtt = rtt; } bool Peer::isTimedOut(float timeout) { JMutexAutoLock lock(m_exclusive_access_mutex); u32 current_time = porting::getTimeMs(); float dtime = CALC_DTIME(m_last_timeout_check,current_time); m_last_timeout_check = current_time; m_timeout_counter += dtime; return m_timeout_counter > timeout; } void Peer::Drop() { { JMutexAutoLock usage_lock(m_exclusive_access_mutex); m_pending_deletion = true; if (m_usage != 0) return; } PROFILE(std::stringstream peerIdentifier1); PROFILE(peerIdentifier1 << "runTimeouts[" << m_connection->getDesc() << ";" << id << ";RELIABLE]"); PROFILE(g_profiler->remove(peerIdentifier1.str())); PROFILE(std::stringstream peerIdentifier2); PROFILE(peerIdentifier2 << "sendPackets[" << m_connection->getDesc() << ";" << id << ";RELIABLE]"); PROFILE(ScopeProfiler peerprofiler(g_profiler, peerIdentifier2.str(), SPT_AVG)); delete this; } UDPPeer::UDPPeer(u16 a_id, Address a_address, Connection* connection) : Peer(a_address,a_id,connection), m_pending_disconnect(false), resend_timeout(0.5), m_legacy_peer(true) { } bool UDPPeer::getAddress(MTProtocols type,Address& toset) { if ((type == MTP_UDP) || (type == MTP_MINETEST_RELIABLE_UDP) || (type == MTP_PRIMARY)) { toset = address; return t // set_string(self, name, var) int NodeMetaRef::l_set_string(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); std::string name = luaL_checkstring(L, 2); size_t len = 0; const char *s = lua_tolstring(L, 3, &len); std::string str(s, len); NodeMetadata *meta = getmeta(ref, !str.empty()); if(meta == NULL || str == meta->getString(name)) return 0; meta->setString(name, str); reportMetadataChange(ref); return 0; } // get_int(self, name) int NodeMetaRef::l_get_int(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); std::string name = lua_tostring(L, 2); NodeMetadata *meta = getmeta(ref, false); if(meta == NULL){ lua_pushnumber(L, 0); return 1; } std::string str = meta->getString(name); lua_pushnumber(L, stoi(str)); return 1; } // set_int(self, name, var) int NodeMetaRef::l_set_int(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); std::string name = lua_tostring(L, 2); int a = lua_tointeger(L, 3); std::string str = itos(a); NodeMetadata *meta = getmeta(ref, true); if(meta == NULL || str == meta->getString(name)) return 0; meta->setString(name, str); reportMetadataChange(ref); return 0; } // get_float(self, name) int NodeMetaRef::l_get_float(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); std::string name = lua_tostring(L, 2); NodeMetadata *meta = getmeta(ref, false); if(meta == NULL){ lua_pushnumber(L, 0); return 1; } std::string str = meta->getString(name); lua_pushnumber(L, stof(str)); return 1; } // set_float(self, name, var) int NodeMetaRef::l_set_float(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); std::string name = lua_tostring(L, 2); float a = lua_tonumber(L, 3); std::string str = ftos(a); NodeMetadata *meta = getmeta(ref, true); if(meta == NULL || str == meta->getString(name)) return 0; meta->setString(name, str); reportMetadataChange(ref); return 0; } // get_inventory(self) int NodeMetaRef::l_get_inventory(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); getmeta(ref, true); // try to ensure the metadata exists InvRef::createNodeMeta(L, ref->m_p); return 1; } // to_table(self) int NodeMetaRef::l_to_table(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); NodeMetadata *meta = getmeta(ref, true); if(meta == NULL){ lua_pushnil(L); return 1; } lua_newtable(L); // fields lua_newtable(L); { std::map<std::string, std::string> fields = meta->getStrings(); for(std::map<std::string, std::string>::const_iterator i = fields.begin(); i != fields.end(); i++){ const std::string &name = i->first; const std::string &value = i->second; lua_pushlstring(L, name.c_str(), name.size()); lua_pushlstring(L, value.c_str(), value.size()); lua_settable(L, -3); } } lua_setfield(L, -2, "fields"); // inventory lua_newtable(L); Inventory *inv = meta->getInventory(); if(inv){ std::vector<const InventoryList*> lists = inv->getLists(); for(std::vector<const InventoryList*>::const_iterator i = lists.begin(); i != lists.end(); i++){ push_inventory_list(L, inv, (*i)->getName().c_str()); lua_setfield(L, -2, (*i)->getName().c_str()); } } lua_setfield(L, -2, "inventory"); return 1; } // from_table(self, table) int NodeMetaRef::l_from_table(lua_State *L) { NodeMetaRef *ref = checkobject(L, 1); int base = 2; // clear old metadata first ref->m_env->getMap().removeNodeMetadata(ref->m_p); if(lua_isnil(L, base)){ // No metadata lua_pushboolean(L, true); return 1; } // Create new metadata NodeMetadata *meta = getmeta(ref, true); if(meta == NULL){ lua_pushboolean(L, false); return 1; } // Set fields lua_getfield(L, base, "fields"); int fieldstable = lua_gettop(L); lua_pushnil(L); while(lua_next(L, fieldstable) != 0){ // key at index -2 and value at index -1 std::string name = lua_tostring(L, -2); size_t cl; const char *cs = lua_tolstring(L, -1, &cl); std::string value(cs, cl); meta->setString(name, value); lua_pop(L, 1); // removes value, keeps key for next iteration } // Set inventory Inventory *inv = meta->getInventory(); lua_getfield(L, base, "inventory"); int inventorytable = lua_gettop(L); lua_pushnil(L); while(lua_next(L, inventorytable) != 0){ // key at index -2 and value at index -1 std::string name = lua_tostring(L, -2); read_inventory_list(L, -1, inv, name.c_str(), getServer(L)); lua_pop(L, 1); // removes value, keeps key for next iteration } reportMetadataChange(ref); lua_pushboolean(L, true); return 1; } NodeMetaRef::NodeMetaRef(v3s16 p, ServerEnvironment *env): m_p(p), m_env(env) { } NodeMetaRef::~NodeMetaRef() { } // Creates an NodeMetaRef and leaves it on top of stack // Not callable from Lua; all references are created on the C side. void NodeMetaRef::create(lua_State *L, v3s16 p, ServerEnvironment *env) { NodeMetaRef *o = new NodeMetaRef(p, env); //infostream<<"NodeMetaRef::create: o="<<o<<std::endl; *(void **)(lua_newuserdata(L, sizeof(void *))) = o; luaL_getmetatable(L, className); lua_setmetatable(L, -2); } void NodeMetaRef::Register(lua_State *L) { lua_newtable(L); int methodtable = lua_gettop(L); luaL_newmetatable(L, className); int metatable = lua_gettop(L); lua_pushliteral(L, "__metatable"); lua_pushvalue(L, methodtable); lua_settable(L, metatable); // hide metatable from Lua getmetatable() lua_pushliteral(L, "__index"); lua_pushvalue(L, methodtable); lua_settable(L, metatable); lua_pushliteral(L, "__gc"); lua_pushcfunction(L, gc_object); lua_settable(L, metatable); lua_pop(L, 1); // drop metatable luaL_openlib(L, 0, methods, 0); // fill methodtable lua_pop(L, 1); // drop methodtable // Cannot be created from Lua //lua_register(L, className, create_object); } const