aboutsummaryrefslogtreecommitdiff
path: root/src/script/lua_api/l_noise.cpp
blob: e38d319f48b31e9c40a6e79566ff17d1b7e7d389 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "lua_api/l_noise.h"
#include "lua_api/l_internal.h"
#include "common/c_converter.h"
#include "common/c_content.h"
#include "log.h"
#include "porting.h"
#include "util/numeric.h"

///////////////////////////////////////
/*
  LuaPerlinNoise
*/

LuaPerlinNoise::LuaPerlinNoise(NoiseParams *params) :
	np(*params)
{
}


int LuaPerlinNoise::l_get_2d(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;
	LuaPerlinNoise *o = checkobject(L, 1);
	v2f p = readParam<v2f>(L, 2);
	lua_Number val = NoisePerlin2D(&o->np, p.X, p.Y, 0);
	lua_pushnumber(L, val);
	return 1;
}


int LuaPerlinNoise::l_get_3d(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;
	LuaPerlinNoise *o = checkobject(L, 1);
	v3f p = check_v3f(L, 2);
	lua_Number val = NoisePerlin3D(&o->np, p.X, p.Y, p.Z, 0);
	lua_pushnumber(L, val);
	return 1;
}


int LuaPerlinNoise::create_object(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	NoiseParams params;

	if (lua_istable(L, 1)) {
		read_noiseparams(L, 1, &params);
	} else {
		params.seed    = luaL_checkint(L, 1);
		params.octaves = luaL_checkint(L, 2);
		params.persist = readParam<float>(L, 3);
		params.spread  = v3f(1, 1, 1) * readParam<float>(L, 4);
	}

	LuaPerlinNoise *o = new LuaPerlinNoise(&params);

	*(void **)(lua_newuserdata(L, sizeof(void *))) = o;
	luaL_getmetatable(L, className);
	lua_setmetatable(L, -2);
	return 1;
}


int LuaPerlinNoise::gc_object(lua_State *L)
{
	LuaPerlinNoise *o = *(LuaPerlinNoise **)(lua_touserdata(L, 1));
	delete o;
	return 0;
}


LuaPerlinNoise *LuaPerlinNoise::checkobject(lua_State *L, int narg)
{
	NO_MAP_LOCK_REQUIRED;
	luaL_checktype(L, narg, LUA_TUSERDATA);
	void *ud = luaL_checkudata(L, narg, className);
	if (!ud)
		luaL_typerror(L, narg, className);
	return *(LuaPerlinNoise **)ud;
}


void LuaPerlinNoise::Register(lua_State *L)
{
	lua_newtable(L);
	int methodtable = lua_gettop(L);
	luaL_newmetatable(L, className);
	int metatable = lua_gettop(L);

	lua_pushliteral(L, "__metatable");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__index");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__gc");
	lua_pushcfunction(L, gc_object);
	lua_settable(L, metatable);

	lua_pop(L, 1);

	markAliasDeprecated(methods);
	luaL_openlib(L, 0, methods, 0);
	lua_pop(L, 1);

	lua_register(L, className, create_object);
}


const char LuaPerlinNoise::className[] = "PerlinNoise";
luaL_Reg LuaPerlinNoise::methods[] = {
	luamethod_aliased(LuaPerlinNoise, get_2d, get2d),
	luamethod_aliased(LuaPerlinNoise, get_3d, get3d),
	{0,0}
};

///////////////////////////////////////
/*
  LuaPerlinNoiseMap
*/

LuaPerlinNoiseMap::LuaPerlinNoiseMap(NoiseParams *params, s32 seed, v3s16 size)
{
	m_is3d = size.Z > 1;
	np = *params;
	try {
		noise = new Noise(&np, seed, size.X, size.Y, size.Z);
	} catch (InvalidNoiseParamsException &e) {
		throw LuaError(e.what());
	}
}


LuaPerlinNoiseMap::~LuaPerlinNoiseMap()
{
	delete noise;
}


int LuaPerlinNoiseMap::l_get_2d_map(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;
	size_t i = 0;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v2f p = readParam<v2f>(L, 2);

	Noise *n = o->noise;
	n->perlinMap2D(p.X, p.Y);

	lua_newtable(L);
	for (u32 y = 0; y != n->sy; y++) {
		lua_newtable(L);
		for (u32 x = 0; x != n->sx; x++) {
			lua_pushnumber(L, n->result[i++]);
			lua_rawseti(L, -2, x + 1);
		}
		lua_rawseti(L, -2, y + 1);
	}
	return 1;
}


int LuaPerlinNoiseMap::l_get_2d_map_flat(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v2f p = readParam<v2f>(L, 2);
	bool use_buffer = lua_istable(L, 3);

	Noise *n = o->noise;
	n->perlinMap2D(p.X, p.Y);

	size_t maplen = n->sx * n->sy;

	if (use_buffer)
		lua_pushvalue(L, 3);
	else
		lua_newtable(L);

	for (size_t i = 0; i != maplen; i++) {
		lua_pushnumber(L, n->result[i]);
		lua_rawseti(L, -2, i + 1);
	}
	return 1;
}


int LuaPerlinNoiseMap::l_get_3d_map(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;
	size_t i = 0;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v3f p = check_v3f(L, 2);

	if (!o->m_is3d)
		return 0;

	Noise *n = o->noise;
	n->perlinMap3D(p.X, p.Y, p.Z);

	lua_newtable(L);
	for (u32 z = 0; z != n->sz; z++) {
		lua_newtable(L);
		for (u32 y = 0; y != n->sy; y++) {
			lua_newtable(L);
			for (u32 x = 0; x != n->sx; x++) {
				lua_pushnumber(L, n->result[i++]);
				lua_rawseti(L, -2, x + 1);
			}
			lua_rawseti(L, -2, y + 1);
		}
		lua_rawseti(L, -2, z + 1);
	}
	return 1;
}


int LuaPerlinNoiseMap::l_get_3d_map_flat(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v3f p                = check_v3f(L, 2);
	bool use_buffer      = lua_istable(L, 3);

	if (!o->m_is3d)
		return 0;

	Noise *n = o->noise;
	n->perlinMap3D(p.X, p.Y, p.Z);

	size_t maplen = n->sx * n->sy * n->sz;

	if (use_buffer)
		lua_pushvalue(L, 3);
	else
		lua_newtable(L);

	for (size_t i = 0; i != maplen; i++) {
		lua_pushnumber(L, n->result[i]);
		lua_rawseti(L, -2, i + 1);
	}
	return 1;
}


int LuaPerlinNoiseMap::l_calc_2d_map(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v2f p = readParam<v2f>(L, 2);