char NodeMetaRef::className[] = "NodeMetaRef"; const luaL_reg NodeMetaRef::methods[] = { luamethod(NodeMetaRef, get_string), luamethod(NodeMetaRef, set_string), luamethod(NodeMetaRef, get_int), luamethod(NodeMetaRef, set_int), luamethod(NodeMetaRef, get_float), luamethod(NodeMetaRef, set_float), luamethod(NodeMetaRef, get_inventory), luamethod(NodeMetaRef, to_table), luamethod(NodeMetaRef, from_table), {0,0} }; EST_RELIABLE_UDP, 0); } PeerHelper peer = m_connection->getPeerNoEx(peer_id); if (!peer) { LOG(dout_con<getDesc() <<" got packet from unknown peer_id: " <getAddress(MTP_UDP, peer_address)) { if (peer_address != sender) { LOG(derr_con<getDesc() <getDesc() <<" Peer "<getDesc() <getDesc() <<" Peer "<setSentWithID(); peer->ResetTimeout(); Channel *channel = 0; if (dynamic_cast(&peer) != 0) { channel = &(dynamic_cast(&peer)->channels[channelnum]); } if (channel != 0) { channel->UpdateBytesReceived(received_size); } // Throw the received packet to channel->processPacket() // Make a new SharedBuffer from the data without the base headers SharedBuffer strippeddata(received_size - BASE_HEADER_SIZE); memcpy(*strippeddata, &packetdata[BASE_HEADER_SIZE], strippeddata.getSize()); try{ // Process it (the result is some data with no headers made by us) SharedBuffer resultdata = processPacket (channel, strippeddata, peer_id, channelnum, false); LOG(dout_con<getDesc() <<" ProcessPacket from peer_id: " << peer_id << ",channel: " << (channelnum & 0xFF) << ", returned " << resultdata.getSize() << " bytes" <putEvent(e); } catch(ProcessedSilentlyException &e) { } catch(ProcessedQueued &e) { packet_queued = true; } } catch(InvalidIncomingDataException &e) { } catch(ProcessedSilentlyException &e) { } } } bool ConnectionReceiveThread::getFromBuffers(u16 &peer_id, SharedBuffer &dst) { std::list peerids = m_connection->getPeerIDs(); for(std::list::iterator j = peerids.begin(); j != peerids.end(); ++j) { PeerHelper peer = m_connection->getPeerNoEx(*j); if (!peer) continue; if (dynamic_cast(&peer) == 0) continue; for(u16 i=0; i(&peer))->channels[i]; if (checkIncomingBuffers(channel, peer_id, dst)) { return true; } } } return false; } bool ConnectionReceiveThread::checkIncomingBuffers(Channel *channel, u16 &peer_id, SharedBuffer &dst) { u16 firstseqnum = 0; if (channel->incoming_reliables.getFirstSeqnum(firstseqnum)) { if (firstseqnum == channel->readNextIncomingSeqNum()) { BufferedPacket p = channel->incoming_reliables.popFirst(); peer_id = readPeerId(*p.data); u8 channelnum = readChannel(*p.data); u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]); LOG(dout_con<getDesc() <<"UNBUFFERING TYPE_RELIABLE" <<" seqnum="<= MAX_UDP_PEERS) { errorstream << "Something is wrong with peer_id" << std::endl; FATAL_ERROR(""); } if (type == TYPE_CONTROL) { if (packetdata.getSize() < 2) throw InvalidIncomingDataException("packetdata.getSize() < 2"); u8 controltype = readU8(&(packetdata[1])); if (controltype == CONTROLTYPE_ACK) { FATAL_ERROR_IF(channel == 0, "Invalid channel (0)"); if (packetdata.getSize() < 4) throw InvalidIncomingDataException ("packetdata.getSize() < 4 (ACK header size)"); u16 seqnum = readU16(&packetdata[2]); LOG(dout_con<getDesc() <<" [ CONTROLTYPE_ACK: channelnum=" <<((int)channelnum&0xff)<<", peer_id="<outgoing_reliables_sent.popSeqnum(seqnum); // only calculate rtt from straight sent