	Noise *n = o->noise;
	n->perlinMap2D(p.X, p.Y);

	return 0;
}

int LuaPerlinNoiseMap::l_calc_3d_map(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v3f p                = check_v3f(L, 2);

	if (!o->m_is3d)
		return 0;

	Noise *n = o->noise;
	n->perlinMap3D(p.X, p.Y, p.Z);

	return 0;
}


int LuaPerlinNoiseMap::l_get_map_slice(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPerlinNoiseMap *o = checkobject(L, 1);
	v3s16 slice_offset   = read_v3s16(L, 2);
	v3s16 slice_size     = read_v3s16(L, 3);
	bool use_buffer      = lua_istable(L, 4);

	Noise *n = o->noise;

	if (use_buffer)
		lua_pushvalue(L, 4);
	else
		lua_newtable(L);

	write_array_slice_float(L, lua_gettop(L), n->result,
		v3u16(n->sx, n->sy, n->sz),
		v3u16(slice_offset.X, slice_offset.Y, slice_offset.Z),
		v3u16(slice_size.X, slice_size.Y, slice_size.Z));

	return 1;
}


int LuaPerlinNoiseMap::create_object(lua_State *L)
{
	NoiseParams np;
	if (!read_noiseparams(L, 1, &np))
		return 0;
	v3s16 size = read_v3s16(L, 2);

	LuaPerlinNoiseMap *o = new LuaPerlinNoiseMap(&np, 0, size);
	*(void **)(lua_newuserdata(L, sizeof(void *))) = o;
	luaL_getmetatable(L, className);
	lua_setmetatable(L, -2);
	return 1;
}


int LuaPerlinNoiseMap::gc_object(lua_State *L)
{
	LuaPerlinNoiseMap *o = *(LuaPerlinNoiseMap **)(lua_touserdata(L, 1));
	delete o;
	return 0;
}


LuaPerlinNoiseMap *LuaPerlinNoiseMap::checkobject(lua_State *L, int narg)
{
	luaL_checktype(L, narg, LUA_TUSERDATA);

	void *ud = luaL_checkudata(L, narg, className);
	if (!ud)
		luaL_typerror(L, narg, className);

	return *(LuaPerlinNoiseMap **)ud;
}


void LuaPerlinNoiseMap::Register(lua_State *L)
{
	lua_newtable(L);
	int methodtable = lua_gettop(L);
	luaL_newmetatable(L, className);
	int metatable = lua_gettop(L);

	lua_pushliteral(L, "__metatable");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__index");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__gc");
	lua_pushcfunction(L, gc_object);
	lua_settable(L, metatable);

	lua_pop(L, 1);

	markAliasDeprecated(methods);
	luaL_openlib(L, 0, methods, 0);
	lua_pop(L, 1);

	lua_register(L, className, create_object);
}


const char LuaPerlinNoiseMap::className[] = "PerlinNoiseMap";
luaL_Reg LuaPerlinNoiseMap::methods[] = {
	luamethod_aliased(LuaPerlinNoiseMap, get_2d_map,      get2dMap),
	luamethod_aliased(LuaPerlinNoiseMap, get_2d_map_flat, get2dMap_flat),
	luamethod_aliased(LuaPerlinNoiseMap, calc_2d_map,     calc2dMap),
	luamethod_aliased(LuaPerlinNoiseMap, get_3d_map,      get3dMap),
	luamethod_aliased(LuaPerlinNoiseMap, get_3d_map_flat, get3dMap_flat),
	luamethod_aliased(LuaPerlinNoiseMap, calc_3d_map,     calc3dMap),
	luamethod_aliased(LuaPerlinNoiseMap, get_map_slice,   getMapSlice),
	{0,0}
};

///////////////////////////////////////
/*
	LuaPseudoRandom
*/

int LuaPseudoRandom::l_next(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPseudoRandom *o = checkobject(L, 1);
	int min = 0;
	int max = 32767;
	lua_settop(L, 3);
	if (lua_isnumber(L, 2))
		min = luaL_checkinteger(L, 2);
	if (lua_isnumber(L, 3))
		max = luaL_checkinteger(L, 3);
	if (max < min) {
		errorstream<<"PseudoRandom.next(): max="<<max<<" min="<<min<<std::endl;
		throw LuaError("PseudoRandom.next(): max < min");
	}
	if(max - min != 32767 && max - min > 32767/5)
		throw LuaError("PseudoRandom.next() max-min is not 32767"
				" and is > 32768/5. This is disallowed due to"
				" the bad random distribution the"
				" implementation would otherwise make.");
	PseudoRandom &pseudo = o->m_pseudo;
	int val = pseudo.next();
	val = (val % (max-min+1)) + min;
	lua_pushinteger(L, val);
	return 1;
}


int LuaPseudoRandom::create_object(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	u64 seed = luaL_checknumber(L, 1);
	LuaPseudoRandom *o = new LuaPseudoRandom(seed);
	*(void **)(lua_newuserdata(L, sizeof(void *))) = o;
	luaL_getmetatable(L, className);
	lua_setmetatable(L, -2);
	return 1;
}


int LuaPseudoRandom::gc_object(lua_State *L)
{
	LuaPseudoRandom *o = *(LuaPseudoRandom **)(lua_touserdata(L, 1));
	delete o;
	return 0;
}


LuaPseudoRandom *LuaPseudoRandom::checkobject(lua_State *L, int narg)
{
	luaL_checktype(L, narg, LUA_TUSERDATA);
	void *ud = luaL_checkudata(L, narg, className);
	if (!ud)
		luaL_typerror(L, narg, className);
	return *(LuaPseudoRandom **)ud;
}


void LuaPseudoRandom::Register(lua_State *L)
{
	lua_newtable(L);
	int methodtable = lua_gettop(L);
	luaL_newmetatable(L, className);
	int metatable = lua_gettop(L);

	lua_pushliteral(L, "__metatable");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__index");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__gc");
	lua_pushcfunction(L, gc_object);
	lua_settable(L, metatable);

	lua_pop(L, 1);

	luaL_openlib(L, 0, methods, 0);
	lua_pop(L, 1);

	lua_register(L, className, create_object);
}


const char LuaPseudoRandom::className[] = "PseudoRandom";
const luaL_Reg LuaPseudoRandom::methods[] = {
	luamethod(LuaPseudoRandom, next),
	{0,0}
};