packets if (p.resend_count == 0) { // Get round trip time unsigned int current_time = porting::getTimeMs(); // a overflow is quite unlikely but as it'd result in major // rtt miscalculation we handle it here if (current_time > p.absolute_send_time) { float rtt = (current_time - p.absolute_send_time) / 1000.0; // Let peer calculate stuff according to it // (avg_rtt and resend_timeout) dynamic_cast(&peer)->reportRTT(rtt); } else if (p.totaltime > 0) { float rtt = p.totaltime; // Let peer calculate stuff according to it // (avg_rtt and resend_timeout) dynamic_cast(&peer)->reportRTT(rtt); } } //put bytes for max bandwidth calculation channel->UpdateBytesSent(p.data.getSize(),1); if (channel->outgoing_reliables_sent.size() == 0) { m_connection->TriggerSend(); } } catch(NotFoundException &e) { LOG(derr_con<getDesc() <<"WARNING: ACKed packet not " "in outgoing queue" <UpdatePacketTooLateCounter(); } throw ProcessedSilentlyException("Got an ACK"); } else if (controltype == CONTROLTYPE_SET_PEER_ID) { // Got a packet to set our peer id if (packetdata.getSize() < 4) throw InvalidIncomingDataException ("packetdata.getSize() < 4 (SET_PEER_ID header size)"); u16 peer_id_new = readU16(&packetdata[2]); LOG(dout_con<getDesc() <<"Got new peer id: "<GetPeerID() != PEER_ID_INEXISTENT) { LOG(derr_con<getDesc() <<"WARNING: Not changing" " existing peer id."<getDesc()<<"changing own peer id"<SetPeerID(peer_id_new); } ConnectionCommand cmd; SharedBuffer reply(2); writeU8(&reply[0], TYPE_CONTROL); writeU8(&reply[1], CONTROLTYPE_ENABLE_BIG_SEND_WINDOW); cmd.disableLegacy(PEER_ID_SERVER,reply); m_connection->putCommand(cmd); throw ProcessedSilentlyException("Got a SET_PEER_ID"); } else if (controltype == CONTROLTYPE_PING) { // Just ignore it, the incoming data already reset // the timeout counter LOG(dout_con<getDesc()<<"PING"<getDesc() <<"DISCO: Removing peer "<<(peer_id)<deletePeer(peer_id, false) == false) { derr_con<getDesc() <<"DISCO: Peer not found"<(&peer)->setNonLegacyPeer(); throw ProcessedSilentlyException("Got non legacy control"); } else{ LOG(derr_con<getDesc() <<"INVALID TYPE_CONTROL: invalid controltype=" <<((int)controltype&0xff)<getDesc() <<"RETURNING TYPE_ORIGINAL to user" < payload(packetdata.getSize() - ORIGINAL_HEADER_SIZE); memcpy(*payload, &(packetdata[ORIGINAL_HEADER_SIZE]), payload.getSize()); return payload; } else if (type == TYPE_SPLIT) { Address peer_address; if (peer->getAddress(MTP_UDP, peer_address)) { // We have to create a packet again for buffering // This isn't actually too bad an idea. BufferedPacket packet = makePacket( peer_address, packetdata, m_connection->GetProtocolID(), peer_id, channelnum); // Buffer the packet SharedBuffer data = peer->addSpiltPacket(channelnum,packet,reliable); if (data.getSize() != 0) { LOG(dout_con<getDesc() <<"RETURNING TYPE_SPLIT: Constructed full data, " <<"size="<getDesc()<<"BUFFERED TYPE_SPLIT"<readNextIncomingSeqNum(),MAX_RELIABLE_WINDOW_SIZE)) { m_connection->sendAck(peer_id,channelnum,seqnum); } else { is_future_packet = seqnum_higher(seqnum, channel->readNextIncomingSeqNum()); is_old_packet = seqnum_higher(channel->readNextIncomingSeqNum(), seqnum); /* packet is not within receive window, don't send ack. * * if this was a valid packet it's gonna be retransmitted */ if (is_future_packet) { throw ProcessedSilentlyException("Received packet newer