///////////////////////////////////////
/*
	LuaPcgRandom
*/

int LuaPcgRandom::l_next(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPcgRandom *o = checkobject(L, 1);
	u32 min = lua_isnumber(L, 2) ? lua_tointeger(L, 2) : o->m_rnd.RANDOM_MIN;
	u32 max = lua_isnumber(L, 3) ? lua_tointeger(L, 3) : o->m_rnd.RANDOM_MAX;

	lua_pushinteger(L, o->m_rnd.range(min, max));
	return 1;
}


int LuaPcgRandom::l_rand_normal_dist(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaPcgRandom *o = checkobject(L, 1);
	u32 min = lua_isnumber(L, 2) ? lua_tointeger(L, 2) : o->m_rnd.RANDOM_MIN;
	u32 max = lua_isnumber(L, 3) ? lua_tointeger(L, 3) : o->m_rnd.RANDOM_MAX;
	int num_trials = lua_isnumber(L, 4) ? lua_tointeger(L, 4) : 6;

	lua_pushinteger(L, o->m_rnd.randNormalDist(min, max, num_trials));
	return 1;
}


int LuaPcgRandom::create_object(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	u64 seed = luaL_checknumber(L, 1);
	LuaPcgRandom *o = lua_isnumber(L, 2) ?
		new LuaPcgRandom(seed, lua_tointeger(L, 2)) :
		new LuaPcgRandom(seed);
	*(void **)(lua_newuserdata(L, sizeof(void *))) = o;
	luaL_getmetatable(L, className);
	lua_setmetatable(L, -2);
	return 1;
}


int LuaPcgRandom::gc_object(lua_State *L)
{
	LuaPcgRandom *o = *(LuaPcgRandom **)(lua_touserdata(L, 1));
	delete o;
	return 0;
}


LuaPcgRandom *LuaPcgRandom::checkobject(lua_State *L, int narg)
{
	luaL_checktype(L, narg, LUA_TUSERDATA);
	void *ud = luaL_checkudata(L, narg, className);
	if (!ud)
		luaL_typerror(L, narg, className);
	return *(LuaPcgRandom **)ud;
}


void LuaPcgRandom::Register(lua_State *L)
{
	lua_newtable(L);
	int methodtable = lua_gettop(L);
	luaL_newmetatable(L, className);
	int metatable = lua_gettop(L);

	lua_pushliteral(L, "__metatable");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__index");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__gc");
	lua_pushcfunction(L, gc_object);
	lua_settable(L, metatable);

	lua_pop(L, 1);

	luaL_openlib(L, 0, methods, 0);
	lua_pop(L, 1);

	lua_register(L, className, create_object);
}


const char LuaPcgRandom::className[] = "PcgRandom";
const luaL_Reg LuaPcgRandom::methods[] = {
	luamethod(LuaPcgRandom, next),
	luamethod(LuaPcgRandom, rand_normal_dist),
	{0,0}
};

///////////////////////////////////////
/*
	LuaSecureRandom
*/

bool LuaSecureRandom::fillRandBuf()
{
	return porting::secure_rand_fill_buf(m_rand_buf, RAND_BUF_SIZE);
}

int LuaSecureRandom::l_next_bytes(lua_State *L)
{
	NO_MAP_LOCK_REQUIRED;

	LuaSecureRandom *o = checkobject(L, 1);
	u32 count = lua_isnumber(L, 2) ? lua_tointeger(L, 2) : 1;

	// Limit count
	count = MYMIN(RAND_BUF_SIZE, count);

	// Find out whether we can pass directly from our array, or have to do some gluing
	size_t count_remaining = RAND_BUF_SIZE - o->m_rand_idx;
	if (count_remaining >= count) {
		lua_pushlstring(L, o->m_rand_buf + o->m_rand_idx, count);
		o->m_rand_idx += count;
	} else {
		char output_buf[RAND_BUF_SIZE];

		// Copy over with what we have left from our current buffer
		memcpy(output_buf, o->m_rand_buf + o->m_rand_idx, count_remaining);

		// Refill buffer and copy over the remainder of what was requested
		o->fillRandBuf();
		memcpy(output_buf + count_remaining, o->m_rand_buf, count - count_remaining);

		// Update index
		o->m_rand_idx = count - count_remaining;

		lua_pushlstring(L, output_buf, count);
	}

	return 1;
}


int LuaSecureRandom::create_object(lua_State *L)
{
	LuaSecureRandom *o = new LuaSecureRandom();

	// Fail and return nil if we can't securely fill the buffer
	if (!o->fillRandBuf()) {
		delete o;
		return 0;
	}

	*(void **)(lua_newuserdata(L, sizeof(void *))) = o;
	luaL_getmetatable(L, className);
	lua_setmetatable(L, -2);
	return 1;
}


int LuaSecureRandom::gc_object(lua_State *L)
{
	LuaSecureRandom *o = *(LuaSecureRandom **)(lua_touserdata(L, 1));
	delete o;
	return 0;
}


LuaSecureRandom *LuaSecureRandom::checkobject(lua_State *L, int narg)
{
	luaL_checktype(L, narg, LUA_TUSERDATA);
	void *ud = luaL_checkudata(L, narg, className);
	if (!ud)
		luaL_typerror(L, narg, className);
	return *(LuaSecureRandom **)ud;
}


void LuaSecureRandom::Register(lua_State *L)
{
	lua_newtable(L);
	int methodtable = lua_gettop(L);
	luaL_newmetatable(L, className);
	int metatable = lua_gettop(L);

	lua_pushliteral(L, "__metatable");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__index");
	lua_pushvalue(L, methodtable);
	lua_settable(L, metatable);

	lua_pushliteral(L, "__gc");
	lua_pushcfunction(L, gc_object);
	lua_settable(L, metatable);

	lua_pop(L, 1);

	luaL_openlib(L, 0, methods, 0);
	lua_pop(L, 1);

	lua_register(L, className, create_object);
}

const char LuaSecureRandom::className[] = "SecureRandom";
const luaL_Reg LuaSecureRandom::methods[] = {
	luamethod(LuaSecureRandom, next_bytes),
	{0,0}
};
;= chunk_count=" << chunk_count << std::endl; return SharedBuffer<u8>(); } // Add if doesn't exist IncomingSplitPacket *sp; if (m_buf.find(seqnum) == m_buf.end()) { sp = new IncomingSplitPacket(chunk_count, reliable); m_buf[seqnum] = sp; } else { sp = m_buf[seqnum]; } if (chunk_count != sp->chunk_count) { errorstream << "IncomingSplitBuffer::insert(): chunk_count=" << chunk_count << " != sp->chunk_count=" << sp->chunk_count << std::endl; return SharedBuffer<u8>(); } if (reliable != sp->reliable) LOG(derr_con<<"Connection: WARNING: reliable="<<reliable <<" != sp->reliable="<<sp->reliable <<std::endl); // Cut chunk data out of packet u32 chunkdatasize = p.size() - headersize; SharedBuffer<u8> chunkdata(chunkdatasize); memcpy(*chunkdata, &(p.data[headersize]), chunkdatasize); if (!sp->insert(chunk_num, chunkdata)) return SharedBuffer<u8>(); // If not all chunks are received, return empty buffer if (!sp->allReceived()) return SharedBuffer<u8>(); SharedBuffer<u8> fulldata = sp->reassemble(); // Remove sp from buffer m_buf.erase(seqnum); delete sp; return fulldata; } void IncomingSplitBuffer::removeUnreliableTimedOuts(float dtime, float timeout) { std::deque<u16> remove_queue; { MutexAutoLock listlock(m_map_mutex); for (auto &i : m_buf) { IncomingSplitPacket *p = i.second; // Reliable ones are not removed by timeout if (p->reliable) continue; p->time += dtime; if (p->time >= timeout) remove_queue.push_back(i.first); } } for (u16 j : remove_queue) { MutexAutoLock listlock(m_map_mutex); LOG(dout_con<<"NOTE: Removing timed out unreliable split packet"<<std::endl); delete m_buf[j]; m_buf.erase(j); } } /* ConnectionCommand */ ConnectionCommandPtr ConnectionCommand::create(ConnectionCommandType type) { return ConnectionCommandPtr(new ConnectionCommand(type)); } ConnectionCommandPtr ConnectionCommand::serve(Address address) { auto c = create(CONNCMD_SERVE); c->address = address; return c; } ConnectionCommandPtr ConnectionCommand::connect(Address address) { auto c = create(CONNCMD_CONNECT); c->address = address; return c; } ConnectionCommandPtr ConnectionCommand::disconnect() { return create(CONNCMD_DISCONNECT); } ConnectionCommandPtr ConnectionCommand::disconnect_peer(session_t peer_id) { auto c = create(CONNCMD_DISCONNECT_PEER); c->peer_id = peer_id; return c; } ConnectionCommandPtr ConnectionCommand::send(session_t peer_id, u8 channelnum, NetworkPacket *pkt, bool reliable) { auto c = create(CONNCMD_SEND); c->peer_id = peer_id; c->channelnum = channelnum; c->reliable = reliable; c->data = pkt->oldForgePacket(); return c; } ConnectionCommandPtr ConnectionCommand::ack(session_t peer_id, u8 channelnum, const Buffer<u8> &data) { auto c = create(CONCMD_ACK); c->peer_id = peer_id; c->channelnum = channelnum; c->reliable = false; data.copyTo(c->data); return c; } ConnectionCommandPtr ConnectionCommand::createPeer(session_t peer_id, const Buffer<u8> &data) { auto c = create(CONCMD_CREATE_PEER); c->peer_id = peer_id; c->channelnum = 0; c->reliable = true; c->raw = true; data.copyTo(c->data); return c; } /* Channel */ u16 Channel::readNextIncomingSeqNum() { MutexAutoLock internal(m_internal_mutex); return next_incoming_seqnum; } u16 Channel::incNextIncomingSeqNum() { MutexAutoLock internal(m_internal_mutex); u16 retval = next_incoming_seqnum; next_incoming_seqnum++; return retval; } u16 Channel::readNextSplitSeqNum() { MutexAutoLock internal(m_internal_mutex); return next_outgoing_split_seqnum; } void Channel::setNextSplitSeqNum(u16 seqnum) { MutexAutoLock internal(m_internal_mutex); next_outgoing_split_seqnum = seqnum; } u16 Channel::getOutgoingSequenceNumber(bool& successful) { MutexAutoLock internal(m_internal_mutex); u16 retval = next_outgoing_seqnum; successful = false; /* shortcut if there ain't any packet in outgoing list */ if (outgoing_reliables_sent.empty()) { successful = true; next_outgoing_seqnum++; return retval; } u16 lowest_unacked_seqnumber; if (outgoing_reliables_sent.getFirstSeqnum(lowest_unacked_seqnumber)) { if (lowest_unacked_seqnumber < next_outgoing_seqnum) { // ugly cast but this one is required in order to tell compiler we // know about difference of two unsigned may be negative in general // but we already made sure it won't happen in this case if (((u16)(next_outgoing_seqnum - lowest_unacked_seqnumber)) > m_window_size) { return 0; } } else { // ugly cast but this one is required in order to tell compiler we // know about difference of two unsigned may be negative in general // but we already made sure it won't happen in this case if ((next_outgoing_seqnum + (u16)(SEQNUM_MAX - lowest_unacked_seqnumber)) > m_window_size) { return 0; } } } successful = true; next_outgoing_seqnum++; return retval; } u16 Channel::readOutgoingSequenceNumber() { MutexAutoLock internal(m_internal_mutex); return next_outgoing_seqnum; } bool Channel::putBackSequenceNumber(u16 seqnum) { if (((seqnum + 1) % (SEQNUM_MAX+1)) == next_outgoing_seqnum) { next_outgoing_seqnum = seqnum; return true; } return false; } void Channel::UpdateBytesSent(unsigned int bytes, unsigned int packets) { MutexAutoLock internal(m_internal_mutex); current_bytes_transfered += bytes; current_packet_successful += packets; } void Channel::UpdateBytesReceived(unsigned int bytes) { MutexAutoLock internal(m_internal_mutex); current_bytes_received += bytes; } void