then expected, not sending ack"); } /* seems like our ack was lost, send another one for a old packet */ if (is_old_packet) { LOG(dout_con<getDesc() << "RE-SENDING ACK: peer_id: " << peer_id << ", channel: " << (channelnum&0xFF) << ", seqnum: " << seqnum << std::endl;) m_connection->sendAck(peer_id,channelnum,seqnum); // we already have this packet so this one was on wire at least // the current timeout // we don't know how long this packet was on wire don't do silly guessing // dynamic_cast(&peer)->reportRTT(dynamic_cast(&peer)->getResendTimeout()); throw ProcessedSilentlyException("Retransmitting ack for old packet"); } } if (seqnum != channel->readNextIncomingSeqNum()) { Address peer_address; // this is a reliable packet so we have a udp address for sure peer->getAddress(MTP_MINETEST_RELIABLE_UDP, peer_address); // This one comes later, buffer it. // Actually we have to make a packet to buffer one. // Well, we have all the ingredients, so just do it. BufferedPacket packet = con::makePacket( peer_address, packetdata, m_connection->GetProtocolID(), peer_id, channelnum); try{ channel->incoming_reliables.insert(packet,channel->readNextIncomingSeqNum()); LOG(dout_con<getDesc() << "BUFFERING, TYPE_RELIABLE peer_id: " << peer_id << ", channel: " << (channelnum&0xFF) << ", seqnum: " << seqnum << std::endl;) throw ProcessedQueued("Buffered future reliable packet"); } catch(AlreadyExistsException &e) { } catch(IncomingDataCorruption &e) { ConnectionCommand discon; discon.disconnect_peer(peer_id); m_connection->putCommand(discon); LOG(derr_con<getDesc() << "INVALID, TYPE_RELIABLE peer_id: " << peer_id << ", channel: " << (channelnum&0xFF) << ", seqnum: " << seqnum << "DROPPING CLIENT!" << std::endl;) } } /* we got a packet to process right now */ LOG(dout_con<getDesc() << "RECURSIVE, TYPE_RELIABLE peer_id: " << peer_id << ", channel: " << (channelnum&0xFF) << ", seqnum: " << seqnum << std::endl;) /* check for resend case */ u16 queued_seqnum = 0; if (channel->incoming_reliables.getFirstSeqnum(queued_seqnum)) { if (queued_seqnum == seqnum) { BufferedPacket queued_packet = channel->incoming_reliables.popFirst(); /** TODO find a way to verify the new against the old packet */ } } channel->incNextIncomingSeqNum(); // Get out the inside packet and re-process it SharedBuffer payload(packetdata.getSize() - RELIABLE_HEADER_SIZE); memcpy(*payload, &packetdata[RELIABLE_HEADER_SIZE], payload.getSize()); return processPacket(channel, payload, peer_id, channelnum, true); } else { derr_con<getDesc() <<"Got invalid type="<<((int)type&0xff)<::iterator j = m_peers.begin(); j != m_peers.end(); ++j) { delete j->second; } } /* Internal stuff */ void Connection::putEvent(ConnectionEvent &e) { assert(e.type != CONNEVENT_NONE); // Pre-condition m_event_queue.push_back(e); } PeerHelper Connection::getPeer(u16 peer_id) { JMutexAutoLock peerlock(m_peers_mutex); std::map::iterator node = m_peers.find(peer_id); if (node == m_peers.end()) { throw PeerNotFoundException("GetPeer: Peer not found (possible timeout)"); } // Error checking FATAL_ERROR_IF(node->second->id != peer_id, "Invalid peer id"); return PeerHelper(node->second); } PeerHelper Connection::getPeerNoEx(u16 peer_id) { JMutexAutoLock peerlock(m_peers_mutex); std::map::iterator node = m_peers.find(peer_id); if (node == m_peers.end()) { return PeerHelper(NULL); } // Error checking FATAL_ERROR_IF(node->second->id != peer_id, "Invalid peer id"); return PeerHelper(node->second); } /* find peer_id for address */ u16 Connection::lookupPeer(Address& sender) { JMutexAutoLock peerlock(m_peers_mutex); std::map::iterator j; j = m_peers.begin(); for(; j != m_peers.end(); ++j) { Peer *peer = j->second; if (peer->isActive()) continue; Address tocheck; if ((peer->getAddress(MTP_MINETEST_RELIABLE_UDP, tocheck)) && (tocheck == sender)) return peer->id; if ((peer->getAddress(MTP_UDP, tocheck)) && (tocheck == sender)) return peer->id; } return PEER_ID_INEXISTENT; } std::list Connection::getPeers() { std::list list; for(std::map::iterator j = m_peers.begin(); j != m_peers.end(); ++j) { Peer *peer = j->second; list.push_back(peer); } return list; } bool Connection::deletePeer(u16 peer_id, bool timeout) { Peer *peer = 0; /* lock list as short as possible */ { JMutexAutoLock peerlock(m_peers_mutex); if (m_peers.find(peer_id) == m_peers.end()) return false; peer = m_peers[peer_id]; m_peers.erase(peer_id); m_peer_ids.remove(peer_id); } Address peer_address; //any peer has a primary address this never fails! peer->getAddress(MTP_PRIMARY, peer_address); // Create event ConnectionEvent e; e.peerRemoved(peer_id, timeout, peer_address); putEvent(e); peer->Drop(); return true; } /* Interface */ ConnectionEvent Connection::getEvent() { if (m_event_queue.empty()) { ConnectionEvent e; e.type = CONNEVENT_NONE; return e; } return m_event_queue.pop_frontNoEx(); } ConnectionEvent Connection::waitEvent(u32 timeout_ms) { try { return m_event_queue.pop_front(timeout_ms); } catch(ItemNotFoundException &ex) { ConnectionEvent e; e.type = CONNEVENT_NONE; return e; } } void Connection::putCommand(ConnectionCommand &c) { if (!m_shutting_down) { m_command_queue.push_back(c); m_sendThread.Trigger(); } } void Connection::Serve(Address bind_addr) { ConnectionCommand c; c.serve(bind_addr); putCommand(c); } void Connection::Connect(Address address) { ConnectionCommand c; c.connect(address); putCommand(c); } bool Connection::Connected() { JMutexAutoLock peerlock(m_peers_mutex); if (m_peers.size() != 1) return false; std::map::iterator node = m_peers.find(PEER_ID_SERVER); if (node == m_peers.end()) return false; if (m_peer_id == PEER_ID_INEXISTENT) return false; return true; } void Connection::Disconnect() { ConnectionCommand c; c.disconnect(); putCommand(c); } void Connection::Receive(NetworkPacket* pkt) { for(;;) { ConnectionEvent e = waitEvent(m_bc_receive_timeout); if (e.type != CONNEVENT_NONE) LOG(dout_con << getDesc() << ": Receive: got event: " << e.describe() << std::endl); switch(e.type) { case CONNEVENT_NONE: throw NoIncomingDataException("No incoming data"); case CONNEVENT_DATA_RECEIVED: // Data size is lesser than command size, ignoring packet if (e.data.getSize() < 2) { continue; } pkt->putRawPacket(*e.data, e.data.getSize(), e.peer_id); return; case CONNEVENT_PEER_ADDED: { UDPPeer tmp(e.peer_id, e.address, this); if (m_bc_peerhandler) m_bc_peerhandler->peerAdded(&tmp); continue; } case CONNEVENT_PEER_REMOVED: { UDPPeer tmp(e.peer_id, e.address, this); if (m_bc_peerhandler) m_bc_peerhandler->deletingPeer(&tmp, e.timeout); continue; } case CONNEVENT_BIND_FAILED: throw ConnectionBindFailed("Failed to bind socket " "(port already in use?)"); } } throw NoIncomingDataException("No incoming