Channel::UpdateBytesLost(unsigned int bytes) { MutexAutoLock internal(m_internal_mutex); current_bytes_lost += bytes; } void Channel::UpdatePacketLossCounter(unsigned int count) { MutexAutoLock internal(m_internal_mutex); current_packet_loss += count; } void Channel::UpdatePacketTooLateCounter() { MutexAutoLock internal(m_internal_mutex); current_packet_too_late++; } void Channel::UpdateTimers(float dtime) { bpm_counter += dtime; packet_loss_counter += dtime; if (packet_loss_counter > 1.0f) { packet_loss_counter -= 1.0f; unsigned int packet_loss = 11; /* use a neutral value for initialization */ unsigned int packets_successful = 0; //unsigned int packet_too_late = 0; bool reasonable_amount_of_data_transmitted = false; { MutexAutoLock internal(m_internal_mutex); packet_loss = current_packet_loss; //packet_too_late = current_packet_too_late; packets_successful = current_packet_successful; if (current_bytes_transfered > (unsigned int) (m_window_size*512/2)) { reasonable_amount_of_data_transmitted = true; } current_packet_loss = 0; current_packet_too_late = 0; current_packet_successful = 0; } /* dynamic window size */ float successful_to_lost_ratio = 0.0f; bool done = false; if (packets_successful > 0) { successful_to_lost_ratio = packet_loss/packets_successful; } else if (packet_loss > 0) { setWindowSize(m_window_size - 10); done = true; } if (!done) { if (successful_to_lost_ratio < 0.01f) { /* don't even think about increasing if we didn't even * use major parts of our window */ if (reasonable_amount_of_data_transmitted) setWindowSize(m_window_size + 100); } else if (successful_to_lost_ratio < 0.05f) { /* don't even think about increasing if we didn't even * use major parts of our window */ if (reasonable_amount_of_data_transmitted) setWindowSize(m_window_size + 50); } else if (successful_to_lost_ratio > 0.15f) { setWindowSize(m_window_size - 100); } else if (successful_to_lost_ratio > 0.1f) { setWindowSize(m_window_size - 50); } } } if (bpm_counter > 10.0f) { { MutexAutoLock internal(m_internal_mutex); cur_kbps = (((float) current_bytes_transfered)/bpm_counter)/1024.0f; current_bytes_transfered = 0; cur_kbps_lost = (((float) current_bytes_lost)/bpm_counter)/1024.0f; current_bytes_lost = 0; cur_incoming_kbps = (((float) current_bytes_received)/bpm_counter)/1024.0f; current_bytes_received = 0; bpm_counter = 0.0f; } if (cur_kbps > max_kbps) { max_kbps = cur_kbps; } if (cur_kbps_lost > max_kbps_lost) { max_kbps_lost = cur_kbps_lost; } if (cur_incoming_kbps > max_incoming_kbps) { max_incoming_kbps = cur_incoming_kbps; } rate_samples = MYMIN(rate_samples+1,10); float old_fraction = ((float) (rate_samples-1) )/( (float) rate_samples); avg_kbps = avg_kbps * old_fraction + cur_kbps * (1.0 - old_fraction); avg_kbps_lost = avg_kbps_lost * old_fraction + cur_kbps_lost * (1.0 - old_fraction); avg_incoming_kbps = avg_incoming_kbps * old_fraction + cur_incoming_kbps * (1.0 - old_fraction); } } /* Peer */ PeerHelper::PeerHelper(Peer* peer) : m_peer(peer) { if (peer && !peer->IncUseCount()) m_peer = nullptr; } PeerHelper::~PeerHelper() { if (m_peer) m_peer->DecUseCount(); m_peer = nullptr; } PeerHelper& PeerHelper::operator=(Peer* peer) { m_peer = peer; if (peer && !peer->IncUseCount()) m_peer = nullptr; return *this; } Peer* PeerHelper::operator->() const { return m_peer; } Peer* PeerHelper::operator&() const { return m_peer; } bool PeerHelper::operator!() { return ! m_peer; } bool PeerHelper::operator!=(void* ptr) { return ((void*) m_peer != ptr); } bool Peer::IncUseCount() { MutexAutoLock lock(m_exclusive_access_mutex); if (!m_pending_deletion) { this->m_usage++; return true; } return false; } void Peer::DecUseCount() { { MutexAutoLock lock(m_exclusive_access_mutex); sanity_check(m_usage > 0); m_usage--; if (!((m_pending_deletion) && (m_usage == 0))) return; } delete this; } void Peer::RTTStatistics(float rtt, const std::string &profiler_id, unsigned int num_samples) { if (m_last_rtt > 0) { /* set min max values */ if (rtt < m_rtt.min_rtt) m_rtt.min_rtt = rtt; if (rtt >= m_rtt.max_rtt) m_rtt.max_rtt = rtt; /* do average calculation */ if (m_rtt.avg_rtt < 0.0) m_rtt.avg_rtt = rtt; else m_rtt.avg_rtt = m_rtt.avg_rtt * (num_samples/(num_samples-1)) + rtt * (1/num_samples); /* do jitter calculation */ //just use some neutral value at beginning float jitter = m_rtt.jitter_min; if (rtt > m_last_rtt) jitter = rtt-m_last_rtt; if (rtt <= m_last_rtt) jitter = m_last_rtt - rtt; if (jitter < m_rtt.jitter_min) m_rtt.jitter_min = jitter; if (jitter >= m_rtt.jitter_max) m_rtt.jitter_max = jitter; if (m_rtt.jitter_avg < 0.0) m_rtt.jitter_avg = jitter; else m_rtt.jitter_avg = m_rtt.jitter_avg * (num_samples/(num_samples-1)) + jitter * (1/num_samples); if (!profiler_id.empty()) { g_profiler->graphAdd(profiler_id + " RTT [ms]", rtt * 1000.f); g_profiler->graphAdd(profiler_id + " jitter [ms]", jitter * 1000.f); } } /* save values required for next loop */ m_last_rtt = rtt; } bool Peer::isTimedOut(float timeout) { MutexAutoLock lock(m_exclusive_access_mutex); u64 current_time = porting::getTimeMs(); float dtime = CALC_DTIME(m_last_timeout_check,current_time); m_last_timeout_check = current_time; m_timeout_counter += dtime; return m_timeout_counter > timeout; } void Peer::Drop() { { MutexAutoLock usage_lock(m_exclusive_access_mutex); m_pending_deletion = true; if (m_usage != 0) return; } PROFILE(std::stringstream peerIdentifier1); PROFILE(peerIdentifier1 << "runTimeouts[" << m_connection->getDesc() << ";" << id << ";RELIABLE]"); PROFILE(g_profiler->remove(peerIdentifier1.str())); PROFILE(std::stringstream peerIdentifier2); PROFILE(peerIdentifier2 << "sendPackets[" << m_connection->getDesc() << ";" << id << ";RELIABLE]"); PROFILE(ScopeProfiler peerprofiler(g_profiler, peerIdentifier2.str(), SPT_AVG)); delete this; } UDPPeer::UDPPeer(u16 a_id, Address a_address, Connection* connection) : Peer(a_address,a_id,connection) { for (Channel &channel : channels) channel.setWindowSize(START_RELIABLE_WINDOW_SIZE); } bool UDPPeer::getAddress(MTProtocols type,Address& toset) { if ((type == MTP_UDP) || (type == MTP_MINETEST_RELIABLE_UDP) || (type == MTP_PRIMARY)) { toset = address; return true; } return false; } void UDPPeer::reportRTT(float rtt) { if (rtt < 0.0) { return; } RTTStatistics(rtt,"rudp",MAX_RELIABLE_WINDOW_SIZE*10); float timeout = getStat(AVG_RTT) * RESEND_TIMEOUT_FACTOR; if (timeout < RESEND_TIMEOUT_MIN) timeout = RESEND_TIMEOUT_MIN; if (timeout > RESEND_TIMEOUT_MAX) timeout = RESEND_TIMEOUT_MAX; MutexAutoLock usage_lock(m_exclusive_access_mutex); resend_timeout = timeout; } bool UDPPeer::Ping(float dtime,SharedBuffer<u8>& data) { m_ping_timer += dtime; if (m_ping_timer >= PING_TIMEOUT) { // Create and send PING packet writeU8(&data[0], PACKET_TYPE_CONTROL); writeU8(&data[1], CONTROLTYPE_PING); m_ping_timer = 0.0; return true; } return false; } void UDPPeer::PutReliableSendCommand(ConnectionCommandPtr &c, unsigned int max_packet_size) { if (m_pending_disconnect) return; Channel &chan = channels[c->channelnum]; if (chan.queued_commands.empty() && /* don't queue more packets then window size */ (chan.queued_reliables.size() + 1 < chan.getWindowSize() / 2)) { LOG(dout_con<<m_connection->getDesc() <<" processing reliable command for peer id: " << c->peer_id <<" data size: " << c->data.getSize() << std::endl); if (processReliableSendCommand(c, max_packet_size)) return; } else { LOG(dout_con<<m_connection->getDesc() <<" Queueing reliable command for peer id: " << c->peer_id <<" data size: " << c->data.getSize() <<std::endl); if (chan.queued_commands.size() + 1 >= chan.getWindowSize() / 2) { LOG(derr_con << m_connection->getDesc() << "Possible packet stall to peer id: " << c->peer_id << " queued_commands=" << chan.queued_commands.size() << std::endl); } } chan.queued_commands.push_back(c); } bool UDPPeer::processReliableSendCommand( ConnectionCommandPtr &c_ptr, unsigned int max_packet_size) { if (m_pending_disconnect) return true; const auto &c = *c_ptr; Channel &chan = channels[c.channelnum]; u32 chunksize_max = max_packet_size - BASE_HEADER_SIZE - RELIABLE_HEADER_SIZE; sanity_check(c.data.getSize() < MAX_RELIABLE_WINDOW_SIZE*512); std::list<SharedBuffer<u8>> originals; u16 split_sequence_number = chan.readNextSplitSeqNum(); if (c.raw) { originals.emplace_back(c.data); } else { makeAutoSplitPacket(c.data, chunksize_max,split_sequence_number, &originals); chan.setNextSplitSeqNum(split_sequence_number); } bool have_sequence_number = false; bool have_initial_sequence_number = false; std::queue<BufferedPacketPtr> toadd; volatile u16 initial_sequence_number = 0; for (SharedBuffer<u8> &original : originals) { u16 seqnum = chan.getOutgoingSequenceNumber(have_sequence_number); /* oops, we don't have enough sequence numbers to send this packet */ if (!have_sequence_number) break; if (!have_initial_sequence_number) { initial_sequence_number = seqnum; have_initial_sequence_number = true; } SharedBuffer<u8> reliable = makeReliablePacket(original, seqnum); // Add base headers and make a packet BufferedPacketPtr p = con::makePacket(address, reliable, m_connection->GetProtocolID(), m_connection->GetPeerID(), c.channelnum); toadd.push(p); } if (have_sequence_number) { while (!toadd.empty()) { BufferedPacketPtr p = toadd.front(); toadd.pop(); // LOG(dout_con<<connection->getDesc() // << " queuing reliable packet for peer_id: " << c.peer_id // << " channel: " << (c.channelnum&0xFF) // << " seqnum: " << readU16(&p.data[BASE_HEADER_SIZE+1]) // << std::endl) chan.queued_reliables.push(p); } sanity_check(chan.queued_reliables.size() < 0xFFFF); return true; } volatile u16 packets_available = toadd.size(); /* we didn't get a single sequence number no need to fill queue */ if (!have_initial_sequence_number) { LOG(derr_con << m_connection->getDesc() << "Ran out of sequence numbers!" << std::endl); return false; } while (!toadd.empty()) { /* remove packet */ toadd.pop(); bool successfully_put_back_sequence_number = chan.putBackSequenceNumber( (initial_sequence_number+toadd.size() % (SEQNUM_MAX+1))); FATAL_ERROR_IF(!successfully_put_back_sequence_number, "error"); } // DO NOT REMOVE n_queued! It avoids a deadlock of async locked // 'log_message_mutex' and 'm_list_mutex'. u32 n_queued = chan.outgoing_reliables_sent.size(); LOG(dout_con<<m_connection->getDesc() << " Windowsize exceeded on reliable sending " << c.data.getSize() << " bytes" << std::endl << "\t\tinitial_sequence_number: " << initial_sequence_number << std::endl << "\t\tgot at most : " << packets_available << " packets" << std::endl << "\t\tpackets queued : " << n_queued << std::endl); return false; } void UDPPeer::RunCommandQueues( unsigned int max_packet_size, unsigned int maxcommands, unsigned int maxtransfer) { for (Channel &channel : channels) { unsigned int commands_processed = 0; if ((!channel.queued_commands.empty()) && (channel.queued_reliables.size() < maxtransfer) && (commands_processed < maxcommands)) { try { ConnectionCommandPtr c = channel.queued_commands.front(); LOG(dout_con << m_connection->getDesc() << " processing queued reliable command " << std::endl); // Packet is processed, remove it from queue if (processReliableSendCommand(c, max_packet_size)) { channel.queued_commands.pop_front(); } else { LOG(dout_con << m_connection->getDesc() << " Failed to queue packets for peer_id: " << c->peer_id << ", delaying sending of " << c->data.getSize() << " bytes" << std::endl); } } catch (ItemNotFoundException &e) { // intentionally empty } } } } u16 UDPPeer::getNextSplitSequenceNumber(u8 channel) { assert(channel < CHANNEL_COUNT); // Pre-condition return channels[channel].readNextSplitSeqNum(); } void UDPPeer::setNextSplitSequenceNumber(u8 channel, u16 seqnum) { assert(channel < CHANNEL_COUNT); // Pre-condition channels[channel].setNextSplitSeqNum(seqnum); } SharedBuffer<u8> UDPPeer::addSplitPacket(u8 channel, BufferedPacketPtr &toadd, bool reliable) { assert(channel < CHANNEL_COUNT); // Pre-condition return channels[channel].incoming_splits.insert(toadd, reliable); } /* ConnectionEvent */ const char *ConnectionEvent::describe() const { switch(type) { case CONNEVENT_NONE: return "CONNEVENT_NONE"; case CONNEVENT_DATA_RECEIVED: return "CONNEVENT_DATA_RECEIVED"; case CONNEVENT_PEER_ADDED: return "CONNEVENT_PEER_ADDED"; case CONNEVENT_PEER_REMOVED: return "CONNEVENT_PEER_REMOVED"; case CONNEVENT_BIND_FAILED: return "CONNEVENT_BIND_FAILED"; } return "Invalid ConnectionEvent"; } ConnectionEventPtr ConnectionEvent::create(ConnectionEventType type) { return std::shared_ptr<ConnectionEvent>(new ConnectionEvent(type)); } ConnectionEventPtr ConnectionEvent::dataReceived(session_t peer_id, const Buffer<u8> &data) { auto e = create(CONNEVENT_DATA_RECEIVED); e->peer_id = peer_id; data.copyTo(e->data); return e; } ConnectionEventPtr ConnectionEvent::peerAdded(session_t peer_id, Address address) { auto e = create(CONNEVENT_PEER_ADDED); e->peer_id = peer_id; e->address = address; return e; } ConnectionEventPtr ConnectionEvent::peerRemoved(session_t peer_id, bool is_timeout, Address address) { auto e = create(CONNEVENT_PEER_REMOVED); e->peer_id = peer_id; e->timeout = is_timeout; e->address = address; return e; } ConnectionEventPtr ConnectionEvent::bindFailed() { return create(CONNEVENT_BIND_FAILED); } /* Connection */ Connection::Connection(u32 protocol_id, u32 max_packet_size, float timeout, bool ipv6, PeerHandler *peerhandler) : m_udpSocket(ipv6), m_protocol_id(protocol_id), m_sendThread(new ConnectionSendThread(max_packet_size, timeout)), m_receiveThread(new ConnectionReceiveThread(max_packet_size)), m_bc_peerhandler(peerhandler) { /* Amount of time Receive() will wait for data, this is entirely different * from the connection timeout */ m_udpSocket.setTimeoutMs(500); m_sendThread->setParent(this); m_receiveThread->setParent(this); m_sendThread->start(); m_receiveThread->start(); } Connection::~Connection() { m_shutting_down = true; // request threads to stop m_sendThread->stop(); m_receiveThread->stop(); //TODO for some unkonwn reason send/receive threads do not exit as they're // supposed to be but wait on peer timeout. To speed up shutdown we reduce // timeout to half a second. m_sendThread->setPeerTimeout(0.5); // wait for threads to finish m_sendThread->wait(); m_receiveThread->wait(); // Delete peers for (auto &peer : m_peers) { delete peer.second; } } /* Internal stuff */ void Connection::putEvent(ConnectionEventPtr e) { assert(e->type != CONNEVENT_NONE); // Pre-condition m_event_queue.push_back(e); } void Connection::TriggerSend() { m_sendThread->Trigger(); } PeerHelper Connection::getPeerNoEx(session_t peer_id) { MutexAutoLock peerlock(m_peers_mutex); std::map<session_t, Peer *>::iterator node = m_peers.find(peer_id); if (node == m_peers.end()) { return PeerHelper(NULL); } // Error checking FATAL_ERROR_IF(node->second->id != peer_id, "Invalid peer id"); return PeerHelper(node->second); } /* find peer_id for address */ u16 Connection::lookupPeer(Address& sender) { MutexAutoLock peerlock(m_peers_mutex); std::map<u16, Peer*>::iterator j; j = m_peers.begin(); for(; j != m_peers.end(); ++j) { Peer *peer = j->second; if (peer->isPendingDeletion()) continue; Address tocheck; if ((peer->getAddress(MTP_MINETEST_RELIABLE_UDP, tocheck)) && (tocheck == sender)) return peer->id; if ((peer->getAddress(MTP_UDP, tocheck)) && (tocheck == sender)) return peer->id; } return PEER_ID_INEXISTENT; } bool Connection::deletePeer(session_t peer_id, bool timeout) { Peer *peer = 0; /* lock list as short as possible */ { MutexAutoLock peerlock(m_peers_mutex); if (m_peers.find(peer_id) == m_peers.end()) return false; peer = m_peers[peer_id]; m_peers.erase(peer_id); auto it = std::find(m_peer_ids.begin(), m_peer_ids.end(), peer_id); m_peer_ids.erase(it); } Address peer_address; //any peer has a primary address this never fails! peer->getAddress(MTP_PRIMARY, peer_address); // Create event putEvent(ConnectionEvent::peerRemoved(peer_id, timeout, peer_address)); peer->Drop(); return true; } /* Interface */ ConnectionEventPtr Connection::waitEvent(u32 timeout_ms) { try { return m_event_queue.pop_front(timeout_ms); } catch(ItemNotFoundException &ex) { return ConnectionEvent::create(CONNEVENT_NONE); } } void Connection::putCommand(ConnectionCommandPtr c) { if (!m_shutting_down) { m_command_queue.push_back(c); m_sendThread->Trigger(); } } void Connection::Serve(Address bind_addr) { putCommand(ConnectionCommand::serve(bind_addr)); } void Connection::Connect(Address address) { putCommand(ConnectionCommand::connect(address)); } bool