data"); } void Connection::Send(u16 peer_id, u8 channelnum, NetworkPacket* pkt, bool reliable) { assert(channelnum < CHANNEL_COUNT); // Pre-condition ConnectionCommand c; c.send(peer_id, channelnum, pkt, reliable); putCommand(c); } Address Connection::GetPeerAddress(u16 peer_id) { PeerHelper peer = getPeerNoEx(peer_id); if (!peer) throw PeerNotFoundException("No address for peer found!"); Address peer_address; peer->getAddress(MTP_PRIMARY, peer_address); return peer_address; } float Connection::getPeerStat(u16 peer_id, rtt_stat_type type) { PeerHelper peer = getPeerNoEx(peer_id); if (!peer) return -1; return peer->getStat(type); } float Connection::getLocalStat(rate_stat_type type) { PeerHelper peer = getPeerNoEx(PEER_ID_SERVER); FATAL_ERROR_IF(!peer, "Connection::getLocalStat we couldn't get our own peer? are you serious???"); float retval = 0.0; for (u16 j=0; j(&peer)->channels[j].getCurrentDownloadRateKB(); break; case AVG_DL_RATE: retval += dynamic_cast(&peer)->channels[j].getAvgDownloadRateKB(); break; case CUR_INC_RATE: retval += dynamic_cast(&peer)->channels[j].getCurrentIncomingRateKB(); break; case AVG_INC_RATE: retval += dynamic_cast(&peer)->channels[j].getAvgIncomingRateKB(); break; case AVG_LOSS_RATE: retval += dynamic_cast(&peer)->channels[j].getAvgLossRateKB(); break; case CUR_LOSS_RATE: retval += dynamic_cast(&peer)->channels[j].getCurrentLossRateKB(); break; default: FATAL_ERROR("Connection::getLocalStat Invalid stat type"); } } return retval; } u16 Connection::createPeer(Address& sender, MTProtocols protocol, int fd) { // Somebody wants to make a new connection // Get a unique peer id (2 or higher) u16 peer_id_new = m_next_remote_peer_id; u16 overflow = MAX_UDP_PEERS; /* Find an unused peer id */ JMutexAutoLock lock(m_peers_mutex); bool out_of_ids = false; for(;;) { // Check if exists if (m_peers.find(peer_id_new) == m_peers.end()) break; // Check for overflow if (peer_id_new == overflow) { out_of_ids = true; break; } peer_id_new++; } if (out_of_ids) { errorstream << getDesc() << " ran out of peer ids" << std::endl; return PEER_ID_INEXISTENT; } // Create a peer Peer *peer = 0; peer = new UDPPeer(peer_id_new, sender, this); m_peers[peer->id] = peer; m_peer_ids.push_back(peer->id); m_next_remote_peer_id = (peer_id_new +1 ) % MAX_UDP_PEERS; LOG(dout_con << getDesc() << "createPeer(): giving peer_id=" << peer_id_new << std::endl); ConnectionCommand cmd; SharedBuffer reply(4); writeU8(&reply[0], TYPE_CONTROL); writeU8(&reply[1], CONTROLTYPE_SET_PEER_ID); writeU16(&reply[2], peer_id_new); cmd.createPeer(peer_id_new,reply); putCommand(cmd); // Create peer addition event ConnectionEvent e; e.peerAdded(peer_id_new, sender); putEvent(e); // We're now talking to a valid peer_id return peer_id_new; } void Connection::PrintInfo(std::ostream &out) { m_info_mutex.Lock(); out< ack(4); writeU8(&ack[0], TYPE_CONTROL); writeU8(&ack[1], CONTROLTYPE_ACK); writeU16(&ack[2], seqnum); c.ack(peer_id, channelnum, ack); putCommand(c); m_sendThread.Trigger(); } UDPPeer* Connection::createServerPeer(Address& address) { if (getPeerNoEx(PEER_ID_SERVER) != 0) { throw ConnectionException("Already connected to a server"); } UDPPeer *peer = new UDPPeer(PEER_ID_SERVER, address, this); { JMutexAutoLock lock(m_peers_mutex); m_peers[peer->id] = peer; m_peer_ids.push_back(peer->id); } return peer; } } // namespace