Connection::Connected() { MutexAutoLock peerlock(m_peers_mutex); if (m_peers.size() != 1) return false; std::map<session_t, Peer *>::iterator node = m_peers.find(PEER_ID_SERVER); if (node == m_peers.end()) return false; if (m_peer_id == PEER_ID_INEXISTENT) return false; return true; } void Connection::Disconnect() { putCommand(ConnectionCommand::disconnect()); } bool Connection::Receive(NetworkPacket *pkt, u32 timeout) { /* Note that this function can potentially wait infinitely if non-data events keep happening before the timeout expires. This is not considered to be a problem (is it?) */ for(;;) { ConnectionEventPtr e_ptr = waitEvent(timeout); const ConnectionEvent &e = *e_ptr; if (e.type != CONNEVENT_NONE) { LOG(dout_con << getDesc() << ": Receive: got event: " << e.describe() << std::endl); } switch (e.type) { case CONNEVENT_NONE: return false; case CONNEVENT_DATA_RECEIVED: // Data size is lesser than command size, ignoring packet if (e.data.getSize() < 2) { continue; } pkt->putRawPacket(*e.data, e.data.getSize(), e.peer_id); return true; case CONNEVENT_PEER_ADDED: { UDPPeer tmp(e.peer_id, e.address, this); if (m_bc_peerhandler) m_bc_peerhandler->peerAdded(&tmp); continue; } case CONNEVENT_PEER_REMOVED: { UDPPeer tmp(e.peer_id, e.address, this); if (m_bc_peerhandler) m_bc_peerhandler->deletingPeer(&tmp, e.timeout); continue; } case CONNEVENT_BIND_FAILED: throw ConnectionBindFailed("Failed to bind socket " "(port already in use?)"); } } return false; } void Connection::Receive(NetworkPacket *pkt) { bool any = Receive(pkt, m_bc_receive_timeout); if (!any) throw NoIncomingDataException("No incoming data"); } bool Connection::TryReceive(NetworkPacket *pkt) { return Receive(pkt, 0); } void Connection::Send(session_t peer_id, u8 channelnum, NetworkPacket *pkt, bool reliable) { assert(channelnum < CHANNEL_COUNT); // Pre-condition putCommand(ConnectionCommand::send(peer_id, channelnum, pkt, reliable)); } Address Connection::GetPeerAddress(session_t peer_id) { PeerHelper peer = getPeerNoEx(peer_id); if (!peer) throw PeerNotFoundException("No address for peer found!"); Address peer_address; peer->getAddress(MTP_PRIMARY, peer_address); return peer_address; } float Connection::getPeerStat(session_t peer_id, rtt_stat_type type) { PeerHelper peer = getPeerNoEx(peer_id); if (!peer) return -1; return peer->getStat(type); } float Connection::getLocalStat(rate_stat_type type) { PeerHelper peer = getPeerNoEx(PEER_ID_SERVER); FATAL_ERROR_IF(!peer, "Connection::getLocalStat we couldn't get our own peer? are you serious???"); float retval = 0.0; for (Channel &channel : dynamic_cast<UDPPeer *>(&peer)->channels) { switch(type) { case CUR_DL_RATE: retval += channel.getCurrentDownloadRateKB(); break; case AVG_DL_RATE: retval += channel.getAvgDownloadRateKB(); break; case CUR_INC_RATE: retval += channel.getCurrentIncomingRateKB(); break; case AVG_INC_RATE: retval += channel.getAvgIncomingRateKB(); break; case AVG_LOSS_RATE: retval += channel.getAvgLossRateKB(); break; case CUR_LOSS_RATE: retval += channel.getCurrentLossRateKB(); break; default: FATAL_ERROR("Connection::getLocalStat Invalid stat type"); } } return retval; } u16 Connection::createPeer(Address& sender, MTProtocols protocol, int fd) { // Somebody wants to make a new connection // Get a unique peer id (2 or higher) session_t peer_id_new = m_next_remote_peer_id; u16 overflow = MAX_UDP_PEERS; /* Find an unused peer id */ MutexAutoLock lock(m_peers_mutex); bool out_of_ids = false; for(;;) { // Check if exists if (m_peers.find(peer_id_new) == m_peers.end()) break; // Check for overflow if (peer_id_new == overflow) { out_of_ids = true; break; } peer_id_new++; } if (out_of_ids) { errorstream << getDesc() << " ran out of peer ids" << std::endl; return PEER_ID_INEXISTENT; } // Create a peer Peer *peer = 0; peer = new UDPPeer(peer_id_new, sender, this); m_peers[peer->id] = peer; m_peer_ids.push_back(peer->id); m_next_remote_peer_id = (peer_id_new +1 ) % MAX_UDP_PEERS; LOG(dout_con << getDesc() << "createPeer(): giving peer_id=" << peer_id_new << std::endl); { Buffer<u8> reply(4); writeU8(&reply[0], PACKET_TYPE_CONTROL); writeU8(&reply[1], CONTROLTYPE_SET_PEER_ID); writeU16(&reply[2], peer_id_new); putCommand(ConnectionCommand::createPeer(peer_id_new, reply)); } // Create peer addition event putEvent(ConnectionEvent::peerAdded(peer_id_new, sender)); // We're now talking to a valid peer_id return peer_id_new; } const std::string Connection::getDesc() { MutexAutoLock _(m_info_mutex); return std::string("con(")+ itos(m_udpSocket.GetHandle())+"/"+itos(m_peer_id)+")"; } void Connection::DisconnectPeer(session_t peer_id) { putCommand(ConnectionCommand::disconnect_peer(peer_id)); } void Connection::sendAck(session_t peer_id, u8 channelnum, u16 seqnum) { assert(channelnum < CHANNEL_COUNT); // Pre-condition LOG(dout_con<<getDesc() <<" Queuing ACK command to peer_id: " << peer_id << " channel: " << (channelnum & 0xFF) << " seqnum: " << seqnum << std::endl); SharedBuffer<u8> ack(4); writeU8(&ack[0], PACKET_TYPE_CONTROL); writeU8(&ack[1], CONTROLTYPE_ACK); writeU16(&ack[2], seqnum); putCommand(ConnectionCommand::ack(peer_id, channelnum, ack)); m_sendThread->Trigger(); } UDPPeer* Connection::createServerPeer(Address& address) { if (ConnectedToServer()) { throw ConnectionException("Already connected to a server"); } UDPPeer *peer = new UDPPeer(PEER_ID_SERVER, address, this); { MutexAutoLock lock(m_peers_mutex); m_peers[peer->id] = peer; m_peer_ids.push_back(peer->id); } return peer; } } // namespace